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Analysis and Optimization of Dynamically Loaded Reinforced Plates by the
Coupled Boundary and Finite Element Method

P. Fedelinski1 and R. Gorski1

Abstract: The aim of the present work is to analyze
and optimize plates in plane strain or stress with stiff-
eners subjected to dynamic loads. The reinforced struc-
tures are analyzed using the coupled boundary and finite
element method. The plates are modeled using the dual
reciprocity boundary element method (DR-BEM) and the
stiffeners using the finite element method (FEM). The
matrix equations of motion are formulated for the plate
and stiffeners. The equations are coupled using condi-
tions of compatibility of displacements and equilibrium
of tractions along the interfaces between the plate and
stiffeners. The final set of equations of motion is solved
step-by-step using the Houbolt direct integration method.
The direct solutions are displacements and tractions for
boundary and interface nodes in each time step. The aim
of optimization is to find the optimal lengths and loca-
tions of stiffeners. The objective functions, which char-
acterize strength and stiffness, depend on displacements
or tractions. The optimization problem is solved using an
evolutionary method. The results of the dynamic analysis
by the proposed method are compared with the solutions
computed by the professional finite element code, show-
ing a very good agreement. As the result of optimiza-
tion, an improvement of dynamic response is obtained,
in comparison with an initial design.

keyword: Dynamics, Optimization, Plate, Stiffener,
Boundary element method, Finite element method, Evo-
lutionary method.

1 Introduction

Structures are reinforced by stiffeners in order to in-
crease strength, stiffness and stability. The stiffened
structures are frequently subjected to dynamic loads, and
the knowledge of their transient dynamic response has
a practical significance. Optimal choice of a number of
stiffeners, their properties and locations in the structure
decides about the effectiveness of the reinforcement.
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An analysis of structures with arbitrary geometry, ma-
terial properties and boundary conditions requires nu-
merical methods. One of the versatile methods, which
is intensively developed in dynamics of solids, is the
boundary element method (BEM) [Dominguez (1993)].
The method has been used in static and dynamic anal-
ysis of structures with stiffeners. Salgado and Ali-
abadi (1996,1998,1999) presented the analysis of stati-
cally loaded stiffened panels with cracks. The dual BEM
was used for sheets with cracks and analytical equations
for stiffeners. Growth of single and multiple cracks was
considered. Coda, Venturini (1999), Coda, Venturini and
Aliabadi (1999) showed the coupling of 3D bodies, mod-
eled by the BEM, with shells, plates and frames, ana-
lyzed by the FEM. The proposed method is particularly
suitable to analysis of soil-structure interactions. Coda
(2001) presented a static and dynamic non-linear anal-
ysis of reinforced 2D structures. The plates were mod-
eled using the BEM and reinforced by non-linear trusses
modeled by the FEM. Numerical solutions for a concrete
reinforced beam were compared with experimental re-
sults. Leite, Coda and Venturini (2003) presented a par-
ticular approach for 2D reinforced structures, in which
bars were represented by very thin sub-regions. In this
method, tractions along the interfaces were eliminated
from equations. Leite and Venturini (2005) presented an
alternative formulation, in which displacements at inter-
faces were eliminated. Botta and Venturini (2005) used
the boundary-finite element combination to analyze 2D
elastostatic solids reinforced by fibers. The debonding
effects between the matrix and fibers were considered.
Forth and Staroselsky (2005) applied the hybrid finite
and boundary element approach to model a 3D crack
propagating through a thin multilayered coating. The
method was implemented to design an aircraft engine
structural health monitoring system.

In this work, a static and dynamic analysis and optimiza-
tion of plates with stiffeners is presented. The plates
are modeled by the BEM and the stiffeners by the FEM.
The optimization problem is solved by the evolutionary
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method. The preliminary results of optimization were
presented by Gorski and Fedelinski (2004,2005). In
those works, the stiffeners were attached at boundaries
of the plates. In the present work, the reinforcement is in
the interior of 2D structures.

2 Boundary integral equations for the plate

Let us consider a two-dimensional, homogenous,
isotropic and linear elastic body with the boundary Γ 1

occupying the domain Ω 1. The body is subjected to dy-
namic boundary tractions and body forces distributed in
the domain Ω 2, as shown in Fig.1.

g

Figure 1 : A plate reinforced by a stiffener

The following boundary conditions:

ui(x,τ) = ui(x,τ) on Γu,and

ti(x,τ) = σi j(x,τ)n j = t i(x,τ) on Γt , (1)

and initial conditions:

ui(x,0) = uo
i (x) and u̇i(x,0) = vo

i (x) in Ω1, (2)

are imposed, where: ui is the component of displace-
ment, ti is the component of traction, ui and t i denote
the prescribed boundary conditions, σi j is the stress ten-
sor, n j is the component of the outward normal versor
at the boundary, Γ u and Γt are parts of the boundary
Γ1(Γu∪Γt = Γ1), uo

i and vo
i are the prescribed initial con-

ditions, x are coordinates of a point, τ is a time; repeated
indices denote the summation convention and overdots
indicate time derivatives; the indices for two-dimensional
problems are i, j = 1,2. Zero initial conditions are con-
sidered in this work.

The relation between the mechanical fields can be ex-

pressed by the integral equation [Dominguez (1993)]

ci j(x′)u j(x′,τ) =
Z

Γ1

Ui j(x′,x)t j(x,τ)dΓ(x)

−
Z

Γ1

Ti j(x′,x)u j(x,τ)dΓ(x)

−ρ
Z

Ω1

Ui j(x′,X)ü j(X ,τ)dΩ(X)

+ρ
Z

Ω2

Ui j(x′,X)b j(X)dΩ(X) (3)

where: ci j is a constant, which depends on the position
of the point, ρ is a mass density, b j is a body force, Ui j

and Ti j are fundamental solutions of elastostatics, x′ is a
collocation point, x is a boundary point and X is a domain
point.

The inertial domain integral in Eq.3 is transformed into
the boundary integrals using the dual reciprocity method
(DRM) proposed by Brebbia and Nardini (1983) [see
also Dominguez (1993)]. In this method, it is assumed
that the accelerations are interpolated using the equation

üi(X ,τ) = α̈n
i (τ) f n(x∗,X) (4)

where α̈n
i is a time-dependent function and f n is a coordi-

nate function. In the present work the following function
is chosen

f n(x∗,X) = r +C (5)

where r is the distance between a defining point x∗ and
the point X , and C is a constant. The defining point can
be a boundary or a domain point.

After the transformation, the inertial domain term in Eq.3
has the form

ρ
Z

Ω1

Ui j(x′,X)ü j(X ,τ)dΩ(X)

= ρ[−ci j(x′)ûn
jl(x∗,x′)

+
Z

Γ1

Ui j(x′,x)t̂n
jl(x∗,x)dΓ(x)

−
Z

Γ1

Ti j(x′,x)ûn
jl(x∗,x)dΓ(x)]α̈n

l (τ) (6)

where: ûn
jl and t̂n

jl are fictitious displacements and trac-
tions [Dominguez (1993)], respectively, corresponding to
the fictitious body force f n defined by Eq.5.
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If the plate is reinforced by a beam, the deformed stiff-
ener acts on the plate along the line of attachment. In this
case, the body forces b j are tractions t j, which are dis-
tributed along the interface line Γ 12 (see Fig.1). There-
fore, the integral Eq.3 has the form

ci j(x′)u j(x′,τ) =
Z

Γ1

Ui j(x′,x)t j(x,τ)dΓ(x)

−
Z

Γ1

Ti j(x′,x)u j(x,τ)dΓ(x)

+ρ[ci j(x′)ûn
jl(x∗,x′)

−
Z

Γ1

Ui j(x′,x)t̂n
jl(x∗,x)dΓ(x)

+
Z

Γ1

Ti j(x′,x)ûn
jl(x∗,x)dΓ(x)]α̈n

l (τ)

+
Z

Γ12

Ui j(x′,X)t j(X)dΓ(X) (7)

It can be noticed, that the equation of motion of the rein-
forced plate is expressed in the boundary integral form.

3 Matrix equation for the reinforced plate

In the literature, several methods of combining of the
BEM with FEM are presented. One of these approaches,
which is used in the present paper, consists in treating
the finite element region as an equivalent boundary ele-
ment domain. Matrix equations of motion for the plate,
the stiffener and the coupled equations are given in this
section.

3.1 Matrix equation for the plate (BEM)

In order to obtain the numerical solution for the plate,
the boundary and the interface where the stiffener is at-
tached, are divided into boundary elements. In the pro-
posed method, quadratic 3-node elements are used. The
boundary integral equations are applied for collocation
points, which are nodes along the boundary and interface.
The variations of boundary coordinates, displacements,
tractions and interface tractions are interpolated using
quadratic shape functions. Additional domain nodes (the
so called internal points), which improve interpolation of
accelerations, are not used in numerical examples. The
set of resulting algebraic equations can be written in a

matrix form [Dominguez (1993)]

[
M1 M12

]{
ü1

ü12

}
+

[
H1 H12

]{
u1

u12

}

=
[

G1 G12
]{

t1

t12

}
(8)

where: M is the mass matrix, H and G are the BEM co-
efficient matrices, u and ü are displacement and acceler-
ation vectors, respectively, and t is a vector of tractions
applied at the boundary or interface. The superscripts de-
note the matrices, which correspond to the boundary or
interface.

3.2 Matrix equation for the stiffener (FEM)

The stiffener is divided into 2-node straight finite beam
elements (3 degrees of freedom in a node). After the dis-
cretization and interpolation of displacements, the equa-
tion of motion for the stiffener can be written in a matrix
form [Zienkiewicz and Taylor (2000)]

M21ü21 +K21u21 = T21t21 (9)

where: K is the FEM stiffness matrix, T is the matrix,
which expresses the relationship between the FE nodal
forces and the BE tractions. The matrix T for a single
finite element of length l has the form [Leite, Coda and
Venturini (2003)]

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

l
3 0 0 l

6 0 0
0 7l

20 −1
2 0 3l

20 −1
2

0 l2

20
l

12 0 l2

30 − l
12

l
6 0 0 l

3 0 0
0 3l

20
1
2 0 7l

20
1
2

0 − l2

30 − l
12 0 − l2

20
l

12

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(10)

3.3 Matrix equation for the reinforced plate (coupled
BEM/FEM)

If the stiffener is bonded to the plate, and the structure is
subjected to boundary conditions, the interaction forces
between the plate and the stiffener act along the connec-
tion line Γ12. The displacement compatibility conditions
and the traction equilibrium conditions over the interface
Γ12 are

u12 = u21 ; t12 = −t21 (11)
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If the above conditions are taken into account in Eqs 8
and 9, then the following system of equations for the
whole structure is obtained[

M1 M12

0 M21

]{
ü1

ü12

}

+
[

H1 H12 −G12

0 K21 T21

]⎧⎨
⎩

u1

u12

t12

⎫⎬
⎭

=
[

G1

0

]{
t1

}
(12)

The above system of equations is rearranged according to
the boundary conditions and solved step-by-step by the
Houbolt direct integration method giving the unknown
displacements and tractions on the external boundary and
at the interface in each time step. The method can be
used for the static analysis by assuming that the acceler-
ations of all nodes are equal to zero. In a similar way, the
method can be implemented for more stiffeners.

4 Evolutionary method of optimization

The aim of optimization is to find the optimal lengths
and locations of stiffeners. The design variables are co-
ordinates of characteristic points of stiffeners. The con-
straints are imposed on these coordinates. The objec-
tive functions, which characterize strength or stiffness,
depend on displacements or tractions.

The optimization problem is solved using an evolu-
tionary algorithm (EA) [Goldberg (1989), Michalewicz
(1996)]. The algorithm imitates evolutionary processes
in nature. Contrary to the gradient methods of optimiza-
tion, which require sensitivities of objective functions,
the evolutionary methods can be simply implemented be-
cause they need only the values of objective functions.
The probability of obtaining of the global optimal solu-
tion is very high, but the methods are very time consum-
ing.

The evolutionary algorithm used in the paper is a mod-
ified simple genetic algorithm which uses modified ge-
netic operators and the floating point representation. The
computation starts using the initial population of chro-
mosomes randomly generated from the feasible solution
domain. Each chromosome, which consists of genes (de-
sign variables), is responsible for exactly one potential
solution. An objective function plays the role of a fit-
ness function. Chromosomes are estimated using a fit-

Figure 2 : An evolutionary algorithm

ness function and some of them are selected for the next
generation. Meanwhile, the genetic operators and the se-
lection are applied. On each gene appropriate constraints
are imposed. This procedure is repeated until the optimal
solution is reached. The solution of the problem is given
by the best chromosome of all generations. Genes of this
chromosome define the optimal geometry of a structure.

The evolutionary program consisting of two main blocks,
shown in Fig.2, has been developed. To evaluate a fit-
ness function for each chromosome, first the parameters
which specify geometry of a structure are randomly gen-
erated. Then the BEM/FEM model is prepared. After
that, the BEM/FEM analysis is performed and displace-
ments and tractions on the external boundary and the in-
terfaces are obtained. Finally, a fitness function is evalu-
ated using the boundary displacements or tractions.

5 Numerical examples

5.1 Reinforced plate with a hole

The aim of the example is analysis and optimization of
a rectangular plate with a hole reinforced by 4 beams
of circular cross-section and statically or dynamically
loaded, as shown in Fig.3.

The plate is stretched by the uniformly distributed load
applied at the left and right edge. For the dynamic
case, the load p(τ) is defined by a Heaviside impulse.
The value of the load is p=10MPa. The length and the
height of the structure and the hole radius are respectively
L=10cm, H=5cm and R=1cm. The thickness of the plate
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Figure 3 : Reinforced plate with a hole

is g=1 cm, the diameter of each beam is d=0.3 cm. The
materials of the plate (p) in plane stress and the stiffen-
ers (s) are epoxy and steel, respectively. The materials
of the plate and the beams are homogeneous, isotropic
and linear elastic. The values of mechanical properties
are as follows: modulus of elasticity Ep=4.5 GPa and
Es=210 GPa, Poisson’s ratio νp=0.37 and νs=0.3, den-
sity ρp=1160 kg/m3 and ρs=7860 kg/m3.

The aim of optimization is to find the location of the re-
inforcement in the interior of the plate. The following
objective functions J for statics and dynamics are con-
sidered:

minimization of the stress concentration factor K at the
point B (see Fig.3)

J = K =
σB

max (τ)
σnom

(13)

minimization of the average horizontal displacement
along the loaded edge in the analyzed time (maximiza-
tion of stiffness)

J = uaver =
1
N

N

∑
n=1

1
M

M

∑
m=1

unm
x (14)

where σB
max (τ) is the static or maximal dynamic normal

stress at the point B, σnom is a nominal static stress at the
weakened cross-section, defined as a ratio of the applied
load to the area of this cross-section, unm

x is a horizontal
displacement at a node m on the loaded edge and at the
time step n, M is a number of all nodes at the half of the
loaded edge, N is a number of time steps.

It is assumed that during optimization the reinforcement
is symmetrical with respect to two symmetry axes thus
only the quarter of the structure (the upper right part)
with two beams and the appropriate boundary conditions
at the symmetry axes is modeled.

Figure 4 : Design variables and constraints

The objective functions given by (13) and (14) are min-
imized with respect to design variables (Xi, Yi, i=1,2),
defining the coordinates of the end of the i-th beam (see
Fig.4).

The coordinates of the beginning of 2 beams at the sym-
metry line are fixed: the x coordinates are equal to 0 cm
and the y coordinates are equal to 1.5 cm and 2 cm for
the beam near the hole and the outer boundary, respec-
tively. The number of design variables is 4 on which
the constraints are imposed. The ends of the beams can
move inside the area of the dashed-line pentagon, shown
in Fig.4. The connection or intersection of beams is not
admissible and the distance between the beams and the
boundary can not be lower than 0.5 cm.

The total number of boundary and finite elements in
the BEM/FEM analysis is 92 and 64, respectively (each
beam is discretized into 32 finite elements). The total
number of quadrilateral plate and beam finite elements in
the FEM analysis is 413 and 64, respectively. The time of
analysis is 300 µs and the time step Δt=3 µs. The number
of chromosomes in the population is 10 and the number
of generations of the EA is 200.

5.1.1 Dynamic analysis

The accuracy of the developed method is investigated.
The dynamic analysis is performed for the plate before
optimization, called the reference plate (design variables
for this plate are given in Tab.1 and Tab.2).

The dynamic horizontal displacement at the point A (see
Fig.3), obtained by the present coupled BEM/FEM and
by the professional FEM Nastran code, is presented in
Fig.5. The agreement of the results is good.

5.1.2 Minimization of a stress concentration factor K

The results of optimization obtained by the evolutionary
algorithm for the static and dynamic problem are pre-
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Figure 5 : Displacement at the point A

Table 1 : Values of design variables, J and R

Design variables 

[cm]

L
o

ad
in

g
 

Plate

X1 X2 Y1 Y2 

J
R

[%]

non-stiffened - 2.23 - 

reference 4.50 4.50 1.50 2.00 0.59 73.5

st
at

ic

optimal 2.81 4.50 1.50 2.00 0.57 74.4

non-stiffened - 5.16 - 

reference 4.50 4.50 1.50 2.00 1.27 75.4

d
y

n
am

ic
 

optimal 1.65 4.28 1.50 2.00 1.20 76.7

sented. The criterion of optimization is minimization of
the stress concentration factor K at the point B given by
(13). The values of design variables for the optimal solu-
tions, the values of the stress concentration factors (SCF)
and their reduction R=(Jo −J)/Jo·100% (where: Jo is the
SCF for the plate without stiffeners and J is the SCF for
the reference or the optimal plate), are presented in Tab.1.

It can be observed that the reduction R for the reference
plate and the optimal designs is significant in compari-
son with the plate without the reinforcement. The values
of the SCF are similar for the reference and the optimal
plates, as for the static as for the dynamic load. It is due
to similar location and the length of the reinforcement in
the interior of the plate.

The optimal structures for statics and dynamics are
shown in Fig.6a and Fig.6b. For the optimal designs the
beams are parallel to the direction of the applied load.

5.1.3 Maximization of stiffness

The results of optimization obtained by the evolutionary
algorithm, when the criterion of optimization is mini-

Table 2 : Values of design variables, J and R

Design variables 

[cm]

L
o

ad
in

g
 

Plate

X1 X2 Y1 Y2 

J

[10-4cm]

R

[%]

non-stiffened - 133 - 

reference 4.50 4.50 1.50 2.00 53 60.2

st
at

ic

optimal 4.50 4.50 0.89 2.00 50 62.4

non-stiffened - 126 - 

reference 4.50 4.50 1.50 2.00 53 57.9

d
y

n
am

ic
 

optimal 4.50 4.50 0.92 2.00 51 59.5

a)

b)

Figure 6 : Optimal structures: a) statics, b) dynamics

mization of the average horizontal displacement (uaver)
along the loaded edge given by (14), are presented. The
values of design variables for the optimal designs, the
values of J and its reduction R=(Jo−J)/Jo·100% (where:
Jo is the uaver for the plate without stiffeners and J is the
uaver for the reference or the optimal plate), are shown in
Tab.2.

As in the previous example, the reduction R for the refer-
ence plate and the optimal designs is significant in com-
parison with the plate without reinforcement. Due to
similar location and the length of the stiffeners for the
reference and the optimal plate, the values of the average
displacements are similar for the static and the dynamic
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Table 3 : Constraints on design variables

Variable Constraints [cm]

X1, X3 0.50 4.75

X2, X4 5.25 9.50

Y1, Y3 0.50 2.25

Y2, Y4 2.75 4.50

a)

b)

Figure 7 : Optimal structures: a) statics, b) dynamics

load.

The optimal structures for statics and dynamics are
shown in Fig.7a and Fig.7b.

5.2 Reinforced cantilever plate

The aim of the example is analysis and optimization of a
rectangular cantilever plate reinforced by a frame struc-
ture and statically or dynamically loaded, as shown in
Fig.8. The frame is composed of 4 straight beams of
square cross-section (2a×b). The length and the height
of the plate are L=10 cm and H=5 cm, respectively. The
thickness of the plate is g=0.25 cm, the dimensions of
cross-section of beams are 2a=0.5 cm and b=0.5 cm. The
plate is fixed at its left edge and the uniformly distributed
load is applied at the upper edge. For the dynamic
problem, the plate is subjected to the sinusoidal load
p(τ)=posin(2πτ/T). The amplitude of the load is po=10
MPa and the period of time is T =20π µs. The material
of the plate in plane stress and the frame is aluminum

Figure 8 : Reinforced cantilever plate

Figure 9 : Design variables and constraints

for which the values of mechanical properties are: mod-
ulus of elasticity E=70 GPa, Poisson’s ratio ν=0.34 and
density ρ=2700 kg/m3. The material is homogeneous,
isotropic and linear elastic.

The aim of optimization is to find the location of the rein-
forcement (the shape of the frame) in order to maximize
stiffness of the plate. The following objective function J
is considered:

minimization of the vertical displacement at the point A
(see Fig.8)

J = max
∣∣uA(τ)

∣∣ (15)

where uA(τ) is the static or dynamic vertical displace-
ment at the considered point A.

The number of design variables defining the shape of the
frame is 8 (see Fig.9). They are the coordinates of the
ends of all straight beams (Xi, Yi, i=1,2,3,4). The po-
sition of each beam is defined by 2 design variables on
which the constraints are imposed. The ends of beams
can move along the edges of the plate within the con-
straints, as shown in Fig.9. The constraints on the X1,
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Figure 10 : Displacement at the point A

Table 4 : Values of design variables, J and R

Design variables 

[cm]

L
o

ad
in

g
 

Plate
X1

Y1

X2

Y2

X3

Y3

X4

Y4

J

[10-4cm]

R

[%]

non-stiffened - 885 - 

reference
2.50 

1.50 

7.50

3.50

2.50 

1.50 

7.50 

3.50 
793 10.3

st
at

ic

optimal 
4.75 

0.50 

7.05

4.50

0.50 

1.10 

9.50 

4.50 
487 45.0

non-stiffened - 430 - 

reference
2.50 

1.50 

7.50

3.50

2.50 

1.50 

7.50 

3.50 
193 55.2

d
y

n
am

ic
 

optimal 
2.71 

0.50 

9.50

4.50

4.75 

2.25 

9.50 

4.50 
148 65.6

X2, X3 and X4 variables and Y1, Y2, Y3 and Y 4 vari-
ables are given in Tab.3.

The total number of boundary and finite elements in the
BEM/FEM analysis is 120 and 120, respectively (each
horizontal and vertical beam is discretized into 40 and
20 finite elements, respectively). The total number of
quadrilateral plate and beam finite elements in the FEM
analysis is 800 and 120, respectively. During the opti-
mization, the number of boundary and finite elements is
constant, which simplifies significantly the modification
of BE and FE discretization. The time of analysis by the
Houbolt method is 600 µs and the time step Δt=2 µs. The
number of chromosomes in the population is 50 and the
number of generations of the EA is 100.

5.2.1 Dynamic analysis

The accuracy of the developed method is investigated.
The analysis is performed for the plate before optimiza-
tion, called the reference plate, shown in Fig.8 (design

a)

b)

Figure 11 : Optimal structures: a) statics, b) dynamics

variables for this plate are given in Tab.4).

The dynamic vertical displacement at the point A, ob-
tained by the present coupled BEM/FEM and by the pro-
fessional FEM Nastran code, is presented in Fig.10. As
in the previous example of analysis, the agreement of the
results is good.

5.2.2 Maximization of stiffness

The results of optimization obtained by the evolutionary
algorithm, when the criterion of optimization is mini-
mization of the static or maximal dynamic vertical dis-
placement at the point A given by (15), are presented.
The values of design variables for the optimal designs,
the values of J and its reduction R=(Jo − J)/Jo·100%
(where: Jo is the uA for the plate without stiffeners and J
is the uA for the reference or the optimal plate), are shown
in Tab.4.

One can observe that the reduction R for the reference
plate and the optimal designs is significant in comparison
with the non-stiffened plate.

The optimal structures for statics and dynamics are
shown in Fig.11a and Fig.11b. It can be seen that in the
present example of optimization, most of constraints are
active, both for the static and dynamic load.

The dynamic vertical displacement at the point A for the
reference, the optimal and the non-stiffened plate is pre-
sented in Fig.12. An improvement of dynamic response
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Figure 12 : Displacement at the point A

of the optimal plate in comparison with the non-stiffened
and the reference one can be observed.

6 Conclusions

In the paper, the formulation and application of the cou-
pled boundary and finite element method to static and dy-
namic analysis of two-dimensional reinforced structures
is presented. The problem of the optimal reinforcement,
which gives the highest strength or stiffness, is solved
using the evolutionary method. The proposed method re-
quires only discretization of boundaries of the plates and
stiffeners. The reduced discretization simplifies modifi-
cations of the reinforcement, which is necessary during
the optimization process. The results of dynamic analy-
sis are in a very good agreement with the finite element
solutions. The evolutionary method can be simply im-
plemented because it needs only the values of objective
functions. The probability of obtaining of the global op-
timal solution is very high, but the method is very time
consuming. An improvement of dynamic response is ob-
tained, as the result of optimization, in comparison with
the initial design and the structures without reinforce-
ment. The effectiveness of optimization depends on the
problem.
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