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Boundary Element Stress Analysis of Thin Layered Anisotropic Bodies

Y.C. Shiah1, Y.C. Lin1, and C. L. Tan2

Abstract: In this paper, the order of singularity of the
integrals appearing in the boundary integral equation for
two-dimensional BEM analysis in anisotropic elasticity
is reduced using integration by parts. The integral con-
taining the traction fundamental solution is then analyti-
cally integrated to give an exact formulation for a general
element of n-order interpolation of the variables. This al-
lows the integrals to be very accurately evaluated even for
very thin, slender bodies without the need for excessively
refined meshes as in conventional BEM analysis. Three
example problems involving thin, layered materials are
presented to demonstrate the veracity and successful im-
plementation of the proposed scheme. The BEM results
obtained show very good agreement with those obtained
analytically for one, and with those from FEM analysis
using the commercial software ANSYS for the other two
example problems.

keyword: Boundary element method, Nearly-singular
integrals, Thin layered anisotropic bodies.

1 Introduction

Accurate stress analysis of layered material systems is
of great importance in the assessment of their structural
integrity and performance. These material systems are
found in, for example, laminated composites, thin film-
substrate systems in electronic devices, protective coat-
ings and adhesive joints. Failure at the interfaces such
as de-bonding, as well as in the layers due to exces-
sive stresses under mechanical and thermal loads are
important design considerations. The adjoining mate-
rials are often non-isotropic and the layers, very thin.
Laminated composites, single crystal alloy turbine blades
with thermal barrier coatings, and thin, bi-crystals in
electronic devices, are examples of thin structures with
anisotropic material properties. For such bodies, ap-
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proximate closed-form solutions for the stresses have
been derived for a few, relatively simple cases, see, e.g.
[Pagano and Hatfield (1972)], [Kant and Swaminathan
(2000)], for composite laminates. It is usually necessary,
however, to employ numerical methods to perform the
stress analysis of these components. To this end the finite
element method (FEM) is the computational tool that is
most commonly used. Although the boundary element
method (BEM) has been well recognized as a very effi-
cient, alternative numerical tool for linear elastic stress
analysis, there is paucity of reported works on thin, lay-
ered anisotropic bodies.

Besides the added complexities in anisotropic elasticity
when compared to the isotropic case, there are further
difficulties in using conventional BEM schemes to anal-
yse thin, slender bodies. They stem from the field solu-
tions which are involved in the analytical formulations
of the BEM. These solutions are the fundamental so-
lutions to the governing differential equations and they
are mathematically singular. In linear elasticity, they
give rise to weakly singular and strongly singular inte-
grals in the displacement-based boundary integral equa-
tion (BIE). When the source point is very close to the
boundary over which integrations are performed, the in-
tegrals in the BIE become nearly singular; their evalu-
ation then poses difficulties if conventional quadrature
rules based on simple polynomial representations, such
as Gauss-Legendre quadrature, are used. This is true
even though the integrals are regular in the strict math-
ematical sense due to the integrands varying very rapidly
within the limits of integration. Such situations arise
when calculating the displacements and stresses for in-
terior points close to the boundary of the domain; when
parts of the boundary are close to one another as in the
case of thin, slender structures; or even when very highly
graded meshes are used.

Over the past two decades, much effort has been put into
developing schemes to regularize singular, near-singular
and hypersingular integrals which arise in various BEM
formulations. The schemes may often be broadly cat-
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egorized into those in which the regularization is done
prior to, or after, the discretisation of the BIE. All of
them aim for accuracy, computational efficiency, gener-
ality and simplicity; they have, however, been met with
only varying degrees of success. Attempts have also
been made to unify the understanding on singular and
non-singular integration (see, e.g., [Rosen and Cormack
(1994)], [Lutz and Gray (1993)]). Reviews and discus-
sion of these developments have been given by, e.g., Kr-
ishnasamy, et al (1991), Lutz, et al (1991), Huang and
Cruse (1993), Tanaka, et al (1994), Martin, et al (1998),
Dominguez (2000).

Several schemes have been proposed for the “regular-
ization” of the nearly-singular integrals. Among them
are the special weighted Gauss method by Lutz (1992);
the projection transformation method of Hayami (1992)
and Hayami and Matsumoto (1994); the semi-analytical
approach of Taylor series expansion and singularity
subtraction for the kernels as employed by Cruse and
Aithal (1993) and Mi and Aliabadi (1996); and the
variable/coordinate transformation methods of Jun, et al
(1985), Telles (1987), Huang and Cruse (1993) and Wu
and Lu (1996), with or without element sub-division.
Other approaches include the kernel cancellation method
by Nakagawa (1993), the auxiliary surface method pro-
posed by Liu, et al (1993), the line integral method by
Krishnasamy, et al (1991), as well as analytically reg-
ularizing the boundary integral formulations to elimi-
nate the need to compute the nearly singular integrals,
e.g. Sladek and Sladek (1992). Richardson and Cruse
(1999) have also derived self-regularized displacement-
BIE and stress-BIE; the former being obtained by apply-
ing a simple solution corresponding a rigid body motion
term to Somigliana’s displacement identity, and the lat-
ter, by subtracting and adding back the first and second
terms of the Taylor’s series expansion to the original form
of the stress-BIE. Regularization techniques using com-
plex poles have also been presented by Dumont (1994)
and Granados and Gallego (2001).

In this paper, regularization using integration by parts is
carried out on the weakly singular integral in the BIE
for two-dimensional anisotropic elastostatics to reduce
the order of the singularity of the integrand. Following
this, the integral containing the traction fundamental so-
lution is analytically integrated to give the exact formu-
lation for a general element of n-th order interpolation
of the variables. This allows the integrals to be very

accurately evaluated even for very thin bodies. The ef-
fectiveness and applicability of the proposed scheme are
demonstrated by numerical examples.

2 Boundary integral equation for plane anisotropy

It is well established in the BEM literature that the con-
ventional boundary integral equation (BIE) for linear
elasticity is an integral constraint equation relating the
displacements u j and tractions t j at the boundary S of
the homogeneous elastic domain. In the absence of body
forces and thermal effects, it may be written in indicial
notation as

Ci j ui(P)+
Z

S

ui(Q)Ti j(P,Q)dS

=
Z

S

ti(Q)Ui j(P,Q)dS (1)

In Eq. (1), the value of Ci j(P) depends upon the local ge-
ometry of S at the source point P; Ui j(P,Q) and Ti j(P,Q)
represent the fundamental solutions of displacements and
tractions, respectively, in the xi-direction at the field point
Q due to a unit load in the x j-direction at P in a homoge-
neous infinite plane. The explicit forms of these funda-
mental solutions for linear elastic, anisotropic materials
are given by

Ui j(P,q) = 2Re [[ri1 A j1 logz1 +ri2 Aj2 logz2]] (2)

T1 j = 2n1Re
[[

µ2
1A j1

/
z1 +µ2

2A j2
/

z2
]]

−2n2Re
[[

µ1A j1
/

z1 +µ2A j2
/

z2
]]

T2 j = −2n1Re
[[

µ1A j1
/

z1 +µ2A j2
/

z2
]]

+2n2Re
[[

A j1
/

z1 +A j2
/

z2
]]

(3)

where ni are the components of the unit outward normal
vector at Q, the operator Re[[]] gives the real part of com-
plex variables, and zi is the generalized complex variable
defined in terms of the characteristic roots, µι, and the lo-
cal coordinates of the field point Q(x1, x2), (ζ1,ζ2), with
origin set at the source point P(xp1, xp2) as follows

z = (x1−xp1)+µ( x2−xp2) (4)

For anisotropic materials, Lekhnitskii (1963) has shown
that the four roots, µι, of the following characteristic



Boundary Element Stress Analysis of Thin Layered Anisotropic Bodies 17

equation are complex:

a11µ4 −a16µ3 +(2a12 +a66)µ2−a26µ+a22 = 0 (5)

where amn are the elastic compliances of the material. In
Eq. (2), rmn are material constants, given by

r1n = a11µ2
n +a12−a16µn , r2n = a12µn +a22/µn−a26

(6)

Also, in Eqs. (2) and (3), A jk are complex constants that
can be obtained by

[Im [[B1]] Re [[B1]] Im [[B2]] Re [[B2]]]

⎡
⎢⎢⎣

Re [[A j1]]
Im [[A j1]]
Re [[A j2]]
Im [[A j2]]

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

−1/4π δ j2

1/4π δ j2

0
0

⎤
⎥⎥⎦ (7)

where Bk are given by

[Bk] = [i µk r1k r2k]
T (8)

and δ jk is the Kronecker delta.

The numerical solution of Eq. (1), the BIE, typically in-
volves discretising the boundary of the solution domain
into, say, M segments or elements, each defined by a cer-
tain number of nodes, resulting in a total of N nodes on
the boundary. Following the usual interpolation process,
for nth−order elements, the nodal values of coordinates,
displacements, and tractions over each element can be
expressed in terms of the local coordinate ξ ∈ [−1,1] as

x j(ξ) =
n+1

∑
c=1

N(c)(ξ) x(c)
j , u j(ξ) =

n+1

∑
c=1

N(c)(ξ) u(c)
j ,

t j(ξ) =
n+1

∑
c=1

N(c)(ξ) t(c)j (9)

where N(c) are the shape or interpolation functions of the
nth−degree; it has the general form

N(c)(ξ) =
n

∑
m=0

α(c)
m ξm (10)

Equation (10) is for general interpolations and it is valid
for any interpolation family, such as Serendipity, La-
grange or Hermite. Substitution of Eqs.(9) and (10) into
Eq. (1) results in the discretised form of the BIE,

Ci j(Pa)ui(Pa) =
M

∑
b=1

n+1

∑
c=1

btc
i

Z 1

−1
Ui j(Pa, bQ)Nc(ξ)J(ξ)dξ

−
M

∑
b=1

n+1

∑
c=1

buc
i

Z 1

−1
Ti j(Pa, bQ)Nc(ξ)J(ξ)dξ (11)

where the superscript a represents the a-th global node
of the boundary mesh, b denotes the b-th element, and
c is the c-th node of the element. Also in Eq. (11),
J(ξ) is the Jacobian transformation along the boundary
path from the global Cartesian coordinates to the local
coordinateξ. The collocation process as represented by
Eq. (11) forms a set of linear algebraic equations in
terms of the unknown displacements and tractions at the
boundary nodes. These linear algebraic equations may
be solved by standard matrix methods, such as Gaussian
elimination.

In the evaluation of the integrals, which is usually carried
out numerically using Gaussian quadrature, care is taken
to distinguish the case when the source point Pa is one
of the nodes of the b-th element over which the integra-
tion takes place, and the case when it is not. Schemes
to deal with the former case, where the integrals become
weakly singular or singular, are well established in the
BEM literature and will not be discussed further here. It
is the formulation for the latter case which is the focus
of the present work in what follows, and the successful
development of which makes it particularly suitable for
analyzing thin, slender bodies.

By substituting the fundamental solutions, Eqs.(2), into
Eq. (11), the discretised form of the BIE can be written
as

Ci j(Pa)ui(Pa)

=
M

∑
b=1

n+1

∑
c=1

btc
i

Z 1

−1
2Re

[[
rikA jk logbzk

]]
Nc(ξ)J(ξ)dξ

−
M

∑
b=1

n+1

∑
c=1

2

∑
i=1

buc
i

Z 1

−1
(−1)(i−1)2×

Re

[[
µδ1i

k A jk

(
n1µk −n2

bzk

)]]
Nc(ξ)J(ξ)dξ (12)

From Eq.(4), it is evident that when the source point
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P is very close to, or approaches the integration ele-
ment, the generalized local coordinate zk will approach
zero. Under this condition, simple numerical integration
schemes, such as Gaussian quadrature will not yield ac-
curate results of the near weakly singular integral with
the logzkterm and the nearly singular one with the 1/zk

term, in Eq.(12) even though the integrals are, strictly
speaking, regular. Figure 1 shows a physical example
of when such a situation may arise. It is a thin laminated
composite consisting of four dissimilar plies bonded with
thin adhesive. Many laminated composites used in engi-
neering structures are even thinner than those shown in
the figure. The primary goal of the present work is to
develop an expedient scheme to accurately evaluate the
nearly singular integrals of the BIE for anisotropic elas-
tostatics.

Figure 1 : A thin laminated composite: an example of
where nearly singular integral may occur in BEM analy-
sis.

3 Regularization of the integral with the displace-
ment kernel

Typically, the issue of the accurate evaluation of the
nearly singular integrals arises when the distance, l, from
the source point to the element is one order less than that
of the element length. Perhaps the most straightforward
approach to resolve the difficulty is to adopt some adap-
tive scheme which subdivides the element into several
sub-intervals so that each sub-interval length becomes
the same order as the distance l. Clearly, this is not very
practical nor in some instances even feasible for very thin
structures. A way to overcome this problem is to analyt-
ically reduce the singular integrands into “regular” ones
so that the usual numerical integration schemes will give
accurate values of the integrals.

First, consider the weakly singular integral term in Eq.

(12) involving the displacement fundamental solution (or
displacement kernel, for short).

n+1

∑
c=1

btc
i

Z 1

−1
2Re

[[
rikA jk logbzk

]]
Nc(ξ)J(ξ)dξ (13)

With coordinate interpolation, the generalized coordinate
zk(ξ) and the Jacobian J(ξ) may be expressed as

bzk =
n

∑
m=0

Bmkξm − (bxp1 +µk
bxp2) (14)

J(ξ) =

√√√√√√√√
(

n+1
∑

c=1

n
∑

m=1
mα(c)

m ξm−1x(c)
1

)2

+
(

n+1
∑

c=1

n
∑

m=1
mα(c)

m ξm−1x(c)
2

)2 (15)

where the coefficient Bmk is given by

Bmk =
n+1

∑
c=1

α(c)
m (bx(c)

1 +µk
bx(c)

2 ) (16)

In Eqs. (15) and (16), the superscript (c) denotes the c-th
node of the integration element. By substituting Eqs.(10)
and (14) into Eq. (13), it becomes

n+1

∑
c=1

btc
i

Z 1

−1
2Re

[[
rikA jk logbzk

]]
Nc(ξ)J(ξ)dξ

=
n+1

∑
c=1

btc
i 2Re

[[Z 1

−1
rikA jk

n

∑
m=0

α(c)
m ξm×

[
logBnk +

n

∑
l=1

log(ξ−Rlk)

]
J(ξ)dξ

]]

(17)

In Eq. (17), Rmk are roots of the polynomial equation

B0k − (bxp1 +µk
bxp2)

Bnk
+

n

∑
m=1

Bmkξm

Bnk
= 0 (18)

which can be solved using any convenient numerical
scheme. Note that in Eq. (18), the coefficients are scaled
by a common factor Bnk; this is to facilitate the solution
for the roots of the equation. It serves also to distinguish
the case of geometrically linear elements for which the
factor is null and a separate algorithm may be employed;
this is discussed later below. Under the nearly singular
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condition when the source P approaches the integration
element at the pointξ = ξ0, it can be shown that one of
the roots Rmk will approachξ0. The weakly singular inte-
gral may be regularized by directly integrating Eq. (17)
by parts, as follows. First, two functions, w and v, are
introduced where

w(ξ) =
n

∑
m=0

α(c)
m ξmJ(ξ) (19)

dvk =

[
log(Bnk)+

n

∑
l=1

log(ξ−Rlk)

]
dξ (20)

Thus, one may readily obtain

dw =

[
n

∑
m=1

mα(c)
m ξm−1J(ξ)+

n

∑
m=1

α(c)
m ξmJ′(ξ)

]
dξ (21)

vk(ξ) = ξ log(Bnk)+
n

∑
l=1

(ξ−Rlk) [log(ξ−Rlk)−1] (22)

Equation (17) may now be rewritten as

n

∑
c=1

btc
i

Z 1

−1
2Re

[[
rikA jk logbzk

]]
Nc(ξ)J(ξ)dξ

=
n

∑
c=1

btc
i 2Re

[[
rikA jk

{
[w(ξ)vk(ξ)]|1−1

−R 1
−1 vk(ξ) ·Ω(c)(ξ)dξ

}]]

(23)

In Eq. (23), the function Ω(c)(ξ) is defined as

Ω(c)(ξ) =
n

∑
t=1

tα(c)
t ξt−1J(ξ)

+

n
∑

t=0

2n
∑

k=0

k
∑

m=0

n+1
∑
j=0

α(i)
n−mα( j)

n+m−kα
(c)
t x(i)

l x( j)
l ξ2n+t−k−3

2J(ξ)
(24)

In Eq. (24), the singular point Rmk in the original inte-
grand of Eq. (17) is now removed through this regular-
ization process. To illustrate the accuracy of this regular-
ized formulation for the integral with the displacement
kernel, consider the quadratic interpolation formulation
(n=2) for a circular arc integration path with secant length
D, as shown in Fig. 2. Suppose the source point lies at
the mid-point of the arc with a distance L apart from it.
For the purpose of demonstration here, the material con-
stant µk and nodal coordinates can be arbitrarily chosen.

D

L

1 2
,p px x

(1) (1)

1 2,x x

(2) (2)

1 2,x x

(3) (3)

1 2,x x

2
x

1
x

Figure 2 : A source point close to a quadratic element.

It is obvious that the integrand varies most rapidly for the
case when c= 2, that is, when the value evaluated for the
integral contributes to the coefficient in the equation ma-
trix corresponding to the second node of the element. For
this case, the variations of the integrands, in Eq. (17) and
(23), are plotted in Fig. 3 for comparison. The very rapid
variation near ξ = 0 when L/D is smaller than 10−2 will
cause inaccurate evaluation of the integral by the usual
simple numerical integration schemes. In contrast, the
variation of the regularized integrand remains fairly slow
and similar for any order of L/D.

The special case of when the elements used to model the
physical problem are all straight is perhaps worth some
discussion here. It is applicable to many practical prob-
lems with thin layers. In this situation, the coordinates of
the m-th node are given by

bx(m)
j =

(m−1)bx(n+1)
j +(n−m+1)bx(1)

j

n
(25)

It can then be easily proved that the coordinates of an
arbitrary point on element b are given by a simple form

bx j(ξ) =
n+1

∑
c=1

n

∑
m=0

α(c)
m (ξ)ξm bx(c)

j

=

(
bx(n+1)

j − bx(1)
j

)
ξ+
(

bx(n+1)
j + bx(1)

j

)
2

(26)

Using Eq. (16), it may be readily shown that Bmk =
0 for m > 1; this leads to

bzk = C1kξ+D1k (27)
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Figure 3 : Variations of the original and the regularized displacement kernels.

where the C1k, D1k are given by

C1k = (bx(n+1)
1 +µk

bx(n+1)
2 )−(bx(1)

1 +µk
bx(1)

2 )
2

D1k = (bx(n+1)
1 +µk

bx(n+1)
2 )+(bx(1)

1 +µk
bx(1)

2 )
2 − (xp1 +µkxp2)

(28)

Also, the Jacobian is reduced to a simple form

J(ξ) =
√

D0 (29)

where D0 is given by

D0 =

(
bx(n+1)

1 − bx(1)
1

)2
+
(

bx(n+1)
2 − bx(1)

2

)2

4
(30)

Using Eqs.(27) and (29) instead for the straight elements,
Eq. (17) can now be rewritten as

n+1

∑
c=1

btc
i

Z 1

−1
2Re

[[
rikA jk logbzk

]]
N(c)(ξ)J(ξ)dξ

=
n+1

∑
c=1

btc
i 2Re

[[Z 1

−1
rikA jk

n

∑
m=0

α(c)
m ξm [logC1k

+ log(ξ−R1k)]
√

D0dξ
]]

(31)

where R1k is given by

R1k = D1k/C1k (32)

By integrating the final form in Eq. (31) using the inte-
gration by parts successively, one may eventually have

n+1

∑
c=1

btc
i

Z 1

−1
2Re

[[
rikA jk logbzk

]]
Nc(ξ)J(ξ)dξ

=
n+1

∑
c=1

btc
i 2
√

D0Re
[[

rikA jk ×
⎡
⎢⎢⎢⎣

logC1k

n
∑

m=0

α(c)
m

m+1ξm+1+

n
∑

m=0

m
∑

l=0

(−1)lα(c)
m m!

(m−l)! ξm−l(ξ−R1k)l+1

[El+1 log(ξ−R1k)−Fl+1]

⎤
⎥⎥⎥⎦
∣∣∣∣∣∣∣∣∣

1

−1

⎤
⎥⎥⎥⎦
⎤
⎥⎥⎥⎦ (33)

where the coefficients En+1, Fn+1 are defined by the fol-
lowing recursive formulae

El+1 =
1

(l +1)!
, Fl+1 =

Fl

(l +1)
+

El

(l +1)2 ,

(E0 = F0 = 1) (34)
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Equation (33) is analytically exact for straight elements
of any order. It should be reminded, however, this case
can also be dealt with using the same algorithm of inte-
gration by parts as given by Eq. (23).

4 Treatment of the integral with the traction kernel

The fundamental solution for tractions (or traction ker-
nel, for short) is O(1/r), which is a stronger singularity
than that of the displacements. It may therefore be ex-
pected that the previous process of integration by parts
needs to be taken twice in principle so as to regularize
the singular integral. The actual process may not be re-
ally necessary as will be shown below. As before, the
expressions for bzk(ξ) and J(ξ) are given in Eqs. (14)
and (15), respectively; the components of the unit out-
ward normal vector are

n1 =
1

J(ξ)

n+1

∑
c=1

n

∑
m=1

mα(c)
m ξm−1x(c)

2 ,

n2 =
−1
J(ξ)

n+1

∑
c=1

n

∑
m=1

mα(c)
m ξm−1x(c)

1 (35)

By substituting Eqs. (13) and (35) into the integral with
the traction kernel into Eq. (12), the result is

n+1

∑
c=1

2

∑
i=1

buc
i

Z 1

−1
(−1)(i−1)2×

Re

[[
µδ1i

k A jk

(
n1µk −n2

bzk

)]]
N(c)(ξ)J(ξ)dξ

=
n+1

∑
c=1

2

∑
i=1

buc
i (−1)(i−1)2×

Re

⎡
⎢⎢⎣
⎡
⎢⎢⎣

µδ1i
k A jk

R 1
−1

n+1
∑

c=1

n
∑

m=1
mα(c)

m ξm−1
(

x(c)
2 µk+x(c)

1

)
n
∑

m=0
Bmξm−(bxp1 +µk

bxp2 )

n
∑

m=0
α(c)

m ξmdξ

⎤
⎥⎥⎦
⎤
⎥⎥⎦

=
n+1

∑
c=1

2

∑
i=1

buc
i (−1)(i−1)2×

Re

⎡
⎣
⎡
⎣µδ1i

k A jk

Z 1

−1

n

∑
j=1

G(c)
jk

ξ−R jk

n

∑
m=0

α(c)
m ξmdξ
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where R jk, again, are the roots of Eq. (18) and G(c)
jk are

given by

G(c)
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n
∑

m=1
mα(c)

m Rm−n−1
jk

(
x(c)

2 µk +x(c)
1

)
Bnk

n
Π
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(
1−Rmk/R jk +Rmkδm j/R jk

) (37)

Equation (36) can be rearranged to give
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(38)

which is analytically exact for elements of any order.
That being true, it should be noted that Eq. (38) can
be considered as only a “semi-analytical” formulation
since the determination of the roots, R jk, in general, re-
quires a numerical scheme. However, if quadratic ele-
ments (n=2), which are the most commonly adopted ones
employed in BEM analysis, the formulation is indeed an-
alytically exact. This is because the corresponding two
roots can be analytically determined from its second or-
der polynomial equation. For geometrically straight ele-
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Figure 4 : A bimetallic cylindrical ring subjected to in-
ternal pressure.

ments, there exist only one root (l=1), i.e. R1kas given by
Eq. (32).

5 Numerical examples

To demonstrate the veracity of the formulations proposed
above, three numerical examples are presented here. The
first one is a bi-metallic cylindrical ring as shown in Fig.
4; it consists of steel cylindrical ring (Young’s modulus
E = 207 GPa, Poisson’s ratio ν = 0.3) neat-fitted into
a copper ring (Young’s modulus E = 117.7 GPa, Pois-
son’s ratio ν = 0.33) and under internal pressure of P=1
MPa. Although the problem is isotropic, it is solved
using the BEM algorithm for anisotropy by small per-
turbations of the isotropic properties. This problem is
chosen as a quick check of the successful implementa-
tion of the proposed formulations, as the exact analyti-
cal solution (Lame’s solution) exists. Taking advantage
of symmetry, only one-quarter of the physical domain is
modeled with the appropriate displacement constraints
applied along the planes of symmetry. Figure 5 shows
the typical BEM mesh employed when the circumferen-
tial surfaces are discretised into 4 elements (N=4), while
only one element is used in the through-thickness direc-
tion for each layer. The BEM computed hoop stress at
the nodes along each circumferential surface is uniform,
as expected; these stresses are listed in Table 1 together
with the exact theoretical value according to Lame’s so-
lution. It can be seen that even with the relatively coarse
meshes used in the analysis, very high accuracy of the
BEM solutions is achieved.

For the second example, a printed circuit board (PCB)
used in electronic applications is considered. It is a 9-

Figure 5 : BEM model of Example 1.

Table 1 : Hoop stresses (in MPa) along the circumferen-
tial surfaces of the bi-metallic rings – Example 1

Steel

Inside Surface        Outside surface 
N S/D 

64.27 Err. % 63.63 Err. % 

4 40.06 63.40 1.35 62.81 1.29 

8 20.03 63.83 0.68 63.23 0.63 

10 16.02 63.87 0.62 63.23 0.63 

Copper

Inside Surface Outside surface
N S/D 

36.23 Err. % 35.88 Err. % 

4 40.06 36.38 0.41 36.05 0.47 

8 20.03 36.63 1.09 36.29 1.13 

10 16.02 36.62 1.08 36.26 1.05 

N: The number of discretised elements over the 

circumferential arc 

D: The thickness of the outside layer (1 mm) 

S: The arc length of each element of the modeled outside 

copper wall 

ply symmetric laminate, as shown in Fig.6, comprising
of layers of solder mask, FR-4 composite, and copper.
The thickness of each layer and the length of the plate
analysed are as indicated in the figure. The board is sub-
jected to uniaxial tension P=1 MPa at the remote ends.
The mechanical properties of the constituent layers in the
plane considered in the BEM analysis are listed in Table
2, NEC(Taiwan) (2005); the other mechanical properties
of anisotropic FR4 that are not listed in the table, namely,
the coefficients of mutual influence and Chentsov’s co-
efficient, are zero. Only one-quarter of the problem is
modeled as shown in Fig. 7(a) because of the geomet-
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Table 2 : Mechanical properties of the constituent mate-
rials for the printed circuit board –Example 2

Material 

Young’s

modulus
Poisson’s ratio 

Shear 

Modulus 

Solder

mask E=1.96 GPa 0.35
G=0.73 GPa

Cu  E=117.68 

GPa 
0.33

G=44.24

GPa

FR-4 E11=E33=16.85 

GPa

E22=7.38

GPa 

12 23

13

0.11

0.39

G12=G23=

3.29 GPa 

G13=6.95

GPa

ric and material symmetry in the plane shown in Fig.
6, and plane strain conditions are assumed. Figure 7(b)
shows the BEM mesh employed; it has a total of only 50
quadratic elements (n=2) for the modeling of all 5 sub-
regions of the layers. As a means of verification of the
numerical results, this problem is also solved using the
finite element method (FEM) with the commercial code
ANSYS. Due to the thinness of the elements and to en-
sure reasonable aspect ratios of their side lengths, 28000
PLANE42 (linear) elements are employed. Because of
this high density of elements, the FEM mesh is not pre-
sented here. As expected, the computed normal stresses
σ22and σ12 throughout all layers are very small that can
be neglected. The computed values ofσ11are found, for
all intents and purposes, to be uniform but distinct in each
different constituent material; their values at the inter-
faces for the respective materials are shown in Fig.8 for
both the BEM and FEM analyses. For the sake of clarity,
the results at x1/Lo = 1 where the external load is applied,
are not shown because of the stress discontinuities at the
interfaces. Excellent agreement of the numerical results
from both analyses can be seen; the discrepancies in the
vicinity of the ends are due to the discontinuities in the
stresses there.

The third example treated here is a lap-joint shown in
Fig. 9 with plates of FR4 bonded by an epoxy adhe-
sive (Young’s modulus, E=3GPa, and Poisson’s ratio, ν=

Figure 6 : Example 2 - A printed circuit board (PCB)
under remote uniaxial tension.

Figure 7 : (a) A quarter model of Example 2. (b) BEM
mesh of Example 2.

0.38) under remote uniform tensile stress. The dimen-
sions considered are as indicated in the figure. By virtue
of symmetry, only one-half of the physical domain is
modeled, and plane strain conditions are assumed. Fig-
ure 10 shows the BEM mesh with a total of 50 quadratic
elements employed for the three sub-regions of the three
modeled layers. An FEM analysis using ANSYS is also
carried out in which 5114 PLANE42 (linear) elements
are used; the mesh is again not shown here because of
the high density of the elements used. The distribu-
tions of the boundary stresses, uniform in each respec-
tive layer, are shown in Fig.11, 12, and 13 for the central
plate, the adhesive, and the outer plate, respectively. In
these figures, the stresses are shown as a function of the
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Figure 8 : Distribution of the normalized stress,σ11/P,
in the constituent layers - Example 2.

Figure 9 : Example 3 - An FR4 lap-joint in remote ten-
sion.

Figure 10 : BEM mesh for Example 3.

non-dimensional distance x1/L0, where L0 is the overall
length of the lap-joint as defined in Fig.9. Since the stress
component σ22 is negligible in all three layers, they are
not shown here. As can be seen from these figures, even
with a relatively coarse rough mesh, the BEM results are
still in very satisfactory agreement indeed with those ob-
tained from the more refined FEM analysis. It is perhaps
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Figure 11 : Distribution of the normalised stresses, σ11/P
and σ12/P, in the central plate- Example 3.
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Figure 12 : Distribution of the normalised stresses, σ11/P
and σ12/P, in the adhesive- Example 3.

worth noting that at the corner edges of the adhesive, the
stresses are singular; the discrepancies between the re-
sults from the two numerical methods which are more
evident there are thus to be expected.

6 Conclusions

The fundamental solutions to the governing equations
which are employed in the formulation of BEM analysis
are singular and they form the integrands of the boundary
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Figure 13 : Distributionof the normalised stresses, σ11/P
and σ12/P, in the outer plate - Example 3.

integral equation (BIE). Nearly singular integrals arise
when performing analysis of, for example, thin, slender
bodies, and accurate evaluations of these integrals pose
a challenge in conventional BEM analysis. In this pa-
per, the regularization of the integrands appearing in the
BIE for two-dimensional anisotropic elasticity has been
carried out using integration by parts. An expression for
the exact evaluation of the integral containing the traction
fundamental solution over a general element of n-order
interpolation of the variables has been derived. This has
allowed thin, slender, anisotropic, elastic bodies to be
modeled without the need for very refined meshes in the
BEM analysis. Three example problems involving thin,
layered materials have been presented in this paper; the
BEM results have been compared with the exact analyti-
cal solution for one and with those from the FEM analy-
sis of the same problems in the other two. It has been
shown that accurate BEM solutions were obtained for
these problems even with relatively coarse mesh designs.
Although it is not an aim of the present paper, the ap-
plication of the BEM code developed to the study of the
singular stresses at some points in the numerical exam-
ples shown would also be useful when the determination
of the damage initiation and its growth in the geometries
are of interest.
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