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The Lie-Group Shooting Method for Singularly Perturbed Two-Point Boundary
Value Problems

Chein-Shan Liu1

Abstract: This paper studies the numerical computa-
tions of the second-order singularly perturbed boundary
value problems (SPBVPs). In order to depress the singu-
larity we consider a coordinate transformation from the
x-domain to the t-domain. The relation between singular-
ity and stiffness is demonstrated, of which the coordinate
transformation parameter λ plays a key role to balance
these two tendencies. Then we construct a very effective
Lie-group shooting method to search the missing initial
condition through a weighting factor r ∈ (0,1) in the t-
domain formulation. For stabilizing the new method we
also introduce two new systems by a translation of the
dependent variable. Numerical examples are examined
to show that the new approach has high efficiency and
high accuracy. Only through a few trials one can de-
termine a suitable r very soon, and the new method can
attain the second-order accuracy even for the highly sin-
gular cases. A finite difference method together with the
nonstandard group preserving scheme for solving the re-
sulting ill-posed equations is also provided, which is a
suitable method for the calculations of SPBVPs without
needing for many grid points. This method has the first-
order accuracy.

keyword: One-step group preserving scheme, Singu-
larly perturbed boundary value problem, Boundary layer,
Lie-group shooting method, Stiff equation, Ill-posed
equation.

1 Introduction

There are a large number of problems in engineering
and science that can be depicted by the nonlinear ordi-
nary differential equations (ODEs) involving some pa-
rameters. Particular interest is the solution behavior of
the physical problems with one or more of the parame-
ters quite small or quite large. When the boundary con-
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ditions are imposed, the resulting problems are usually
called the singularly perturbed boundary value problems
(SPBVPs). Needless to say, the solutions of SPBVPs
have to satisfy the boundary conditions, but for the sin-
gular perturbation problems this may be a difficult task,
since there is a strong singularity in the boundary layer,
which is a thin layer wherein the solution varies rapidly,
while away from that layer the solution behaves regu-
larly. Many computational methods have been developed
for solving the SPBVPs. For a detailed treatment of the
singular perturbation problems one can refer the works
by Bender and Orszag (1978), Nayfeh (1981), Kevorkian
and Cole (1981, 1996), O’Malley (1991) and De Jager
and Jiang (1996). Moreover, for a recent comprehensive
survey of the numerical methods for solving the SPBVPs
one may refer the review paper by Kadalbajoo and Pati-
dar (2002).

In this paper we will propose new methods for the com-
putations of the following second-order SPBVP:

εu′′1 + f1(x,u1)u′1 + f2(x,u1) = 0, 0 < x < 1, (1)

u1(0) = α, u1(1) = β, (2)

where ε is a small parameter, f1(x,u1) and f2(x,u1) are
given functions, and [0,1] is a spatial range of our prob-
lem. The prime denotes the differential with respect to
x. For the problems not with the above range, a suitable
rescale of the spatial coordinate may bring them into the
standard one with a range of [0,1].
We can transform Eqs. (1) and (2) into a mathematical
equivalent system:

u′1 = u2, (3)

u′2 = −1
ε
[ f1(x,u1)u2 + f2(x,u1)], (4)

u1(0) = α, u1(1) = β. (5)
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In order to distinguish it from the systems to be intro-
duced later we call Eqs. (3)-(5) the (u,x)-BVP, where
u(x) = (u1(x),u2(x)) denotes the system dependent vari-
ables in the x-domain.

For the singular perturbation problems there had already
developed many asymptotic approximation methods, and
the numerical methods according to these concepts to
match the boundary layer behavior were developed in an
attempt to obtain the accurate reliable schemes which are
uniformly valid with respect to the perturbation param-
eter [Roos, Stynes and Tobiska (1996)]. Roberts (1982)
has introduced a non-asymptotic boundary value method
to solve a certain class of singular perturbation problems.

The concept of replacing the SPBVP by an initial value
problem (IVP) is presented by Kadalbajoo and Reddy
(1987) for a particular type ODE. The original second-
order ODE is replaced by an asymptotically equiva-
lent first-order ODEs and is solved as an IVP. Gasparo
and Macconi (1989, 1990) gave an initial-value method
for the second-order SPBVPs with a boundary layer at
one end-point. The idea is to replace the SPBVP by
two suitable IVPs, where the two ODEs are integrat-
ing on the opposite directions, and the first problem
can be solved only if the solution of the second one is
known. Then, the initial-value technique developed by
Gasparo and Macconi (1989) for solving the singularly-
perturbed nonturning-point problems was used by Nate-
san and Ramanujam (1998) to solve the singularly-
perturbed turning-point problems exhibiting twin bound-
ary layers. They obtained the required approximate solu-
tion by combining solutions of the reduced problem, an
initial-value problem and a terminal-value problem.

A continuance of the IVP technique was developed by
Reddy and Chakravthy (2004) and Li and Wang (2005).
The given problem is replaced by three first-order ODEs.
The numerical solution of two IVPs goes in the positive
direction and the third IVP is independent of these two
IVPs, integrating on an opposite direction under a speci-
fied terminal condition. This technique is mainly limited
to the linear SPBVPs.

For the BVPs there are many computational meth-
ods by employing the shooting technique [Kubicek and
Hlavacek (1983); Keller (1992); Ascher, Mattheij and
Russell (1995)]. The shooting method involves a choice
of the missing initial condition for Eq. (4), such that the
numerical solution at the other end-point can satisfy the
constraint u1(1) = β in Eq. (5). If this objective can be

achieved very well then one can convert the (u,x)-BVP
into the (u,x)-IVP. Solving the resultant IVP and match-
ing the boundary condition at the other end-point is then
the main issue of the shooting method. Frequently, the
solution will not immediately satisfy the boundary con-
dition, and, it requires many iterations to feedback the
information of mismatch on the target defined by the
boundary conditions to adjust the initial guess through
some techniques. Thus the solution will gradually con-
verge to the desired boundary condition by varying the
initial conditions. This iterative approach is called the
shooting method.

The above statement seems rather promising of the
shooting method. However, this approach is often inef-
fective and unstable for the SPBVPs due to the presence
of rapidly increasing modes which cannot be solved with
the use of an initial value solver. Instead of, a widely
used shooting technique is the parallel or multiple shoot-
ing to remedy the stability problem. As pointed out by
Ascher, Mattheij and Russell (1995) these methods are
also likely to be ineffective for more singular problems.

The present approach of the SPBVPs is based on Liu’s
group preserving scheme (GPS) developed by Liu (2001)
for the integration of IVPs. The GPS method is very ef-
fective to deal with ODEs endowing with special struc-
tures as shown by Liu (2005, 2006a) for stiff equations
and for ODEs with constraints. Recently, Liu (2006b)
has extended this technique to solve the BVPs, and the
numerical results reveal that the GPS is a rather promis-
ing method to effectively calculate the two-point BVPs.
However, it is not yet been applied to the solutions of
SPBVPs.

Before the application of the method developed by Liu
(2006b) for the SPBVPs, we will search a one-to-one
coordinate transformation, which is designed to smooth
out the region where a thin layer appears, featuring by a
high gradient variation of the dependent variable. In the
transformed domain our shooting method together with
the Runge-Kutta method can yield an accurate solution
as that for the initial value solver by using a reasonable
stepsize. It will be clear that the new method can be ap-
plied to the second-order SPBVPs, since we are able to
search the missing initial condition through a few trials
to search a suitable r in a compact space of r ∈ (0,1),
where the factor r is used in a generalized mid-point rule
for the Lie group element of the one-step GPS.

The one-step GPS method for the BVPs has been
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named by Liu (2006b) the Lie-group shooting method
(LGSM). Liu (2006c, 2006d) has used this concept to de-
velop the numerical estimation method for the unknown
temperature-dependent heat conductivity and heat capac-
ity of one-dimensional heat conduction equation. On the
other hand, in order to effectively solve the backward
in time problems of parabolic PDEs, a past cone struc-
ture and a backward group preserving scheme have been
successfully developed by the author, such that the new
one-step Lie-group numerical methods have been used
to solve the backward in time Burgers equation by Liu
(2006e), and the backward in time heat conduction equa-
tion by Liu, Chang and Chang (2006). Because the Lie-
group method possesses a certain advantage than other
numerical methods due to its group structure, the Lie-
group shooting method is believed to be a powerful tech-
nique to solve the SPBVPs.

This paper is arranged as follows. In Section 2 we
introduce a coordinate transformation to reduce the
singularity in the new coordinate system and point out
the relation between singularity and stiffness. In Section
3 we give a brief sketch of the GPS for ODEs, explain
the construction of a one-step GPS by using the closure
property of the Lie group, and combine it with the gen-
eralized mid-point rule to construct a single-parameter
Lie group in terms of a weighting factor r. In Section
4 we derive a new Lie-group shooting method to solve
the SPBVPs, where we can search the missing initial
condition by solving r in a compact space of r ∈ (0,1).
In Section 5 we introduce two new systems obtained by
a translation. In Section 6 we consider a finite difference
method together with the nonstandard GPS to solve the
SPBVPs. In Section 7 we use some numerical examples
to demonstrate the efficiency and accuracy of the new
methods. Finally, we draw some conclusions in Section
8.

2 Singularity and stiffness

For the SPBVPs, it is hardly and directly applied the
shooting method for the numerical solution, since the
slope of solution may be a very large value due to a strong
singularity in the boundary layer, within which the so-
lution displays a sharp transition when the singular per-
turbation parameter ε is much smaller than 1. How to
choose a suitable initial condition may thus become a
rather difficult task when the guesses are carried out in

an infinite range of −∞ < u′1(0) = A < ∞.

When ε is small, we may consider a scalar transformation
of the x-coordinate by

x = 1− tanh[λ(1− t)]
tanhλ

, (6)

or its inverse:

t = 1− 1
λ

ln
1+(1−x) tanhλ
1− (1−x) tanhλ

, (7)

where λ is a suitably selected parameter to wipe out the
sharp transition in the boundary layer. The transforma-
tion between x and t is one-to-one and onto, and are also
x(0) = 0 and x(1) = 1.

The above coordinates transformation technique has
been used by Liu (2006f) to treat the Burgers equation
with a very large Reynolds number. It is a typical exam-
ple for the singularly perturbed partial differential equa-
tions.

Through Eq. (6) we can accumulate much of the grid
points in the region where the solution appears a sharp
variation, and place a small number of grid points in the
region where the solution does not change rapidly in the
x-domain, even the grid points are uniformly distributed
in the t-domain.

From Eqs. (1) and (7) it follows that

ε tanh2 λ
λ2(1− tanh2[λ(1− t)])2

ü1 − 2ε tanh2 λ tanh[λ(1− t)]
λ(1− tanh2[λ(1− t)])2

u̇1

+
tanhλ f1(t,u1)

λ(1− tanh2[λ(1− t)])
u̇1 + f2(t,u1) = 0, (8)

of which the boundary conditions in Eq. (2) remain un-
changed. For saving notation we use the shorthand of
u(t) = u(x(t)), and now, a superimposed dot denotes the
differential with respect to t.

The stepping techniques developed for IVPs require the
initial conditions of both u1 and u2 = u̇1 for the second-
order ODEs. If the initial value u2(0) = A is available
which together with the given condition u1(0) = α, then
we can numerically integrate the following IVP step-by-
step in a forward direction from t = 0 to t = 1:

u̇1 = u2, (9)

u̇2 = f (t,u1,u2), (10)
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Figure 1 : For Example 1 we plot the exact solution with
respect to x in (a), and t in (b). In the t-domain the leading
coefficient is plotted in (c), and the relation between x and
t is also plotted in (d).

u1(0) = α, (11)

u2(0) = A, (12)

where

f (t,u1,u2) := f3(t,u1)u2 + f4(t,u1), (13)

f3(t,u1) := 2λ tanh[λ(1− t)]

− λ(1− tanh2[λ(1− t)])
ε tanhλ

f1(t,u1), (14)

f4(t,u1) := −λ2(1− tanh2[λ(1− t)])2

ε tanh2 λ
f2(t,u1). (15)

Here, we call Eqs. (9)-(12) the (u, t)-IVP, where u(t) =
(u1(t),u2(t)) denotes the system variables in the t-
domain.
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Figure 2 : For Example 1 we plot the function f3 with
respect to t.

To demonstrate the effect of the coordinate transforma-
tion in Eq. (6), let us first consider a simple example:

εu′′1 +u′1 = 0, u1(0) = 0, u1(1) = 1 (16)

with the exact solution given by

u1(x) =
1−exp(−x/ε)
1−exp(−1/ε)

. (17)

In the plane (x,u1) as shown in Fig. 1(a) the above solu-
tion appears a boundary layer at the left-end point x = 0
when ε = 0.01. Through the coordinate transformation
in Eq. (7) with λ = 3, the same curve is plotted in the
plane (t,u1) as shown in Fig. 1(b). It can be seen that
the boundary layer becomes width towards to the right-
end side, such that the curve is seen more smoothing than
that seen in the plane (x,u1). In Eq. (16) the second or-
der derivative term is multiplied by a small parameter ε,
but when Eq. (16) is represented in the form of Eq. (8)
with f1 = 1 and f2 = 0 the multiplier before ü1 becomes
a function of t, the value of which, named the leading co-
efficient, is plotted in Fig. 1(c). It can be seen that in the
transition layer the leading coefficient is finite, no more
a small quantity. From Fig. 1(d) it can be seen that there
are much grid points accumulated in the thin layer near
the end x = 0, where the grid points are uniformly dis-
tributed in the t-axis.

Now, we can check Eq. (16) in the form of Eqs. (9) and
(10) by substituting f1 = 1 and f2 = 0 into Eqs. (14) and
(15). Under the same parameters of ε = 0.01 and λ = 3,
we plot the coefficient function f3 before the variable u2
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in Fig. 2. When compared with the coefficient before u2

in Eq. (9), it can be seen that the absolute value of f3 is
much larger than 1, especially when t increases.

According to the definition made by Shampine and Gear
(1979), the initial value problem (9)-(12) is said to be
stiff, if at every point (u, t) of the solution curve the
system matrix has at least one eigenvalue whose real
part is large negative, whilst the real part of other eigen-
value does not take large positive value. When expressed
Eq. (16) as the system of Eqs. (9) and (10) in the t-
domain, Fig. 2 shows the negative eigenvalue may large
up to -300 while the other one is 0, which indicates that
the new system exhibits certain stiffness. For comparison
let us mention that Eq. (16) itself is also a stiff BVP, of
which the two eigenvalues are 0 and −1/ε = −100 when
ε = 0.01. Of course, it is not so stiff as the new system
of Eqs. (9) and (10) in the t-domain.

Through the above explanation it reveals that the singu-
larity of the original problem in the x-domain renders the
stiffness of the new system of Eqs. (9) and (10) in the
t-domain. The stiffness grows with t. Therefore, in the
development of the new method we should take the effect
of stiffness into account on the numerical integration of
the IVP in Eqs. (9)-(12).

When we choose λ = 0.1 it reveals that the effect of coor-
dinate transformation disappears since it is almost x = t.
The coordinate transformation parameter λ plays a role
to reduce the singularity of the original SPBVP in the
x-domain; however, it also increases the stiffness of the
new system of Eqs. (9) and (10) in the t-domain. In a
practical computation of the SPBVPs by employing the
shooting method, it is rather crucial to select a suitable
λ, which is a trade-off between the singularity-free and
stiffness. More large λ is, more singularity can be de-
pressed, and however, the resultant new system is more
stiff. In any way, for a highly singular problem the new
system of Eqs. (9) and (10) in the t-domain is more possi-
bly to allow us to develop an effective shooting technique
rather than that of the original equations (3) and (4) in the
x-domain.

In the next two sections we are going to develop the
shooting method basing on the author’s Lie group map-
ping technique, which is shown to be very effective for
the second-order BVP [Liu (2006b)]. For a self-content
reason we have to repeat some previous results but only
showing a brief sketch of the mathematical methods.

3 One-step GPS

3.1 The GPS

The above discussions prompt us to integrate Eqs. (9) and
(10) in the t-domain rather than that to integrate Eqs. (3)
and (4) in the x-domain. For this purpose let us write
Eqs. (9) and (10) in the vector form:

u̇ = f(t,u), (18)

where

u :=
[

u1

u2

]
, f :=

[
u2

f (t,u1,u2)

]
. (19)

Liu (2001) has embedded Eq. (18) into an augmented
system:

Ẋ :=
d
dt

[
u

‖u‖
]

=

⎡
⎣ 02×2

f(t,u)
‖u‖

fT(t,u)
‖u‖ 0

⎤
⎦[ u

‖u‖
]

:= AX,

(20)

where A is an element of the Lie algebra so(2,1) satisfy-
ing

ATg+gA = 0 (21)

with

g =
[

I2 02×1

01×2 −1

]
(22)

a Minkowski metric. Here, I2 is the identity matrix, and
the superscript T stands for the transpose.

The augmented variable X satisfies the cone condition:

XTgX = u ·u−‖u‖2 = 0. (23)

Accordingly, Liu (2001) has developed a group-
preserving scheme (GPS) given as follows:

Xk+1 = G(k)Xk, (24)

where Xk denotes the numerical value of X at the discrete
tk, and G(k) ∈ SOo(2,1) satisfies

GTgG = g, (25)

det G = 1, (26)

G0
0 > 0, (27)

where G0
0 is the 00th component of G.
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3.2 Generalized mid-point rule

Applying the scheme (24) to Eq. (20) with a specified
initial condition X(0) = X0 we can compute the solution
X(t) by GPS. Assuming that the stepsize used in GPS is
h = 1/K, and starting from an initial augmented condi-
tion X0 = X(0) = (uT

0 ,‖u0‖)T we want to calculate the
value X(1) = (uT(1),‖u(1)‖)T at t = 1.

By applying Eq. (24) step-by-step we can obtain

X f = GK(h) · · ·G1(h)X0, (28)

where X f may approximate the exact X(1) with a cer-
tain accuracy. However, let us recall that each Gi, i =
1, . . .,K, is an element of the Lie group SOo(2,1), and by
the closure property of the Lie group, GK(h) · · ·G1(h) is
also a Lie group denoted by G. Hence, we have

X f = GX0. (29)

This is a one-step transformation from X0 to X f .

We can calculate G by a generalized mid-point rule,
which is obtained from an exponential mapping of A
by taking the values of the argument variables of A at
a generalized mid-point. The Lie group generated from
A ∈ so(2,1) is known as a proper orthochronous Lorentz
group, which admits a closed-form representation given
as follows:

G =

⎡
⎢⎣ I2 + (a−1)

‖f̂‖2 f̂f̂T bf̂
‖f̂‖

bf̂T

‖f̂‖ a

⎤
⎥⎦ , (30)

where

û = ru0 +(1− r)u f , (31)

f̂ = f(t̂, û), (32)

a = cosh

(
‖f̂‖
‖û‖

)
, (33)

b = sinh

(
‖f̂‖
‖û‖

)
. (34)

Here, we use the initial u0 and the final u f through
a suitable weighting factor r to calculate G, where

0 < r < 1 is a parameter and t̂ = r. The above method
applied a generalized mid-point rule on the calculation
of G, and the resultant is a single-parameter Lie group
element denoted by G(r).

3.3 A Lie group mapping between two points on the
cone

Let us define a new vector

F :=
f̂

‖û‖ , (35)

such that Eqs. (30), (33) and (34) can be also expressed
as

G =

⎡
⎣ I2 + a−1

‖F‖2 FFT bF
‖F‖

bFT
‖F‖ a

⎤
⎦ , (36)

a = cosh(‖F‖), (37)

b = sinh(‖F‖). (38)

From Eqs. (29) and (36) it follows that

u f = u0 +ηF, (39)

‖u f‖ = a‖u0‖+b
F ·u0

‖F‖ , (40)

where

η :=
(a−1)F ·u0 +b‖u0‖‖F‖

‖F‖2
. (41)

Substituting

F =
1
η

(u f −u0) (42)

into Eq. (40) we obtain

‖u f‖
‖u0‖ = a+b

(u f −u0) ·u0

‖u f −u0‖‖u0‖ , (43)

where

a = cosh

(‖u f −u0‖
η

)
, (44)
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b = sinh

(‖u f −u0‖
η

)
(45)

are obtained by inserting Eq. (42) for F into Eqs. (37) and
(38).

Let

cosθ :=
[u f −u0] ·u0

‖u f −u0‖‖u0‖ , (46)

S := ‖u f −u0‖, (47)

and from Eqs. (43)-(45) it follows that

‖u f‖
‖u0‖ = cosh

(
S
η

)
+cos θ sinh

(
S
η

)
. (48)

By defining

Z := exp

(
S
η

)
, (49)

we obtain a quadratic equation for Z from Eq. (48):

(1+cosθ)Z2 − 2‖u f‖
‖u0‖ Z +1−cos θ = 0. (50)

The solution is found to be

Z =

‖u f ‖
‖u0‖ +

√( ‖u f ‖
‖u0‖

)2 −1+cos2 θ

1+cosθ
, (51)

and then from Eqs. (49) and (47) we obtain

η =
‖u f −u0‖

lnZ
. (52)

Therefore, between any two points (u0,‖u0‖) and
(u f ,‖u f‖) on the cone, there exists a Lie group ele-
ment G ∈ SOo(2,1) mapping (u0,‖u0‖) onto (u f ,‖u f‖),
which is given by[

u f

‖u f‖
]

= G
[

u0

‖u0‖
]
, (53)

where G is uniquely determined by u0 and u f through
the following equations:

G =

⎡
⎣ I2 + a−1

‖F‖2 FFT bF
‖F‖

bFT
‖F‖ a

⎤
⎦ , (54)

a = cosh(‖F‖), (55)

b = sinh(‖F‖), (56)

F =
1
η

(u f −u0), (57)

in which η is still calculated by Eq. (52).

4 The Lie-group shooting method for SPBVP

The SPBVPs considered in Section 1 require informa-
tion at the initial point t = 0 and a terminal point t = 1.
However, the usual stepping scheme requires a complete
information at the starting point t = 0. Some effort is still
required to adjust the stepping scheme for the integration
of the SPBVPs presented there.

From Eqs. (9)-(12) it follows that

u̇1 = u2, (58)

u̇2 = f (t,u1,u2), (59)

u1(0) = α, u1(1) = β, (60)

u2(0) = A, u2(1) = B, (61)

where A and B are two supplemented unknown constants,
and α and β are two given constants from the specified
boundary conditions.

From Eqs. (39), (60) and (61) it follows that

F :=
[

F1

F2

]
=

1
η

[
β−α
B−A

]
. (62)

Starting from an initial guess of (A,B) we use the follow-
ing equation to calculate η:

η =

√
(α−β)2 +(A−B)2

lnZ
, (63)

in which Z is calculated by

Z =

√
β2+B2

√
α2+A2 +

√
β2+B2

α2+A2 − (1−cos2 θ)

1+cosθ
, (64)



186 Copyright c© 2006 Tech Science Press CMES, vol.15, no.3, pp.179-196, 2006

where

cosθ =
α(β−α)+A(B−A)√

(α−β)2 +(A−B)2
√

α2 +A2
. (65)

The above three equations are obtained from Eqs. (52),
(51) and (46) by inserting Eq. (19) for u.

When comparing Eq. (62) with Eq. (35), and with the aid
of Eqs. (31), (32) and (58)-(61) we obtain

A =
1

ηξ
[ξ2(β−α)− (1− r)η2 f̂ ], (66)

B =
1

ηξ
[ξ2(β−α)+ rη2 f̂ ], (67)

where

f̂ := f (r, rα+(1− r)β, rA+(1− r)B), (68)

ξ :=
√

[rα+(1− r)β]2 +[rA+(1− r)B]2. (69)

The above derivation of the governing equations (63)-
(69) is based on that by equating the two F’s in Eqs. (35)
and (57). It also means that the two Lie groups defined
by Eqs. (30) and (54) are equal. Under this sense we may
call our shooting technique a Lie-group shooting method.

Inserting Eq. (13) for f̂ into Eqs. (66) and (67) we can
rearrange them into a neater form:

A =
ξ
η

(β−α)− (1− r)(β−α) f̂3 − (1− r)η
ξ

f̂4, (70)

B =
ξ
η

(β−α)+ r(β−α) f̂3 +
rη
ξ

f̂4, (71)

where

f̂3 = 2λ tanh[λ(1− r)]

− λ(1− tanh2[λ(1− r)])
ε tanhλ

f1(r, rα+(1− r)β), (72)

f̂4 = −λ2(1− tanh2[λ(1− r)])2

ε tanh2 λ
f2(r, rα+(1− r)β). (73)

For a specified r and the given functions f1 and f2,
Eqs. (70) and (71) can be used to generate a new (A,B)

by repeating the above process until (A,B) converges ac-
cording to a given stopping criterion:√

(Ai+1 −Ai)2 +(Bi+1 −Bi)2 ≤ ε1. (74)

If A is available, we can return to integrate Eqs. (9)-(12)
by a suitable forward IVP solver.

So far, we have not yet said that how to determine r. For
a trial r, let ur

1(1) denote the corresponding solution of
u1 at t = 1. We start from r = 1/2 to determine A by
Eqs. (63)-(74), then numerically integrate Eqs. (9)-(12)
from t = 0 to t = 1, and compare the end value of u1(1)
with the exact β. If |u1/2

1 (1)−β| is smaller than a given
tolerance error ε2, then the process of finding solution is
finished. Otherwise, we need to calculate the values of
u1(1) corresponding to a different r1 < 0.5 or r2 > 0.5,
which are denoted by ur1

1 (1) and ur2
1 (1), respectively. If

[ur1
1 (1)− β][u1/2

1 (1)− β] < 0, then there exists one root
of r between r1 and 0.5, which renders ur

1(1)− β = 0;
otherwise, the root is located between (0.5, r2). Then,
we apply the half-interval method to find a suitable r,
which requires us to calculate Eqs. (9)-(12) at each of
the calculation of ur

1(1)− β, until |ur
1(1)− β| is small

enough to satisfy the criterion of |ur
1(1)−β| ≤ ε2, where

ε2 is a given error tolerance.

5 The translation to new systems

For the singularly perturbed equation, the slope of u1,
i.e., u2, may be large at one or both of the two ends of
the interval, which thus makes A or/and B rather large.
Under these conditions the cosθ defined in Eq. (65) may
be approaching -1, which renders Eq. (64) not applica-
ble in the estimation of A and B, because they are much
larger than α and β. In order to increase the stability of
our shooting method, we can consider a translation of u1

by y1 = u1 +c, where c is a constant.

Therefore we can obtain a new system:

y′1 = y2, (75)

y′2 = −1
ε
[ f1(x,y1−c)y2 + f2(x,y1 −c)], (76)

y1(0) = α+c, y1(1) = β+c. (77)
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This system will be called the (y,x)-BVP, where y(x) =
(y1(x),y2(x)) denotes the system variables in the x-
domain. Similarly, we may apply the shooting method
in Section 4 to this system for finding a missing initial
condition y2(0) = Ax. If Ax is available, we can change
the (y,x)-BVP to the (y,x)-IVP.

By applying the coordinate transformation in Eq. (4),
we can obtain the following (y, t)-IVP, which is supple-
mented with an unknown initial condition y2(0) = A:

ẏ1 = y2, (78)

ẏ2 = f (t,y1−c,y2), (79)

y1(0) = α+c, (80)

y2(0) = A, (81)

where

A =
λ(1− tanh2 λ)

tanhλ
Ax. (82)

We can apply the fourth-order Runge-Kutta method
(RK4) to integrate the above (y,x)-IVP or the (y, t)-IVP
system by the following formula:

yn+1 = yn +
h
6
[f1 +2f2 +2f3 + f4], (83)

where

f1 = f(tn,yn), (84)

f2 = f(tn +τ,yn +τf1), (85)

f3 = f(tn +τ,yn +τf2), (86)

f4 = f(tn +h,yn +hf3), (87)

in which τ = h/2 is one half of the stepsize.

6 Singularity and ill-posedness

We have mentioned that when ε is very small, the
resultant (u, t)-IVP or the (y, t)-IVP obtained through
a translation is very stiff. Usually, it is hardly applied
the RK4 method to integrate the resulting stiff equations
unless the stepsize is taken to be very small for a stable
integration. In order to provide an alternative way to
solve such SPBVPs with a reasonable grid size we may
consider a finite difference method as follows.

6.1 Finite difference

Here we consider a finite difference of Eq. (1) with u1

replaced by u:

ui+1 −2ui +ui−1 +
Δx
ε

f1(x,ui)[ui+1−ui]

+
(Δx)2

ε
f2(x,ui) = 0, (88)

where Δx = 1/n is the spatial length, and ui = u(iΔx), i =
1, . . .,n−1, are unknown values of u(x) at the grid points.
However, u0 = α and un = β are the given boundary con-
ditions.

Being a new strategy we will consider ui to be the steady-
state solutions of the following differential equations:

u̇i = ui+1 −2ui +ui−1 +
Δx
ε

f1(x,ui)[ui+1−ui]

+
(Δx)2

ε
f2(x,ui). (89)

For a highly singular BVP in Eqs. (1) and (2), the result-
ing finite difference equation (88) is also highly ill-posed
because the Jacobian matrix has a large condition num-
ber, which also renders Eq. (89) very stiff.

Usually we require our integration of Eq. (89) to a large
extent of t in order to get the steady-state solution. If the
stepsize of a numerical scheme is restricted to be small
due to a stable reason, it is hardly to be used in the inte-
gration of stiff equation (89).

An effective scheme is developed by Liu (2005) by
considering the nonstandard difference method for
solving the very stiff problems, which basing on the
group preserving scheme proposed by Liu (2001) stated
as follows for self-content.
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6.2 The NGPS

The nonstandard finite difference used here is replacing
the Euler approximation of

u̇ ≈ uk+1−uk

h
, (90)

by a nonstandard approximation

u̇ ≈ uk+1−uk

φ(h)
, (91)

where φ(h) is a denominator function with the properties
φ(h) > 0 and φ(h) = h+O(h2).

For the stiff differential equations we may adopt

φ(h) =
1−exp(−ρh)

ρ
, (92)

where ρ is a number not smaller than the Lipschitz con-
stant of Eq. (89).

The replacement of h by φ(h) in Eq. (91) has inspired Liu
(2005), according to a Cayley transformation technique,
to derive the following stiff integrator:

uk+1 = uk +
4‖uk‖2 +2φfk ·uk

4‖uk‖2 −φ2‖fk‖2 φfk, (93)

where u = (u1, . . . ,un−1).

The combination of nonstandard method with group
preserving scheme, namely the nonstandard group
preserving scheme (NGPS), renders the new numerical
scheme (93) always stable. This result is very important
for the stiff differential equations, because the dom-
inant factor to choose a suitable stepsize for the stiff
differential equation is its stability, not its accuracy, as
demonstrated by Shampine and Gear (1979).

7 Numerical examples

In order to assess the performance of the newly devel-
oped methods let us investigate the following examples.

7.1 Example 1

The first example given by Eq. (16) is calculated here
again but by the newly developed method in Section 4.

We are going to search a missing initial condition
u2(0) = A, such that in the numerical solutions of
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Figure 3 : For Example 1 with ε = 0.001: (a) plotting
the exact solution with respect to x, (b) comparing with
the numerical solution, (c) the numerical error.

Eqs. (9)-(12), u1(1) can match very well the exact value
u1(1) = 1.

We first consider a moderate singularity with ε = 0.001.
The coordinate tansformation parameter is taken to be
λ = 3. The RK4 was used to integrate the resulting (y, t)-
IVP of Eqs. (78)-(81) with c = 100 and a stepsize h =
0.001.

We take [0.03,0.035] to be the range of r. In the estima-
tion of A, the criterion in Eq. (74) with ε1 = 10−10 was
used. The initial (A,B) is taken to be (A,B) = (1,−1).
Then we use a half-interval method to search an accu-
rate r, which is converged through 11 iterations under
an error tolerance of ε2 = 10−5. The final value of u1

matches very well with the exact value with an error
7.995× 10−6. The relative error of the initial value of
u2 is about 8×10−6. In Fig. 3 we compare the numerical
result with the exact solution. It can be seen that the nu-
merical error of u1 is in the order of 10−6. From Fig. 3(a)
it can be seen that in the plane (x,u1) the solution rapidly
increases from 0 to 1. In order to make the comparison
clear we plot both the numerical and exact solutions in
the plane (t,u1) as shown in Fig. 3(b). The maximum
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Figure 4 : For Example 1 with ε = 0.00001: (a) compar-
ing the numerical and exact solutions, and (b) the numer-
ical error.

error is 8×10−6 as shown in Fig. 3(c).

Next, we consider a strong singularity with ε = 0.00001.
The coordinate tansformation parameter is taken to be
λ = 5. The RK4 was used to integrate the resulting
(y, t)-IVP of Eqs. (78)-(81) with c = 200 and a stepsize
h = 0.0001. We take [0.01,0.011] to be the range of
r. In the estimation of A, the criterion in Eq. (74) with
ε1 = 10−10 was used. The initial (A,B) is taken to be
(A,B) = (1,−1). Then we use a half-interval method to
search an accurate r, which is converged through 9 iter-
ations under an error tolerance of ε2 = 10−5. The final
value of u1 matches very well with the exact value with
an error 4.268× 10−6. The relative error of the initial
value of u2 is about 4.27× 10−6. In Fig. 4(a) we com-
pare the numerical result with the exact solution. It can
be seen that these two solutions are almost identical, and
the numerical error of u1 is in the order of 10−6 as shown
in Fig. 4(b). The maximum error is 4.268×10−6. This
example reveals that a much smaller singular parameter
ε does not deterioiate the accuracy of our numerical solu-
tion, if λ is selected suitably and the integration stepsize
is slighly decreased.

In principle, we can increase the accuracy by imposing a
smaller ε2 on the shooting error, which however requires
more iterations. Since the numerical method is very
stable we can quickly pick up the correct value of r
through some trials and modifications. Therefore, in
the following calculations of other examples we do not
use the above half-interval method again to pick up the

weighting factor r.

7.2 Example 2

We calculate the second example given by Eq. (16) but
adding with a nonhomogeneous term on the right-hand
side:

εu′′1 +u′1 = 1+2x, (94)

u1(0) = 0, u1(1) = 1. (95)

This example has been calculated by Varner and Choud-
hury (1998), and Ilicasu and Schultz (2004) with high-
order finite difference methods.

In order to compare our numerical result with that of the
above cited papers, we first fix ε = 0.01. The translation
constant c = 50 is also fixed.

Because of ε = 0.01, the system is not too singular,
and we directly apply the shooting method in Section 4
and the RK4 method to the resulting (y,x)-IVP. Through
some trials we have picked up the parameter r to be
r = 0.6839256912. When compared the estimated Ax =
−97.019999996 with the exact one u2(0) = −97.02 cal-
culated from the closed-form solution:

u1(x) = x(x+1−2ε)+(2ε−1)
1−exp(−x/ε)
1−exp(−1/ε)

, (96)

the error is very small with 4.258× 10−9. At the same
time, the final value of u1 matches very well with the
exact value with an error 4.252×10−11.

By using the above estimated initial condition of u2(0) =
Ax and the given u1(0) = 0, we can integrate the (y,x)-
IVP by the RK4 method with a Δx = 0.0005, which is
the same as that used by Varner and Choudhury (1998)
and Ilicasu and Schultz (2004). In Fig. 5(a) we plot the
numerical and exact solutions, which are almost coin-
cident. Thus, we plot the numerical error in Fig. 5(b),
which are obtained by taking the absolute of the differ-
ences between numerical and exact solutions. In Table
1 we also list the numerical errors of the numerical re-
sults obtained by Varner and Choudhury (1998). Obvi-
ously, our errors are much smaller than that of Varner
and Choudhury (1998).

Ilicasu and Schultz (2004) have calculated this case by
using the high-order finite-difference method. Our maxi-
mum error is 1.96× 10−8, which is slightly larger than



190 Copyright c© 2006 Tech Science Press CMES, vol.15, no.3, pp.179-196, 2006

Table 1 : For Example 2 we comparing the numerical
errors under ε = 0.01 and at different x with that of Varner
and Choudhury (1998) denoted as VC.

x VC (y,x) (y, t)
0.002 3.6×10−5 8.7×10−9 2.1×10−10

0.004 5.0×10−5 1.4×10−7 4.1×10−10

0.006 7.3×10−5 1.8×10−7 5.7×10−10

0.008 8.1×10−5 1.9×10−7 7.1×10−10

0.010 8.4×10−5 2.0×10−7 8.4×10−10

0.012 8.4×10−5 1.9×10−7 9.3×10−10

0.014 8.1×10−5 1.8×10−7 1.0×10−9

0.016 7.8×10−5 1.7×10−7 1.1×10−9

0.018 7.3×10−5 1.6×10−7 1.1×10−9

0.020 6.9×10−5 1.4×10−7 1.2×10−9

0.022 6.3×10−5 1.3×10−7 1.2×10−9

0.024 6.0×10−5 1.2×10−7 1.2×10−9

0.026 4.4×10−5 1.0×10−7 1.2×10−9

0.028 5.0×10−5 9.1×10−8 1.2×10−9

0.030 4.6×10−5 8.0×10−8 1.2×10−9
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Figure 5 : For Example 2 with ε = 0.01: (a) comparing
the numerical and exact solutions, and (b) the numerical
errors.

that of 0.63 × 10−8 obtained by Ilicasu and Schultz
(2004).

The resulting (y,x)-IVP is indeed a singular system and
when apply the RK4 to it the accuracy is constrained
to a certain degree. Instead of, we apply the RK4 to
the resulting (y, t)-IVP through a coordinate transforma-
tion with λ = 2. The initial values are obtained from
Eqs. (80)-(82) by inserting the above estimated Ax, α = 0,
λ = 2 and c = 50. Under a larger stepsize with h = 0.001
as compared with the above Δx = 0.0005 we obtain very
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Figure 6 : For Example 2 with ε = 0.001 solved by the
NGPS: (a) comparing the numerical and exact solutions,
and (b) the numerical error.

accurate results, whose numerical error is shown in Ta-
ble 1 and is also plotted in Fig. 5(b) for a comparison.
Under the same stepsize, Ilicasu and Schultz (2004) ob-
tained the numerical solutions with the maximum error
10−7, which is much larger than our maximum error
1.3746×10−10.

Next we consider two cases of ε = 10−3 and ε = 10−4,
and apply the NGPS method in Section 6.2 to integrate
Eq. (89) of this example with the following parameters:
Δx = 1/20 (i.e. n = 20), ρ = 50, h = 1. After 36 it-
erations the steady-state solution is obtained by subject-
ing to ‖uk+1 −uk‖ < ε2, where uk denotes the k-th iter-
ative value of u = (u1, . . . ,un−1). For this case we use
ε2 = 10−6. In Fig. 6(a) we compare the numerical solu-
tion and exact solution, and the numerical error is plotted
in Fig. 6(b). The accuracy is in the order of 10−2, even
we use Δx = 0.05 for this highly singular problem. The
maximum error of our numerical solution is 6.61×10−2.

Then, we consider a more singular case with ε = 10−4 of
this example. We apply the NGPS method in Section 6.2
to integrate Eq. (89) of this example with the following
parameters: Δx = 1/80 (i.e. n = 80), ρ = 200, h = 1,
and ε2 = 5×10−3. After 147 iterations the steady-state
solution is obtained. In Fig. 7(a) we compare the numer-
ical solution and exact solution, and the numerical error
is plotted in Fig. 7(b). The accuracy is also in the order
of 10−2. The maximum error of our numerical solution
is 1.09×10−2. In order to compare our numerical solu-
tions with that calculated by Ilicasu and Schultz (2004),
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Figure 7 : For Example 2 with ε = 0.0001 solved by the
NGPS: (a) comparing the numerical and exact solutions,
and (b) the numerical error.

Table 2 : For Example 2 we comparing the maximum
errors for different ε and n with that of Ilicasu and Schultz
(2004) denoted as IS.

ε n IS NGPS
10−3 20 0.82×100 6.61×10−2

10−3 80 0.45×100 3.42×10−2

10−3 200 0.14×100 9.90×10−3

10−4 20 0.94×100 4.87×10−2

10−4 80 0.92×100 1.09×10−2

10−4 200 0.82×100 9.14×10−3

.

we also calculated the other four cases with different n,
the results of which are summarized in Table 2. It can
be seen that the maximum errors are reduced one or two
orders by the NGPS method.

The above NGPS method is very effective even the num-
ber of grid points is small. However, the accuracy is not
so good as to be compared with the shooting method.

Next we compute the case with the same stepsize
h = 10−3 for ε = 10−3 as that used by Reddy and
Chakravarthy (2004). Integrating this case by the RK4
requires smaller stepsize than that by the NGPS method.
In this calculation we apply the shooting method in Sec-
tion 4 and the RK4 method to the resulting (y, t)-IVP
by choosing λ = 2 and c = 500. Through some trials
we have selected r = 0.513468817. When compared the
estimated A with the exact one u2(0) obtained from the
closed-form solution in the t-domain, the error is very
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Figure 8 : For Example 2 with ε = 0.001 solved by the
shooting method: (a) comparing the numerical and exact
solutions, and (b) the numerical error.

small with 6.96×10−8. At the same time, the final value
of u1 matches very well with the exact value with an error
4.1×10−10.

By using the above estimated initial condition of
u2(0) = A and the given u1(0) = 0, we can integrate the
(y, t)-IVP by the RK4 method. In Fig. 8(a) we plot the
numerical and exact solutions, which are almost coin-
cident. Thus, we plot the numerical error in Fig. 8(b),
which can be seen in the order of 10−6. Obviously, our
maximum error is much smaller than that calculated
by Reddy and Chakravarthy (2004). When compared
with the error calculated by the NGPS method as shown
in Fig. 6(b) which being accurate in the first-order, the
shooting method can achieve a more accurate result in
the second-order. Due to the singularity, the integration
by RK4 does not preserve the fourth-order accuracy with
10−12 and with a maximum error 1.473× 10−6. After
the transition layer the accuracy returns to the order of
10−9.

7.3 Example 3

We calculate the third example given by

εu′′1 +u′1 −u1 = 0, (97)

u1(0) = 1, u1(1) = 1. (98)

This example has been calculated by Reddy and
Chakravarthy (2004) and Ilicasu and Schultz (2004) with
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different methods.
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Figure 9 : For Example 3 with ε = 0.01 solved by the
shooting method: (a) comparing the numerical and exact
solutions, and (b) the numerical error.

In order to compare our numerical results with that of
the above cited papers, we fix ε = 0.01. The translation
constant c = 5 is also fixed.

We apply the shooting method in Section 4 and
the RK4 method to the resulting (y, t)-IVP. Through
some trials we have picked up the parameter r to
be r = 0.285266522. When compared the esti-
mated A = −1.8770432336 with the exact one u2(0) =
−1.8770432329 obtained from the closed-form solution:

u1(x) =
1

em2 −em1
[(em2 −1)em1x +(1−em1 )em2x], (99)

where

m1 =
−1+

√
1+4ε

2ε
, m2 =

−1−√
1+4ε

2ε
, (100)

in the t-domain, the error is very small with 7× 10−10.
At the same time, the final value of u1 matches very well
with the exact value with an error 2.095×10−7.

By using the above estimated initial condition of
u2(0) = A and the given u1(0) = 1, we can integrate the
(y, t)-IVP by the RK4 method with a stepsize h = 0.005,
which is the same as that used by Varner and Choudhury
(1998). In Fig. 9(a) we plot the numerical and exact
solutions, which are almost coincident. Thus, we plot the
numerical errors in Fig. 9(b), which can be seen in the
order of 10−7. Obviously, our maximum error is much
smaller than that calculated by Varner and Choudhury
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Figure 10 : For Example 4 with ε = 0.001 solved by the
shooting method: (a) comparing the numerical solution
with the uniform approximation, (b) plotting the error of
uniform approximation, and (c) the difference of solu-
tions.

(1998), and that by Reddy and Chakravarthy (2004), of
which a smaller stepsize h = 0.001 was used.

7.4 Example 4

In order to further demonstrate the usefulness of the
present method, let us calculate the following example
of nonlinear singular perturbation problem from Bender
and Orszag (1978):

εu′′1 +2u′1 +eu1 = 0, (101)

u1(0) = 0, u1(1) = 0. (102)

This example has been also calculated by Reddy and
Chakravarthy (2004).

For the comparison purpose we write the uniform ap-
proximation provided by Bender and Orszag (1978) as

u1(x) = ln
2

1+x
−e−2x/ε ln2. (103)
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Figure 11 : For Example 5 with ε = 0.001 solved by the
shooting method: (a) comparing the numerical solution
with the uniform approximation, and (b) the difference
of solutions.

When the singular parameter is taken to be ε = 0.001,
we apply the shooting method in Section 4 and the
RK4 method to the resulting (y, t)-IVP under λ = 3
and c = −2. Through some trials we have picked up
r = 0.6013428. By using a stepsize h = 0.0001 the nu-
merical result and the solution in Eq. (103) are compared
in Fig. 10(a). We insert Eq. (103) into Eq. (101) to obtain

εu′′1 +2u′1 +eu1 =
ε

(1+x)2 +
2[1−e−2x/ε] −2

1+x
. (104)

The error to satisfy Eq. (101) is plotted in Fig. 10(b) in
the t-domain. In addition that very near the left-hand
boundary with x ≤ 0.00326814, the error is very small in
the order of 10−4. The difference between our numerical
result with the solution in Eq. (103) is also plotted in
Fig. 10(c), of which the absolute difference is smaller
than 3.45 × 10−4. This example shows that the new
method is also applicable to the nonlinear problem.

7.5 Example 5

Finally, we consider the following example of nonlinear
singular perturbation problem from Kevorkian and Cole
(1981):

εu′′1 +u1u′1 −u1 = 0, (105)

u1(0) = −1, u1(1) = 3.9995. (106)

For comparison purpose we write the uniform approxi-
mation provided by Kevorkian and Cole (1981) as

u1(x) = x+c1 tanh[c1(x/ε+c2)/2], (107)

where c1 = 2.9995 and c2 = 1/c1 ln[(c1 −1)/(c1 +1)].
When the singular parameter is taken to be ε = 0.001,
we apply the shooting method to the resulting (y, t)-IVP
under λ = 5 and c = 5. Through some trials we used
r = 0.10880495. The numerical result matches very well
the boundary condition u1(1) = 3.9995 with a very small
error with 5.48×10−8. By using a stepsize h = 0.0001
the numerical result and the solution in Eq. (107) are
compared in Fig. 11(a). The absolute difference between
our numerical result with the solution in Eq. (107) is
also plotted in Fig. 11(b), of which the difference of our
solution with the solution in Eq. (107) is smaller than
10−3. This example has been also calculated by Reddy
and Chakravarthy (2004) under the same ε = 0.001 as
shown in Table 5 therein. Near the boundary layer the
solution obtained by Reddy and Chakravarthy (2004) de-
viates from the uniformly valid approximation (107) to a
great extent with the difference 0.493912

For this problem, Wang (2004) has obtained a different
solution by a series method:

u1(x) = x+2.9995+
L(s)
Q(s)

, (108)

where s = x/ε is a strained coordinate, and

L(s) = −3.9995+(1.99975+c3)s−0.39995(1+2c3)s2

+[0.0333292(1+2c3)−0.25c3 +0.1c3(1+2c3)
+0.166667(c3−c2

3)]s
3, (109)

Q(s) = 1−0.5s+0.1(1+2c3)s2

−0.0083333(1+2c3)s3, (110)

where c3 = −1.999791999.

When the singular parameter is taken to be very small
with ε = 10−6, we apply the shooting method to the re-
sulting (y, t)-IVP under λ = 6 and c = 10. Through some
trials we used r = 0.61685. By using a stepsize h = 10−6

the numerical result and the solutions in Eqs. (107) and
(108) are compared in Fig. 12(a). The result obtained by
Wang (2004) as shown by the dashed-dotted line deviates
much from our solution and the solution of Kevorkian
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Figure 12 : For Example 5 with ε = 0.000001 solved by
the shooting method: (a) comparing the numerical solu-
tion with the uniform approximations, and (b) the differ-
ences of solutions.

and Cole (1981) when t < 0.4, i.e., x < 1.4798×10−3. It
indicates that the solution of Wang (2004) cannot match
the boundary layer solution.

The difference between our numerical result with the so-
lution in Eq. (107) is plotted in Fig. 12(b), of which the
difference is smaller than 2× 10−2. The difference be-
tween our numerical result with the solution in Eq. (108)
is also plotted in Fig. 12(b) with the dashed-dotted line,
of which it can be seen that the error of the solution of
Wang (2004) increases very fast when near the bound-
ary layer. Obviously, the solution of Wang (2004) needs
more higher-order terms in the expansions of Eqs. (108)-
(110) to match the boundary layer behavior.

This example shows again that the new method is also
applicable to the nonlinear singular perturbation problem
with high singularity.

8 Conclusions

For its very nature of singularity, in the open literature
there is no or rare report that one can directly use the
shooting method as a technique to solve the SPBVP. In
order to reduce the singularity this paper has employed
a coordinate transformation from the x-domain problem
to the t-domain problem. The relation between singular-
ity and stiffness is then demonstrated, of which the co-

ordinate transformation parameter λ plays a key role to
balance these two tendencies. For a stabilization of the
newly developed method we also introduced the new sys-
tems by a translation of the dependent variable. There-
fore, this paper has identified four systems, namely, the
(u,x)-BVP, the (u, t)-IVP, the (y,x)-BVP or IVP, and the
(y, t)-IVP.

In order to estimate the missing initial condition for the
singularly perturbed boundary value problems expressed
as the (y, t)-IVPs, we have employed the Lie group
method to derive algebraic equations. Therefore, we can
determine r very quickly only through a few trials. Five
numerical examples, three linear and two nonlinear, were
calculated by the new method. Compared with other nu-
merical methods, the new approach displays its high effi-
ciency and high accuracy. The numerical results have the
second-order accuracy even for the highly singular cases.

This paper also developed a finite difference method to-
gether with the nonstandard group preserving scheme to
calculate the SPBVPs. This method is suitable for the
calculation of SPBVPs without needing for many grid
points; however, its accuracy is of the first-order.

Although the Lie-group shooting method can estimate
the missing initial condition very accurately, and in prin-
ciple, the RK4 has the fourth-order accuracy, the accu-
racy of numerical solutions integrated by RK4 is reduced
since the resultant (y, t)-IVPs exhibit certain stiffness. To
remedy this defect, we may consider the implicit-form
RK4 stiff integrator in a forthcoming study. In view of
the results in [Liu (2006b)], the present approach may be
improved such that the iterative solution of the missing
initial condition can be avoided.

Here, we only considered the boundary layer located at
the left-hand side. In the future it is deserved to extend
the new method to more complex singularly perturbed
problems, of which there may appear two-layer, interior
layer or spike layer as that for the Carrier-Pearson
problem (Carrier and Pearson, 1991).
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