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Boundary Element Method for Magneto Electro Elastic Laminates

A. Milazzo1, I. Benedetti2 and C. Orlando3

Abstract: A boundary integral formulation and its nu-
merical implementation are presented for the analysis
of magneto electro elastic media. The problem is for-
mulated by using a suitable set of generalized vari-
ables, namely the generalized displacements, which are
comprised of mechanical displacements and electric and
magnetic scalar potentials, and generalized tractions, that
is mechanical tractions, electric displacement and mag-
netic induction. The governing boundary integral equa-
tion is obtained by generalizing the reciprocity theorem
to the magneto electro elasticity. The fundamental so-
lutions are calculated through a modified Lekhnitskii’s
approach, reformulated in terms of generalized magneto-
electro-elastic displacements. To assess the reliability
and effectiveness of the formulation, some numerical
analyses have been carried out and the convergence of
the method has been studied. The multidomain approach
has been developed for the analysis of multilayered struc-
tures. Numerical results obtained show good agreement
with those found in the literature.

keyword: Magneto-electro-elastic materials; Bound-
ary element method; Laminates modeling.

1 Introduction

The new class of magneto-electro-elastic materials has
recently emerged in the field of smart structures and ma-
terials by virtue of their ability to convert energy into
three different forms, i.e. magnetic, electric and me-
chanical. This characteristic distinguishes them from
the extensively investigated classical piezoelectric ma-
terials – for recent studies see for example Han, Ding
and Liu (2005) or Han, Pan, Roy and Yue (2006) – and
makes them particularly suitable for the construction of
smart devices, such as sensors, actuators or transducers.
Magneto-electro-elastic media can fundamentally be of
two kinds: a) particulate composites having a 0-3 con-
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nectivity; b) composites having a 2-2 connectivity, see
Ryu, Priya, Uchino and Kim (2002). The first type is
constituted by a piezoelectric matrix with piezomagnetic
inclusions, or vice versa, see Buchanan (2004), while the
second one is a real laminate made by piezoelectric and
piezomagnetic layers. The optimal exploitation of these
materials relies upon the correct analysis of their coupled
response to external stimul. While the inherent coupling
of the three fields makes them particularly attractive in
the framework of intelligent systems, on the other hand it
makes more complex the mathematical modeling of their
behaviour. Indeed, analytical solutions to the governing
differential equations are rather rare and either devoted
to the treatment of infinite domain problems or limited
to special configurations. Wang and Shen (2002) ob-
tained the general solution for three-dimensional trans-
versely isotropic magneto-electro-elastic media by using
five harmonic potential functions and they applied it to
determine the fundamental solution for a generalized dis-
location and derive Green’s functions for a half-space.
Huo, Leung and Ding (2003) used the general harmonic
potential solution to obtain extended Boussinesq and
Cerruti solutions for magneto-electro-elastic half-space
and applied them to the treatment of elliptical Hertzian
contact. Ding and Jiang (2004) derived a general solution
for plane magneto-electro-elastic problems, expressing it
in terms of four harmonic potentials and then derived 2D
fundamental solutions for an infinite plane. Guan and He
(2005) used the same general solution to study the prob-
lem of an infinite half plane loaded by a point force lying
on its free surface. Hou, Ding and Chen (2005) derived
Green’s functions for transversely isotropic magneto-
electro-elastic media for the case of distinct and multi-
ple eigenvalues. Some exact solutions have been devised
for interesting structural configurations. Pan (2001) de-
rived the exact solutions for three-dimensional magneto-
electro-elastic simply supported multilayered rectangular
plates under static generalized loads by using the propa-
gator matrix method and then extended it to the analy-
sis of free vibrations, (see Pan and Heyliger (2002) Pan
and Heyliger (2003), and Heyliger, Ramirez and Pan
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(2004) analysed simply supported multilayered plates in
cylindrical bending by using the propagator matrix and
discrete layer approximations methods. Pan and Han
(2005) obtained exact solutions for rectangular plates
made up of functionally graded layers. Wang, Chen and
Fang (2003) developed a state vector approach for three-
dimensional multilayered magneto-electro-elastic plates
and used it to determine a solution in terms of infinite
series expansion. Chen, Lee and Ding (2005) studied
the free vibration problem of functionally graded trans-
versely isotropic magneto-electro-elastic plates. Actu-
ally the analysis of configurations with general bound-
ary conditions requires the use of numerical methods.
FEM models are indeed rather rare, as also pointed out
by Bhangale and Ganesan (2005), who derived a hybrid
formulation to study the free vibrations of functionally
graded magneto-electro-elastic cylindrical shells. They
used series expansions in the circumferential and ax-
ial directions and finite elements in the radial one. In
Buchanan (2003) and Buchanan (2004) finite elements
were used to compare multilayer and multiphase ap-
proaches to magneto-electro-elastic materials. A mixed
finite element approach to magneto-electro-elastic plates
has been developed on the basis of the mixed Reissner
variational principle by Lage, Mota Soares C.M., Mota
Soares C.A. and Reddy (2004). A BEM model for plane
magneto-electro-elasticity has been developed by Ding
and Jiang (2004), who found the 2D fundamental so-
lutions starting from the general harmonic potential so-
lution. Ding, Jiang, Hou and Chen (2005) also found
3D Green’s functions for transversely isotropic magneto-
electro-elasticity and used it in the 3D BEM analysis of
an annular plate.

In the present paper a multidomain boundary element
model for 2D magneto-electro-elastic laminates is devel-
oped. The formulation is expressed in terms of suitably
defined generalized variables, namely generalized dis-
placements and tractions. By using these variables the
magneto–electro- elastic governing equations can be re-
cast in a form that resembles the governing equations of
classical elasticity and allows the straightforward exten-
sion of classical methods to the magneto-electro-elastic
analysis. The boundary integral representation is de-
duced by generalizing the reciprocity theorem. The fun-
damental solutions are determined by using a generalized
displacement based modified Lekhnitskii’s approach, see
Lekhnitskii (1963). Finally, the numerical solution of the

formulation is obtained by the boundary element method.
A multidomain approach, obtained by enforcing suitable
continuity and equilibrium conditions between adjacent
layers, has been used to model laminate configurations.
Some numerical results are presented to evaluate the ef-
fectiveness and the reliability of the proposed model.

2 Basic equations

The formulation will be developed for two-dimensional
magneto-electro-elastic domains Ω with boundary ∂Ω ly-
ing in the x1x2 plane. It is assumed that the magneto-
electro-elastic response does not vary along the x3 di-
rection, so that the analysis leads to a generalized
plane strain elasticity problem and an in-plane magneto-
electrostatic problem. To maintain a compact and effi-
cient matrix notation the strain component γ33, the elec-
tric field component E3 and the magnetic field compo-
nent H3, which are trivially zero due to the assump-
tion of generalized plane strain and in-plane electrostat-
ics and magnetostatics, are kept in the formulation and
the generalized in-plane behaviour will be expressed by
suitable differential operators. It is worthwhile to note
that, due to the anisotropy of the material and the in-
herent coupling between the different fields, the pres-
ence of out of plane shear strains cannot be trivially
excluded even in the case of generalized plane strain.
For the sake of generality the formulation will be there-
fore developed considering the possibility of their pres-
ence. The elastic state of the body is described in
terms of displacements uT =

[
u1 u2 u3

]
, elastic

strains γγγT =
[

γ11 γ22 γ12 γ13 γ23 γ33
]

and elas-
tic stresses σσσT =

[
σ11 σ22 σ12 σ13 σ23 σ33

]
.

The electric state is defined by the electric potential ϕ, the
electric field ET =

[
E1 E2 E3

]
and the electric dis-

placement field DT =
[

D1 D2 D3
]
. Assuming that

there is no external current density in the domain, the
magnetic field variables are the scalar magnetic poten-
tial ψ, the magnetic field HT =

[
H1 H2 H3

]
and the

magnetic induction field BT =
[

B1 B2 B3
]
.

The above quantities are involved in the following rela-
tionships

γγγ = Cu , E = −Lϕ , H = −Lψ (1)

CTσσσ+ f = 0,LT D−ρ = 0,LT B = 0 (2)

The eqs. (1) express the strain-displacement relations
and the irrotationality conditions of electric and magnetic
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fields. It should be noted that the equation linking the
magnetic field and the scalar magnetic field holds for non
conducting materials only. On the other hand, the eqs.
(2) represent the classical elastic indefinite equilibrium
equations and the stationary Maxwell equations for the
electric displacement and the magnetic induction fields
respectively. In the above equations f is the body forces
vector, ρ is the free electric charge density and the differ-
ential operators are defined as

C =

⎡
⎣ ∂

/
∂x1 0 ∂

/
∂x2 0 0 0

0 ∂
/

∂x2 ∂
/

∂x1 0 0 0
0 0 0 ∂

/
∂x1 ∂

/
∂x2 0

⎤
⎦

T

,

L =

⎡
⎣ ∂

/
∂x1

∂
/

∂x2

0

⎤
⎦ (3)

Moreover, the following constitutive equations hold for
magneto-electro-elastic materials

⎡
⎣ σσσ

D
B

⎤
⎦ =

⎡
⎣ C eT dT

e −εεε −g
d −g −µµµ

⎤
⎦ ·

⎡
⎣ γγγ

−E
−H

⎤
⎦ = R ·

⎡
⎣ γγγ

−E
−H

⎤
⎦
(4)

where C is the elasticity matrix, εεε and µµµ are the matri-
ces of dielectric constants and magnetic permeability re-
spectively, e and d are the matrices of piezoelectric and
piezomagnetic constants and g is the matrix describing
the direct magneto-electric coupling. In order to main-
tain a compact notation, the generalized constitutive ma-
trix will be denoted as R in the following, as shown in
the last member of eq. (4).

The eqs. (1), (2) and (4) should be completed by consid-
ering the suitable essential and natural boundary condi-
tions, which can be expressed in the form

u = u on ∂Ωu1 ,ϕ = ϕ on ∂Ωϕ1 , ψ = ψ on ∂Ωψ1 (5)

t = t on ∂Ωu2 , Dn = Dn on ∂Ωϕ2 , Bn = Bn on ∂Ωψ2 (6)

where t =
[

t1 t2 t3
]T

are the elastic boundary trac-
tions as defined in the classical elasticity theory. The
form of the eqs. (1), (2) and (4) suggests the extension to
the general magneto-electro-elastic problem of the Bar-
nett and Lothe’s formalism for piezoelectrics, see Bar-
nett and Lothe (1975). More specifically, the analysis can
be expressed in terms of generalized quantities, namely

generalized displacements U, generalized body forces F,
generalized strains ΓΓΓ and generalized stresses ΣΣΣ, defined
as

UT = [u ϕ ψ] (7)

FT =
[

fT −ω 0
]

(8)

ΓΓΓT =
[

γγγT −ET −HT
]

(9)

ΣΣΣT =
[

σσσT DT BT
]

(10)

By introducing the generalized compatibility operator

D =

⎡
⎣ C 0 0

0 L 0
0 0 L

⎤
⎦ , (11)

eqs. (1) can be written in a compact matrix form as

ΓΓΓ = D U (12)

The generalized constitutive equations (4) can be rewrit-
ten in compact notation as

ΣΣΣ = RΓΓΓ (13)

and the generalized equilibrium equations, that is eqs (2),
are expressed as

DTΣΣΣ+F = 0 (14)

Finally, by combining the eqs. (12), (13) and (14), the
generalized governing equations are obtained

DT RD U+F = 0 (15)

The boundary conditions associated with eq (15) can be
then expressed by

U = U on ∂Ω1

T = D T
n RD U = T on ∂Ω2 (16)

where TT =
[

t1 t2 t3 Dn Bn
]

is the generalized
tractions vector and Dn is the generalized traction opera-
tor, obtained by substituting the derivatives with the cor-
responding boundary outer normal direction cosines in
the generalized compatibility operator D, Davı̀ and Mi-
lazzo (1997). There is no contradiction between eq. (16)
and eqs. (5) and (6), since absolutely general boundary
conditions can be imposed in the generalized notation.
It is worth noting that the generalized variables make it
possible to retrieve a form of the magneto-electro-elastic
governing equations formally analogous to that of the
anisotropic elasticity.
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3 Boundary integral representation

Let U j and F j be a system of generalized displace-
ments and forces which satisfies eq. (15), and let T j

be the corresponding generalized tractions. Applying the
reciprocity theorem to the generalized magneto-electro-
elastic problem, the following equation can be written,
see Aliabadi (2002),Z

∂Ω

(
UT

j T−TT
j U

)
d∂Ω =

Z
Ω

(
FT

j U−UT
j F

)
dΩ (17)

If F j = c jδ(P−P0), where the c j is the load intensity and
δ(P−P0) is the Dirac’s delta function, U j and T j repre-
sent the problem fundamental solution and the following
equation holds

cT
j U(P0)+

Z
∂Ω

(
TT

j U−UT
j T

)
d∂Ω =

Z
Ω

UT
j F dΩ (18)

This equation is the analogous of the classical
Somigliana’s identity of elasticity and constitutes the
boundary integral representation of the magneto-electro-
mechanical problem. By using five independent funda-
mental solutions associated with the concentrated point
load directed along the three axes, with a concentrated
charge and with a concentrated current, the three dis-
placement components and the two potential at the
generic point P0 can be expressed in terms of generalized
displacements and generalized tractions on the boundary.
In compact matrix notation one writes

c∗U(P0)+
Z

∂Ω

(T∗U−U∗T)d∂Ω = 0 (19)

where the hypothesis of null body forces has been as-
sumed.

The kernel terms U∗
i j and T ∗

i j are the j-th components of
the generalized displacement and generalized tractions at
the point P due to a concentrated generalized point load
acting along the i-th direction at the point P0. According
to Davı̀ (1989) and Davı̀ and Milazzo (2001), the matrix
c∗ can be calculated by the following integration

c∗ = −
Z

∂Ω
T∗d∂Ω (20)

When collocated at the boundary, eq (19) provides the
boundary integral equations which, coupled with the es-
sential and natural conditions (16), allow the determina-
tion of the unknowns on the boundary. Once the bound-
ary solution is determined, the boundary integral rep-
resentation gives the generalized displacements at the

generic point P0 of the domain in terms of the boundary
variables. The following boundary integral representa-
tion for the generalized strain field holds, see Banerjiee
and Butterfield (1981)

ΓΓΓ(P0) =
Z

∂Ω
(ΞΞΞ∗T−ΘΘΘ∗U)d∂Ω (21)

where

ΘΘΘ∗ = DC∗−1T∗ , ΞΞΞ∗ = DC∗−1U∗ (22)

Finally, the boundary integral representation for the gen-
eralized stress can be simply obtained by pre-multiplying
eq (21) for the generalized stiffness matrix R

ΣΣΣ(P0) =
Z

∂Ω
(RΞΞΞ∗T−RΘΘΘ∗U)d∂Ω (23)

The integral eqs (21) and (23) hold for the internal points
only. Their collocation on the boundary would require
special consideration for the singularities arising from
the presence of the derivatives of the fundamental solu-
tions in the kernel. In this paper, however, the gener-
alized stresses at the boundary not directly obtained as
tractions have been approximated by suitably using the
constitutive equations and the derivatives of the boundary
variables with respect to the local tangential coordinate.

4 Fundamental solutions

The formulation of the boundary integral equations re-
lies on the magneto-electro-elastic fundamental solution,
which is governed by the following equation

DT RDU j +c jδ(P−P0) = 0 (24)

in the infinite domain Ω∞. Ding and Jiang (2004) de-
rived the fundamental solution from a general solution
found by means of the strict differential operator theory.
In their derivation they distinguished between two differ-
ent problems, dealing first with the case of point electric
charge, point electric current and point force along the
anisotropic direction, which are treated in the same way,
and then solving separately for the case of point force
acting in the plane of transverse isotropy. In the present
paper the fundamental solution is deduced by extending
to magneto-electro-elastic materials a modified Lekhnit-
skii’s approach previously used for piezoelectric materi-
als, see Davı̀ and Milazzo (2001). In this framework, the
solution of eq (24) is sought of the form

U = λa ln(X1 +αX2) (25)
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where λ, a and α are complex constants to be determined
and

Xi = xi (P)−xi (P0) i = 1,2 (26)

Feeding the expression (25) into eq (24) produces the fol-
lowing generalized eigenvalue problem

[
IT

1 RI1 +α
(
IT

1 RI2 + IT
2 RI1

)
+α2IT

2 RI2
]

a = 0 (27)

where the matrices Ii (i = 1,2) are obtained from the
generalized compatibility operator eq (11) by setting the
derivatives with respect to xi equal to one and replacing
all the other terms with zeros. The solution of eq. (27)
produces ten eigenvalues αk with the associated eigen-
vectors ak, which form conjugate pairs for non degener-
ate materials. In the case of distinct eigenvalues the fun-
damental solution is then expressed as superposition of
functions of the form (25), associated with the calculated
eigenvalues αk. By selecting the eigenvalues with posi-
tive imaginary parts, Im(αk) > 0, the generalized funda-
mental solution can be expressed as

U j = 2
5

∑
k=1

Re
[
λ jkak ln(X1 +αkX2)

]
(28)

The corresponding tractions are given by

T j = 2
5

∑
k=1

Re

[
λ jkD

T
n RDαkak

1
X1 +αkX2

]
(29)

where the matrix Dαk is obtained from the differential op-
erator D by replacing the derivative with respect to x1

with one and the derivative with respect to x2 with αk.
The constants λ jk are determined by enforcing the com-
patibility and equilibrium conditions on the Gauss plane.
The vector λλλ j =

[
λ j1 λ j2 λ j3 λ j4 λ j5

]T
, corre-

sponding to the j-th generalized point load (point load,
concentrated electric charge or current) is then computed
by

λλλ j =
(

B+ B̃Ã
−1

A
)−1

c j (30)

where the tilde denotes the complex conjugate, A is the
matrix containing as columns the computed eigenvectors
ak, and the columns bk of the matrix B are defined as

bk = DkRDαkak (31)

where

Dk = C (αk)

⎡
⎢⎢⎢⎢⎣

−1 0 i 0 0 0
0 i −1 0 0 0
0 0 0 −1 i 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
−1 i 0 0 0 0
0 0 0 −1 i 0

⎤
⎥⎥⎥⎥⎦ (32)

with C (αk) = 2π(1+ iαk)
/(

1+α2
k

)
It is worth noting that, by virtue of the generalized for-
malism used, the present fundamental solution has been
derived in compact matrix notation, which has proved to
be very practical and advantageous for computer imple-
mentation.

5 Numerical model and solution

The boundary integral formulation has been numerically
implemented by using the BEM, Banerjiee and Butter-
field (1981). The boundary ∂Ω of the considered domain
is subdivided into M elements and the governing inte-
gral equations are therefore discretized by expressing the
generalized boundary variables U and T in terms of their
nodal values ΔΔΔ and P as

U = NU (ξ)ΔΔΔ on ∂Ω
T = NT (ξ)P on ∂Ω (33)

where NU (ξ) and NT (ξ) are matrices of standard shape
function, expressed in terms of the isoparametric local
coordinate ξ. Feeding the boundary approximation (33)
into eq (19) produces

c∗i ΔΔΔi +
M

∑
j=1

Hi j ΔΔΔ j +
M

∑
j=1

Gi j P j = 0 (34)

where

Hi j =
Z

∂Ω j

T∗ (ξ)NU (ξ) J (ξ)dξ

Gi j = −
Z

∂Ω j

U∗ (ξ)NT (ξ)J (ξ)dξ (35)

In the preceding equation J(ξ) is the Jacobian involved in
the transformation from the global to the local curvilinear



22 Copyright c© 2006 Tech Science Press CMES, vol.15, no.1, pp.17-30, 2006

coordinate. By collocating the point Pi at the boundary
nodes using the collocation technique and absorbing the
c∗i matrix with the corresponding block Hii, we obtain a
linear algebraic system which can be written as

HΔΔΔ+GP = 0 (36)

where ΔΔΔ and P are the vectors of the nodal generalized
displacements and tractions respectively, while H and G
are the square influence matrix. Eq (36), coupled with the
magneto-electro-mechanical boundary conditions, pro-
vides the solution of the problem for a single domain. To
address problems involving laminated structural config-
urations, a multidomain approach is proposed, see Davı̀
and Milazzo (2001) and Banerjiee and Butterfield (1981).
In this scheme the original domain is subdivided into N
subdomains, one for each ply of the laminate, and the
boundary of each individual ply is discretized into Mk

boundary elements. Repeating the procedure previously
illustrated for each subdomain, the following set of sub-
systems is obtained

H(k)ΔΔΔ(k)+G(k)P(k)= 0 k = 1,2...,N (37)

where the superscript (k) indicate quantities associated
with the k-th subdomain. To retrieve the domain unity,
the suitable continuity and equilibrium conditions at the
interface between contiguous plies are enforced. To do
this let us introduce a partition of the linear algebraic sys-
tem (37) in such a way that the generic vector y(k) can be
written as

y(k) =

⎡
⎢⎢⎣

y(k)
∂Ωi1

...

y(k)
∂ΩiN

⎤
⎥⎥⎦ (38)

where the vector y(k)
∂Ωi j

collects the components of y(k) as-

sociated with the nodes belonging to the interfaces ∂Ωi j

between the i-th and j-th subdomains, with the conven-
tion that ∂Ωii denotes the external boundary of the ith
subdomain (see Fig. 1)

By so doing the interface compatibility and equilibrium
conditions, that is the interface continuity conditions, are
given by

ΔΔΔ(i)
∂Ωi j

= ΔΔΔ( j)
∂Ωi j

i = 1, ...,M−1; j = i+1, ...,M

P(i)
∂Ωi j

= −P( j)
∂Ωi j

i = 1, ...,M−1; j = i+1, ...,M

(39)

jk 

ik

j

i
k

ij kk

ii

jj

Figure 1 : Multidomain configuration.

It should be noted that, if the i-th and j-th subdomains
have no common boundary, y(k)

∂Ωi j
is a zero-order vector

and eqs. (39) are no longer valid. The system (37) and
the interface continuity conditions (39) provide a set of
relationships which, together with the boundary condi-
tions on the external boundaries ∂Ωii, allow the solution
of the analyzed magneto-electro-mechanical problem.

6 Numerical results

Some numerical results are presented to assess the ef-
fectiveness and the reliability of the proposed model. In
the first application, used as benchmark for the numeri-
cal implemented model, the magneto-electro-elastic be-
haviour of a column having dimension b = 0.6 m and
h = 0.02 m is analysed. The analysis is carried out un-
der generalized plane strain hypothesis.

The material properties of the magneto-electro-elastic
medium have been extracted from Ding and Jiang (2004)
and are listed in Tab. 1. The generalized boundary con-
ditions for the three analysed load cases are summarized
in Tab. 2.

In Tab. 3 the mechanical displacements and the electric
and magnetic scalar potentials, computed for the column
centre point by using 32 linear elements, are listed for the
three considered load cases. The values in parentheses
represent the exact solution as extracted from Ding and
Jiang (2004).

In the second application a rectangular simply-supported
beam made of the same material as that of the previous
application is considered (see Fig. 2).

The problem is treated under plane stress hypothesis and
the boundary conditions are listed in Tab. 4. The beam
dimensions are b = 0.2 m and h = 0.02 m. Due to the side
length ratio, the response of the 2D model will approach
that of the 1D model.

Tab. 5 and Tab. 6 show the results obtained us-
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Table 1 : Magneto-electro-elastic constitutive coefficients.

Cij

[GPa]

ij

[nF/m]

ij

[ N/A2]

eij

[C/m2]

dij

[N/A m]

gij

[N sec/V C]

C11 = 166 11 = 11.2 11 = 5 e21 = -4.4 d21 = 580.3 g11 = 5x10
-12

C22 = 162  = 12.6 22 = 10 e22 = 18.6 d22 = 699.7 g22 = 3x10
-12

C12 = 78 e14 = 11.6 d14 = 550

C13 = 77      

C44 = 43      

C55 = 44.5    

Table 2 : Boundary conditions for the magneto-electro-elastic column.

Boundary Load Case Boundary conditions 

1 0,x b 1, 2, 3 1 0t 2 0t 1 0D 1 0B

1 1 0t 2 10 t Pa 2 0D 2 0B

2 0,x h 2 1 0t 2 0t -10 2
2D = 10  C m 2 0B

3 1 0t 2 0t 2 0D -8
2B = 10  N Am

Table 3 : Displacements and potentials at the column centre point in comparison with the exact values (in parenthe-
ses) furnished by Ding and Jiang (2004).

Load 

case  
u1 [m] u2 [m] V] A]

 -9.649e-12 5.6734e-13 9.510e-4 2.1058e-5 

1 (-9.500e-12) (5.683e-13) (9.495e-4) (2.139e-5) 

 -2.146e-13 9.4508e-15 -6.2416e-5 2.5956e-7 

2 (-2.108e-13) (9.495e-15) (-6.289e-5) (2.567e-7) 

 5.130e-13 2.1217e-14 2.5374e-5 -7.4864e-6 

3 (5.077e-13) (2.139e-14) (2.567e-5) (-7.521e-6)

Table 4 : Boundary conditions for the magneto-electro-elastic beam.

Boundary Boundary conditions 

1 0,x b 1 0t 2 0u 0 0

2 0x 1 0t 2 0t 2 0D 2 0B

2x h 1 0t
2 1t 10 sin x b 2 0D 2 0B
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b

E F G H

A B C D

x1

x2

h

t2

Figure 2 : Magneto-electro-elastic beam scheme.
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Figure 3 : Convergence analysis for the point E of the
magneto-electro-elastic clamped beam.

ing totally 180 linear elements with the exact val-
ues given in Ding and Jiang (2004) for the in-
ternal points A ≡(0.100,0.010), B ≡(0.125,0.010),
C ≡(0.150,0.010), D ≡(0.175,0.010) and for the
boundary points E ≡(0.100,0.020), F ≡(0.125,0.020),
G ≡(0.150,0.020), H ≡(0.175,0.020) respectively (see
Fig. 2).

The same beam with clamped ends has also been anal-
ysed. Boundary conditions are the same as the prece-
dent case except for the u1 displacement which is set to
zero for x1 = 0,b. Fig. 3 shows the convergence analy-
sis carried out for the transverse displacement u2 and for
the electric and magnetic potential at point E. The con-
vergence of the electric and magnetic potentials appears
slower than that of the elastic displacement and, for a nu-

bx1

x2

t2

CoFe2O4

BaTiO3

h
X

Figure 4 : Magneto-electro-elastic laminate scheme.

merical evaluation of the beam behaviour, at least 100
linear elements have been used.

Tab. 7 and Tab. 8 compare the results obtained using
the present approach with that numerically evaluated by
Ding and Jiang (2004).

As last application, the magneto-electro-elastic behavior
of the two layer composite laminate shown in Fig. 4 has
been studied. The analysis is carried out under cylin-
drical bending conditions and generalized plain strain
hypothesis. The plate dimensions are b = 0.01 m and
h = 0.001 m.

The material properties of the piezoelectric and piezo-
magnetic layers have been extracted from Heyliger,
Ramirez and Pan (2004) and are listed in Tab. 9 and
Tab. 10 respectively. The generalized boundary condi-
tions are summarized in Tab. 11. In Tab 12 the trans-
verse displacement, the electric potential and the mag-
netic scalar potential, computed by using 427 linear el-
ements, are listed for three selected points. The values
in parentheses are the exact solutions as extracted from
Heyliger, Ramirez and Pan (2004).

Fig. 5 shows the convergence analysis for the transverse
displacement and the electric and magnetic potential at
the point x≡ (b/2,0) (see Fig. 4); it appears that the mag-
netic scalar potential exhibits the slowest convergence.

In Fig. 6 to Fig. 13 the components of the generalized
traction vector are shown as functions of the plate thick-
ness.

Fig. 6 and Fig. 7 show the presence of a small discon-
tinuity, both in terms of intensity and inclination, in the
distribution of the stress component σ11 and σ33 at the in-
terface between the two layers, due to the different mate-
rial properties, as also pointed out by Heyliger, Ramirez
and Pan (2004), while the stress components σ22 and σ12,
shown in Fig. 8 and Fig. 9 respectively, are continuous
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Table 5 : Values at the four internal points of the magneto electro elastic simply supported beam. Values in paren-
theses are taken from Ding and Jiang (2004).

Point u2 [m] [V] [A] 1 [Pa] 2 [Pa] D2 [C/m2] B2 [N/Am]

-1.975e-9 -2.313e-2 -1.796e-3 2.795e-2 -4.999 -1.114e-11 -2.283e-10 

A (-2.000e-9) (-2.314e-2) (-1.808e-3) (2.818e-2) (-5.000) (-1.114e-11) (-2.282e-10)

-1.825e-9 -2.137e-2 -1.659e-3 2.577e-2 -4.619 -1.027e-11 -2.105e-10 

B (-1.847e-9) (-2.138e-2) (-1.671e-3) (2.604e-2) (-4.619) (-1.029e-11) (-2.109e-10)

-1.397e-9 -1.6364e-2 -1.270e-3 1.958e-2 -3.535 -7.872e-12 -1.614e-10 

C (-1.414e-9) (-1.6372-2) (-1.279e-3) (1993e-2) (-3.5351) (-7.875e-12) (-1.614e-10)

-7.562e-10 -8.859e-3 -6.878e-4 1.031e-2 -1.913 -4.282e-12 -8.734e-11 

D (-7.652e-10) (-8.857e-3) (-6.921e-4) (1.078e-2) (-1.913) (-4.262e-12) (-8.734e-11)

Table 6 : Values at the four boundary points of the mag-
neto electro elastic simply supported beam. Values in
parentheses are taken from Ding and Jiang (2004).

Point u2 [m] [V] [A]

-1.9693e-9 -8.9121e-3 -2.1676e-3 

E (-1.9930e-9) (-8.7280e-3) (-2.1840e-3)

-1.8195e-9 -8.2311e-3 -2.0028e-3 

F (-1.8420e-9) (-8.0630e-3) (-2.0180e-3)

-1.3927e-9 -6.2932e-3 -1.5334e-3 

G (-1.4090e-9) (-6.1720e-3) (-1.5440e-3)

-7.5389e-10 -3.3972e-3 -8.3023e-4 

H (-7.6280e-10) (-3.3400e-3) (-8.3570e-4)

through the interface.

The electric displacement components D1 and D2 (see
Fig. 10 and Fig. 11) and the magnetic induction com-
ponents B1 and B2, shown in Fig. 12 and Fig. 13,
present a more relevant discontinuity crossing the inter-
face, both in the intensity (B1 and D1) and in the slope
(B2 and D2), due to the transition from a piezoelectric
to a piezomagnetic layer; moreover they show a char-
acteristic behaviour, also depicted by Heyliger, Ramirez
and Pan (2004): the through thickness electric displace-
ment distribution is linear in the magnetostrictive layer
and non-linear in the piezoelectric one, while the through
thickness magnetic induction distribution is linear in the
piezoelectric medium and non-linear in the magnetostric-
tive one.

Table 7 : Transverse displacement, electric and magnetic
potential at four boundary points of the clamped beam.
Values in parenthess are extracted from Ding and Jiang
(2004).

Point u2 [m] [V] [A]

E -4.4988e-10 -1.5755e-2 -2.0052e-3 

 (-4.2140e-10) (-1.6430e-2) (-1.9630e-3)

F -3.9603e-10 -1.5037e-2 -1.8434e-3 

 (-3.6990e-10) (-1.5660e-2) (-1.8030e-3)

G -2.5651e-10 -1.3000e-2 -1.3817e-3 

 (-2.3710e-10) (-1.3450e-2) (-1.3520e-3)

H -9.4191e-11 -0.9979e-2 -6.8681e-4 

 (-8.3910e-11) (-1.0170e-2) (-6.7180e-4)

In all the studied cases, the agreement between previous
results and those calculated through the developed for-
mulation appears fully satisfying.

7 Conclusions

In this work a multidomain boundary element approach
for the analysis of general magneto-electro-elastic lam-
inates has been developed. The model is entirely ex-
pressed in terms of generalized magneto-electro-elastic
variables, which allow the extension of anisotropic elas-
ticity techniques to the more general magneto-electro-
elastic problem. In particular, the Somigliana’s identity
is rewritten in the extended notation and the boundary
integral representation is then directly deduced. The fun-
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Table 8 : Transverse displacement, electric and magnetic potential at four internal points of the clamped beam.
Values in parentheses are numerically evaluated by Ding and Jiang (2004).

Point u2 [m] [V] [A] 1 [Pa] 2 [Pa] D2 [C/m2] B2 [N/Am]

A -4.5180e-10 -2.0292e-2 -1.8712e-3 -8.6756e-1 -4.9985 -1.1147e-11 -2.2826e-10 

 (-4.2310e-10) (-2.0860e-2) (-1.8270e-3) (-8.6780e-1) (-4.9969) (-1.1130e-11) (-2.2540e-10)

B -3.9713e-10 -1.8531e-2 -1.7359e-3 -8.6970e-1 -4.6180 -1.0299e-11 -2.1085e-10 

(-3.7110e-10) (-1.9060e-2) (-1.6940e-3) (-8.7020e-1) (-4.6167) (-1.0320e-11) (-2.1080e-10)

C -2.5551e-10 -1.3511e-2 -1.3499e-3 -8.7582e-1 -3.5344 -7.8473e-12 -1.6004e-10 

(-2.3720e-10) (-1.3980e-2) (-1.3190e-3) (-8.7600e-1) (-3.5334) (-7.8670e-12) (-1.5960e-10)

D -9.0907e-11 -5.9896e-3 -7.7025e-4 -8.8483e-1 -1.9107 -2.6208e-12 -1.2924e-11 

 (-8.2220e-11) (-6.3170e-3) (-7.5400e-4) (-8.8410e-1) (-1.9096) (-2.6250e-12) (-6.6430e-12)

Table 9 : BaTiO3 constitutive coefficients.

Cij [GPa] ij [nF/m] ij [ N/A2] eij [C/m2] dij [N/Am] gij [Nsec/VC]

C11 = 166 11 = 11.2 11 = 5 e21 = -4.4 d21 = 0 g11 = 0

C22 = 162  = 12.6 22 = 10 e22 = 18.6 d22 = 0 g22 = 0

C12 = 78 e14 = 11.6 d14 = 0

C13 = 77      

C44 = 43      

C55 = 44.5    

Table 10 : CoFe2O4 constitutive coefficients.

Cij [GPa] ij [nF/m] ij [ N/A2] eij [C/m2
] dij [N/Am] gij [Nsec/VC]

C11 = 286 11 = 0.08 11 = -590 e21 = 0 d21 = 580.3 g11 = 0

C22 = 269.5  = 0.093 22 = 157 e22 = 0 d22 = 699.7 g22 = 0

C12 = 170.5 e14 = 0 d14 = 550

C13 = 173      

C44 = 45.3      

C55 = 56.5      

damental solutions are calculated generalizing a modified
Lekhnitskii’s approach and are expressed in a very com-
pact matrix notation.

The analysis of some configurations has been carried

out and some characteristic features of magneto-electro-
elastic laminates have been pointed out. In particular, it
has been found that the in-plane normal stress compo-
nents show a linear distribution in the through the thick-
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Table 11 : Boundary conditions for the magneto-electro-elastic simply supported laminate.

Boundary Boundary conditions 

1 0,x b 1 0t 2 0u 0 0

2 0x 1 0t 2 0t 2 0D 2 0B

2x h 1 0t 2 1t sin x b 2 0D 2 0B

-2

-1

0

1

2

3

C
on

ve
rg

en
ce

 v
al

ue
s 

fo
r

u
2

*1
01

1  
[m

], 
φ

*1
04

 [V
] a

nd
ψ

*1
07

 [A
]

u
2  *10 11 [ m ]

φ     *10 4  [ V ]

ψ     *10 7  [ A ]

77 127 177 227 277 327 377 427

Number of boundary elements

Figure 5 : Convergence analysis for the point
X≡(b/2,0) of the magneto electro elastic simply sup-
ported laminate.
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ness direction with a small discontinuity in slope and
intensity at the interface; on the other hand the trans-
verse normal component and the shear component are

continuous and vary non-linearly. More interesting are
the through the thickness distributions of the electric
and magnetic fields. Both the components of the elec-
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Figure 9 : Through thickness distribution of the trans-
verse shear stress σ12.
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Figure 10 : Through thickness distribution of the in-
plane electric displacement component D1.
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Figure 11 : Through thickness distribution of the nor-
mal electric displacement component D2.
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Figure 12 : Through thickness distribution of the in-
plane magnetic induction component B1.

tric field vary linearly in the piezomagnetic lamina and
non-linearly in the piezoelectric one; in the same way,
both the magnetic field components behave linearly in
the piezoelectric medium and non-linearly in piezomag-
netic one. Moreover, the in-plane components of the
electric and magnetic vectors show a strong discontinuity
in magnitude crossing the interface, while the transverse
components show a discontinuity only in slope. These
results have shown a good agreement with those reported
in the literature, confirming therefore the accuracy of the
proposed numerical scheme.
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