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Performance of Multiquadric Collocation Method in Solving Lid-driven Cavity
Flow Problem with Low Reynolds Number

S. Chantasiriwan1

Abstract: The multiquadric collocation method is the
collocation method based on radial basis function known
as multiquadrics. It has been successfully used to solve
several linear and nonlinear problems. Although fluid
flow problems are among problems previously solved by
this method, there is still an outstanding issue regarding
the influence of the free parameter of multiquadrics (or
the shape parameter) on the performance of the method.
This paper provides additional results of using the mul-
tiquadric collocation method to solve the lid-driven cav-
ity flow problem. The method is used to solve the prob-
lem in the stream function-vorticity formulation and the
velocity-vorticity formulation. Two test problems are
solved, and solutions are compared with exact and bench-
mark solutions. It is found that the shape parameter af-
fects solutions for the stream function-vorticity formula-
tion differently from solutions for the velocity-vorticity
formulation.

keyword: Navier-Stokes, Meshless, Multiquadrics,
Radial basis function

1 Introduction

Conventional numerical methods like the finite ele-
ment method and the finite difference method require
either time-consuming mesh generation or restrictive
node arrangement. Meshless methods have been given
much interest recently because they do not have such
disadvantages. One popular meshless method is the
meshless local Petrov-Garlerkin method (MLPG). This
method has been used to solve elastostatic problems
[Vavourakis, Sellountos, and Polyzos (2006); Sellountos,
Vavourakis, and Polyzos (2005); Atluri, Han, and Rajen-
dran (2004); Han and Atluri (2004)], thermomechanic
problems [Ching and Chen (2006)], bending problems of
shear deformable shallow shells [Sladek, Sladek, Wen,
and Aliabadi (2006)], dynamics fracture problems [Gao,
Liu, and Liu (2006)], nonlinear problems with large de-
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formations and rotations [Han, Rajendran, and Atluri
(2005)]. In addition, MLPG has also been successfully
used in modeling liquid crystals [Pecher, Elston, and
Raynes (2006)], simulations of water waves [Ma (2005)],
studying vibrations of cracked Euler-Bernoulli beams
[Andreaus, Batra, and Porfiri (2005)], multiscale simu-
lations [Shen and Atluri (2005); Shen and Atluri (2004)],
and analysis of thick plates [Soric, Li, Jarak, and Atluri
(2004)].

Whereas some meshless methods like MLPG seek weak-
form solutions, other meshless methods seek strong-form
solutions. One such method is the collocation method
using radial basis functions. A radial basis function is a
function that depends on only the distance between the
point where the function is to be evaluated and the center
of the function. Radial basis functions have been exten-
sively used in numerical analysis. Examples of appli-
cations of radial basis functions are optimization prob-
lems [Lian and Liou (2005); Wang and Wang (2006)],
fluid-structure interaction problems [Ahrem, Beckert,
and Wendland (2006)], mathematical finance problems
[Choi and Marcozzi (2004)], analysis of micro-electrical-
mechanical system [Hon, Ling, and Liew (2005)], and
approximation of source term in dual reciprocity method
[Cho, Golberg, Muleshkov, and Li (2004)].

A well-known radial basis function is multiquadrics:

φ(x,y,x j,y j) =
√

(x−x j)2 +(y−y j)2 +c2 (1)

where (x j,y j) is the center of the function. Introduced by
Hardy (1971) for the purpose of multivariate data fitting,
multiquadrics was later found by Kansa (1990) to be a
good basis function for a collocation method. The collo-
cation method that uses multiquadrics as basis function
(to be referred to as the multiquadric collocation method
or MCM) has been used to solve a variety of partial dif-
ferential equations by approximating the dependent vari-
able (or its derivative) as a linear combination of multi-
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quadrics:

f (x,y) = ∑
j

a jφ(x,y,x j,y j) (2)

Coefficients a j are determined from the governing equa-
tion, the intial condition, and the boundary condition.

A distinctive feature of MCM is the adjustable free pa-
rameter (c), which is also known as the shape parameter.
Previous experiences obtained from using MCM to solve
linear partial differential equations have shown that the
accuracy of this method can be increased by increasing
the shape parameter. Although there is a practical limit
to the acceptable value of the shape parameter due to the
large condition number of the system of linear algebraic
equations resulting from discretization or the sensitivity
of solution to uncertainty in boundary condition as shown
by Chantasiriwan (2005), it is generally accepted that the
influence of the shape parameter on solutions to linear
problems by MCM is more or less predictable.

Recently, there have been attempts to use MCM to solve
more challenging problems. One such problem is the
lid-driven cavity flow problem. In this paper, this prob-
lem means an internal flow of an incompressible, vis-
cous, Newtonian fluid in a square cavity, of which three
sides are stationary and the remaining side moves at a
constant velocity. Figure 1 illustrates the geometry of
this flow problem. Although it can be seen that the lid-
driven cavity flow problem looks simple, analytical solu-
tions for this problem are not available except for the case
of Stokes flow, in which the fluid viscosity is infinite or
the lid speed is infinitesimal. However, benchmark nu-
merical solutions for this problem are available in some
cases. This problem is, therefore, a favorite test problem
for numerical methods.

Previous results have shown that MCM is capable of pro-
viding accurate solution when the shape parameter has
particular values. It is unreasonable to assume that in-
fluences of the shape parameter on the solution of lid-
driven cavity flow problem and a linear problem are sim-
ilar. Two differences must be considered. First, the non-
linearity of the lid-driven cavity flow problem means that
not only is the accuracy of the solution is important, the
ability of MCM to deliver converged solutions must also
be paid attention to. There is no doubt that the value
of the shape parameter plays a strong role in determin-
ing whether MCM converges. Second, boundary condi-
tion of the problem is discontinuous whereas most previ-

Figure 1 : Lid-driven flow in a square cavity

ous results that show predictable behaviors of solutions
by MCM have been obtained from test problems having
continuous boundary conditions. Unfortunately, the ef-
fect of the shape parameter on the performance of MCM
in the lid-driven cavity flow problem has not been suffi-
ciently investigated.

This paper seeks to provide additional results of using
MCM to solve the lid-driven cavity flow problem. The
main issue of concern is the influence of the shape pa-
rameter on the accuracy of the solution and the number
of iterations required for convergence. These results will
be useful for practical purpose of determining the suit-
able range of the values of the shape parameter so that
MCM can be used with confidence. The following sec-
tions present mathematical formulations of the problem,
description of MCM used to solve the problem, details of
two test problems along their exact and benchmark solu-
tions for computing errors of MCM, and results of using
MCM to solve the test problems.

2 Test problems

Two test problems are considered. The first problem is
the Stokes problem (Re = 0), and the second problem
is a low-Re problem (Re = 100). The first problem is a
linear problem for which the analytical solution is avail-
able, whereas the second problem is a nonlinear problem
without the exact solution. However, a widely accepted
benchmark solution is available for the second problem.
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Both solutions can be used to assess the accuracy of a
numerical method.

For the first problem, an eigenfunction expansion proce-
dure is used to express the analytical solution as an infi-
nite series. Eigenvalues are computed by using an itera-
tion method suggested by Hansen (1997). Coefficients of
expansion are determined numerically by using a method
based on a least-square procedure suggested by Shankar
(1993). Table 1 shows solution obtained from truncated
series having 1000 terms at selected points inside the cav-
ity. Also shown in Tab. 1 is benchmark solution at the se-
lected points for the second problem provided by Ghia,
Ghia, and Shin (1982).

3 Formulations of the problem

The lid-driven cavity flow problem can be solved in three
well-known formulations. Their details are given as fol-
lows.

1. The primitive-variable formulation yields three
equations of pressure and velocity components:

u
∂u
∂x

+v
∂u
∂y

= −∂p
∂x

+
1

Re

(
∂2u
∂x2 +

∂2u
∂y2

)
(3)

u
∂v
∂x

+v
∂v
∂y

= −∂p
∂y

+
1

Re

(
∂2v
∂x2 +

∂2v
∂y2

)
(4)

∂u
∂x

+
∂v
∂y

= 0 (5)

Popular methods for solving the Navier-Stokes
equations in this formulation are mesh-dependent
methods such as the finite difference method, the fi-
nite element method, and the finite volume method.
Few collocation methods based on radial basis func-
tions have been used to solve the lid-driven cav-
ity flow problem in this formulation. Sarler (2005)
solved natural convection problem using a colloca-
tion method based on radial basis functions. Ding,
Shu, Yeo, and Xu (2006) used local multiquadric
collocation method to solve the three-dimensional
lid-driven cavity flow problem. Instead of approx-
imating an dependent variable as a linear combina-
tion of multiquadrics centered at all nodes like the
“global” multiquadric collocation method proposed
by Kansa (1990), they approximated the dependent
variable using a few support nodes located near the
location where the dependent variable was to be

Table 1 : Analytical solution for the first test problem (Re
= 0) and benchmark solution for the second test problem
(Re = 100) at selected points inside the cavity

x y Re = 0 Re = 100
u

0.5 0.9766 0.86477 0.84123
0.5 0.9688 0.82077 0.78871
0.5 0.9609 0.77685 0.73722
0.5 0.9531 0.73420 0.68717
0.5 0.8516 0.26154 0.23151
0.5 0.7344 -0.06245 0.00332
0.5 0.6172 -0.18968 -0.13641
0.5 0.5000 -0.20519 -0.20581
0.5 0.4531 -0.19577 -0.21090
0.5 0.2813 -0.13515 -0.15662
0.5 0.1719 -0.09030 -0.10150
0.5 0.1016 -0.05855 -0.06434
0.5 0.0703 -0.04272 -0.04775
0.5 0.0625 -0.03853 -0.04192
0.5 0.0547 -0.03423 -0.03717
x y Re = 0 Re = 100

v
0.9688 0.5 -0.05096 -0.05906
0.9609 0.5 -0.06272 -0.07391
0.9531 0.5 -0.07385 -0.08864
0.9453 0.5 -0.08447 -0.10313
0.9063 0.5 -0.12965 -0.16914
0.8594 0.5 -0.16581 -0.22445
0.8047 0.5 -0.18370 -0.24533
0.5000 0.5 0 0.05454
0.2344 0.5 0.18228 0.17527
0.2266 0.5 0.18341 0.17507
0.1563 0.5 0.17352 0.16077
0.0938 0.5 0.12975 0.12317
0.0781 0.5 0.11320 0.10890
0.0703 0.5 0.10415 0.10091
0.0625 0.5 0.09457 0.09233

determined. This approximation was then used in
the differential quadrature algorithm to approximate
derivatives of the dependent variable as a weighted
sum of values of dependent variables at the support
nodes.

2. The velocity-vorticity formulation provides three
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equations of vorticity and velocity components:

∂2ω
∂x2 +

∂2ω
∂y2 = Re

(
u

∂ω
∂x

+v
∂ω
∂y

)
(6)

∂2u
∂x2 +

∂2u
∂y2 = −∂ω

∂y
(7)

∂2v
∂x2 +

∂2v
∂y2 =

∂ω
∂x

(8)

Young, Lane, Lin, Chiu, and Chen (2004) solved the
Stokes flow problem in cavity by the multiquadric
collocation method using this formulation.

3. The stream function-vorticity formulation results
from making use of the stream function (ψ), from
which velocity components can be found (u =
∂ψ/∂y, v = −∂ψ/∂x). Two equations of stream
function and vorticity are

∂2ψ
∂x2 +

∂2ψ
∂y2 = −ω (9)

∂2ω
∂x2 +

∂2ω
∂y2 = Re

(
u

∂ω
∂x

+v
∂ω
∂y

)
(10)

The local multiquadric collocation method used by
Shu, Ding, and Yeo (2005) to solve the lid-driven
cavity flow problem in this formulation is similar
to the method used by Tolstykh and Shirobokov
(2005). Mai-Duy and Tran-Cong (2001) solved the
same problem using an “indirect” multiquadric col-
location method. Their method differs from the
original method [Kansa (1990)] in that derivatives
of dependent variables are approximated by linear
combinations of multiquadrics. Approximations for
dependent variables can be found from integrals of
multiquadrics. This method was also successfully
used to solve natural convection problem [Mai-Duy
(2004)] and transient problems [Mai-Cao and Tran-
Cong (2005)].

Equations (9) and (10) can be combined into an
equation of stream function:

∂4ψ
∂x4 +2

∂4ψ
∂x2∂y2 +

∂4ψ
∂x4

= Re

[
u

(
∂3ψ
∂x3 +

∂3ψ
∂x∂y2

)
+v

(
∂3ψ

∂x2∂y
+

∂3ψ
∂y3

)]
(11)

Recently, Mai-Duy and Tran-Cong (2006) proposed
an indirect multiquadric collocation method for

solving the biharmonic equation, which is simply
Eq. (11) in the case of Re = 0.

4 Multiquadric collocation method

Assume that there are N collocation nodes, di-
vided into Nb boundary nodes and Ni interior nodes
(N = Nb + Ni). Let (ξ1,η1), (ξ2,η2), . . . , (ξNb ,ηNb)
denote coordinates of boundary nodes, and
(ξNb+1,ηNb+1), (ξNb+2,ηNb+2), . . . , (ξN ,ηN) denote
coordinates of interior nodes. These N nodes are
uniformly distributed in the domain, forming a square
grid with the grid spacing equal to 1/(

√
N −1).

4.1 MCM1

MCM1 solves the problem in the stream function-
vorticity formulation. The stream function at the kth it-
eration is approximated as

ψ(k)(x,y) =
N

∑
j=1

a(k)
j φ(x,y,ξ j,η j) (12)

Interior nodes are used for discretization of the govern-
ing equations, whereas boundary nodes are used for dis-
cretization of boundary condtions. For the purpose of it-

erative determination of N unknown coefficients a
(k)
j , a∗j

are solved from the governing equation:

∂4ψ∗

∂x4 +2
∂4ψ∗

∂x2∂y2 +
∂4ψ∗

∂x4

= Re

[
u(k−1)

(
∂3ψ(k−1)

∂x3 +
∂3ψ(k−1)

∂x∂y2

)

+ v(k−1)

(
∂3ψ(k−1)

∂x2∂y
+

∂3ψ(k−1)

∂y3

)]
(13)

and boundary condition:

∂ψ∗

∂y
= uΓ (14)

− ∂ψ∗

∂x
= vΓ (15)

where uΓ and vΓ are velocity components at the boundary
of the cavity as shown in Fig. 1. After obtaining a∗j , a(k)

j
are determined from

a(k)
j = θa∗j +(1−θ)a(k−1)

j (16)
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where θ is the relaxation parameter. Initially, let a
(0)
j = 0.

After each iteration, velocity components at Nt test nodes
are computed from

u(k)
i =

N

∑
j=1

a(k)
j

∂ψ
∂y

(xi,yi,ξ j,η j) (17)

v(k)
i = −

N

∑
j=1

a(k)
j

∂ψ
∂x

(xi,yi,ξ j,η j) (18)

where (xi,yi) are coordinates of test nodes given in Tab.
1. The iteration process is continued until the conver-
gence criteria are satisfied:

√√√√√√∑Nt
i=1

(
f (k)
i − f (k−1)

i

)2

∑Nt
i=1

(
f (k)
i

)2 < 10−4 (19)

where f denotes either u or v, depending on the test node.
(See Tab. 1.) The number of iterations for converged so-
lution is denoted by K. If more than 200 iterations are
required, it is considered that no converged solution can
be found. Note that, if Re = 0 (Stokes flow), a∗j obtained
from solving Eqs. (13) - (15) are used to determine ve-
locity components without iteration. Once a converged
solution has been found, its error may be computed from

ε =

√
Nt

∑
i=1

(
f
(k)
i − f (k−1)

i, exact

)
(20)

Table 1 gives ui, exact and vi, exact at the test nodes.

4.2 MCM2

MCM2 solves the problem in the vorticity-velocity for-
mulation. It is an extension of the method proposed by
Young, Lane, Lin, Chiu, and Chen (2004) to solve Stokes
flow problem. In this method, vorticity and velocity com-
ponents are approximated as

u(k)(x,y) =
N

∑
j=1

b(k)
j φ(x,y,ξ j,η j) (21)

v(k)(x,y) =
N

∑
j=1

c(k)
j φ(x,y,ξ j,η j) (22)

ω(k)(x,y) =
N

∑
j=1

d(k)
j φ(x,y,ξ j,η j) (23)

The kth iteration loop begins by solving the following
equation:

∂2u∗

∂x2 +
∂2u∗

∂y2 = −∂ωk−1

∂y
(24)

along with the boundary condition:

u∗ = uΓ (25)

for b∗j . Then b(k)
j are determined from

b(k)
j = θb∗j +(1−θ)b(k−1)

j (26)

Next, the following equation:

∂2v∗

∂x2 +
∂2v∗

∂y2 =
∂ωk−1

∂x
(27)

is solved along with the boundary condition:

v∗ = vΓ (28)

for c∗j . Then c(k)
j are determined from

c
(k)
j = θc∗j +(1−θ)c(k−1)

j (29)

Finally, the following equation:

∂2ω∗

∂x2 +
∂2ω∗

∂y2 = Re

(
u(k−1)∂ω(k−1)

∂x
+v(k−1) ∂ω(k−1)

∂y

)

(30)

is solved along with the boundary condition:

ω∗ =
∂v∗

∂x
− ∂u∗

∂y
(31)

for d∗
j , Then d(k)

j are determined from

d
(k)
j = θd∗

j +(1−θ)d(k−1)
j (32)

Initially, let b(0)
j , c(0)

j , d(0)
j = 0. The iteration process is

continued until the convergence criteria given in Eq. (19)
are satisfied. As in the case of MCM1, K denotes the
number of iterations required for convergence. It is in-
teresting to note that K > 1 even when Re = 0. In other
words, iterations are required for solutions of both test
problems by MCM2. Error of the solution of MCM2 is
also calculated by using Eq. (20).
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Figure 2 : Variation with the shape parameter of error
(ε) of solution to the first test problem by MCM1 for N =
441, 981, and 1681

5 Results and Discussion

5.1 The first test problem (Stokes flow)

Results for MCM1 are shown in Fig. 2. Each curve in
Fig. 2 represents the case of a different N. It can be seen
that solution is more accurate if N is larger. Notice that
each curve in Fig. 2 can be divided into 3 regions. In
the first region, ε decreases rapidly as c increases. In the
second region, ε is relatively insensitive to c. Increas-
ing N in this region causes the range of c to decrease
(0.25 ≤ c ≤ 0.5 for N = 441, 0.2 ≤ c ≤ 0.3 for N = 961,
and 0.16 ≤ c ≤ 0.21 for N = 1681). In the third region,
the solution is unstable with respect to c. It is interest-
ing to note that results in Fig. 2 are somewhat different
from previous results of using the multiquadric colloca-
tion method to solve problems having continuous bound-
ary conditions [Chantasiriwan (2004)], which show that
the accuracy for such a problem can be continually in-
creased by increasing c until too large a value of c causes
ill-conditioning and round-off errors prevent the solution
from being more accurate.

Results for MCM2 are shown in Figs. 3 and 4. A no-
ticeable difference between MCM2 results and MCM1
results is that MCM2 solution is more sensitive to c than
MCM1 solution. Minima of the curves in Fig. 3 are easy
to locate. They are εmin = 0.0152, 0.0125, 0.0109 at cmin

= 0.140, 0.090, 0.0675 for N = 441, 961, 1681, respec-
tively. Hence, positions of minima nearly scale with grid
spacing. Figure 4 shows that the number of iterations

Figure 3 : Variation with the shape parameter of error
(ε) of solution to the first test problem by MCM2 for N =
441, 981, and 1681

Figure 4 : Variation with the shape parameter of the
number of iterations (K) required for converged solution
to the first test problem by MCM2 for N = 441, 981, and
1681

required for convergence increases with N and c. The
relaxation parameter (θ) is 1 for results in this figure. It
is interesting to note that results in Fig. 3 are similar to
results of interpolation of rapidly varying functions by
multiquadrics [Ling (2004)].

5.2 The second test problem (Flow with Re = 100)

Results for MCM1 are shown in Figs. 5 and 6. Com-
parison between Figs. 2 and 5 reveals some similar-
ity. However, each curve in Fig. 5 is divided into
two sections instead of three sections like each curve in
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Figure 5 : Variation with the shape parameter of error (ε)
of solution to the second test problem by MCM1 for N =
441, 981, and 1681

Figure 6 : Variation with the shape parameter of the
number of iterations (K) required for converged solution
to the second test problem by MCM1 for N = 441, 981,
and 1681

Fig. 2. In the first region, ε rapidly decreases as c in-
creases. In the second region, ε is relatively insensitive
to c (0.24 ≤ c ≤ 0.49 for N = 441, 0.19 ≤ c ≤ 0.29 for N
= 961, and 0.14 ≤ c ≤ 0.21 for N = 1681). The section
of unstable solution does not exist in Fig. 5 because no
converged solution can be found if c is too large. Figure
6 show how K varies with c. The relaxation parameter
(θ) is 0.2 for results in this figure. It should be noted that
there appears to be no discernable pattern of variation of
K with c like the pattern found in Fig. 4.

Results for MCM2 are shown in Figs. 7 and 8. It can

Figure 7 : Variation with the shape parameter of error (ε)
of solution to the second test problem by MCM2 for N =
441, 981, and 1681

Figure 8 : Variation with the shape parameter of the
number of iterations (K) required for converged solution
to the second test problem by MCM2 for N = 441, 981,
and 1681

be seen that MCM2 results for the second test problem
and the first test problems behave similarly. In general,
solution to the second test problem is less accurate than
solution to the first test problem. Minima of the curves
in Fig. 7 are = 0.0423, 0.0311, 0.0255 at cmin = 0.180,
0.110, 0.0775 for N = 441, 961, 1681, respectively. Fig-
ure 8 shows that the number of iterations required for
convergence increases with N and c. The relaxation pa-
rameter (θ) is 0.2 for results in this figure.
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6 Conclusions

The multiquadric collocation method (MCM) is used to
solve the lid-driven cavity flow problem in the stream
function-vorticity formulation and the velocity-vorticity
formulation. This problem is a nonlinear problem with
discontinuous boundary condition. It has been found that
the accuracy of a solution by MCM to a linear problem
with continuous boundary condition increases with the
shape parameter of multiquadrics until the shape param-
eter is large and causes round-off error. Results from this
paper indicate that errors of solutions to the lid-driven
cavity flow problem by MCM are minimized at optimum
values of the shape parameter. Increasing the value of
the shape parameter beyond the optimum value results in
not only larger error but also more iterations required for
convergence. Furthermore, it is found that a solution to
the problem in the stream function-vorticity formulation
exhibits a range of values of the shape parameter in which
the solution is relatively insensitive to the shape param-
eter. A solution to the problem in the velocity-vorticity
formulation is found to be more sensitive to the shape
parameter than a solution to the problem in the stream
function-vorticity formulation.
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