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Regularized Meshless Method for Solving Acoustic Eigenproblem with
Multiply-Connected Domain

K.H. Chen1, J.T. Chen2 and J.H. Kao3

Abstract: In this paper, we employ the regularized
meshless method (RMM) to search for eigenfrequency
of two-dimension acoustics with multiply-connected do-
main. The solution is represented by using the double
layer potentials. The source points can be located on the
physical boundary not alike method of fundamental so-
lutions (MFS) after using the proposed technique to reg-
ularize the singularity and hypersingularity of the ker-
nel functions. The troublesome singularity in the MFS
methods is desingularized and the diagonal terms of in-
fluence matrices are determined by employing the sub-
tracting and adding-back technique. Spurious eigenval-
ues are filtered out by using singular value decomposi-
tion (SVD) updating term technique. The accuracy and
stability of the RMM are verified through the numerical
experiments of the Dirichlet and Neumann problems for
domains with multiple holes. The method is found to per-
form pretty well in comparison with analytical solutions
and numerical results of boundary element method, finite
element method and the point-matching method.

keyword: Regularized meshless method, Hypersingu-
larity, Eigenvalue, Eigenmode, Method of fundamental
solutions, Acoustics.

1 Introduction

For a multiply-connected problem, spurious eigenso-
lutions always appear, even when the complex-valued
BEM is employed to solve the eigensolutions [Chen J.
T.; Lin J. H.; Kuo S. R.; Chyuan S. W. (2001), Kuo S.
R.; Yeih W.; Wu Y. C. (2000b)]. In Chen et al. [Chen J.
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T.; Lin J. H.; Kuo S. R.; Chyuan S. W. (2001)], the prob-
lem of spurious eigensolutions of the singular and hy-
persingular BEMs was studied by using circulants for an
annular case and treated by using the Burton & Miller ap-
proach in a discrete system. Chen et al. [Chen J. T.; Liu
L. W.; Chyuan S. W. (2004), Chen J. T.; Liu L. W.; Hong
H. K. (2003)] studied the spurious and true eigensolu-
tions for a multiply-connected problem by using BIE,
BEM and dual BEM. Also, spurious eigensolutions were
examined in the MFS for annular eigenproblems [Chen J.
T.; Chang M. H.; Chen K. H.; Lin S. R. (2002)]. In this
paper, we implement a novel meshless method to solve
multiply-connected eigenproblem. Spurious eigenvalues
are extracted out by employing SVD updating term tech-
nigue.

Several meshless methods have also been reported in the
literature, for example, the domain-based methods in-
cluding the reproducing kernel method [Liu W. K.; Jun
S.; Li S.; Adee J.; Belytschko T. (1995)], and boundary
type methods of collocation approach [Chen J. T.; Chang
M. H.; Chen K. H.; Lin S. R. (2002), Kang S. W.; Lee J.
M.; Kang Y. J. (1999)], the method of fundamental solu-
tion (MFS) approach [Fairweather G.; Karageorghis A.
(1998), Kupradze V. D.; Aleksidze M. A. (1964)], the
meshless local Petrov-Galerkin approach [Atluri S. N.;
Zhu T. L. (2000), Lin H.; Atluri S. N. (2000), Sladek J.;
Sladek V.; Atluri S. N. (2004)], the RBF approach [Chen
C. S.; Golberg M. A.; Hon Y. C. (1998), Chen J. T.; Chen
I. L.; Lee Y. T. (2005), Chen J. T.; Chang M. H.; Chen
K. H.; Lin S. R. (2002)] and the boundary knot method
(BKM) etc [Chen W.; Hon Y. C. (2003)]. Since neither
domain nor boundary meshing is required for the mesh-
less method, it is very attractive for engineers in model-
ing. Therefore, the meshless method becomes promising
in solving engineering problems.

In the MFS [Fairweather G.; Karageorghis A. (1998),
Kupradze V. D.; Aleksidze M. A. (1964)], the solution
is approximated by a set of fundamental solutions of
the governing equations which are expressed in terms of
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sources located outside the physical domain. The method
is relatively easy to implement. However, the MFS is still
not a popular method because of the debatable artificial
boundary (fictitious boundary) distance of source loca-
tion in numerical implementation especially for a com-
plicated geometry. The diagonal coefficients of influence
matrices are divergent in conventional case when the fic-
titious boundary approaches the physical boundary. In
spite of its gain of singularity free, the influence matri-
ces become ill-posed when the fictitious boundary is far
away from the real boundary. It results in an ill-posed
problem since the condition number for the influence ma-
trix becomes very large.

To distribute singularities on the real boundary,
imaginary-part kernel method was adopted [Chen J. T.;
Chang M. H.; Chen K. H.; Lin S. R. (2002)]. Later, Chen
independently employed nonsingular fundamental solu-
tion to solve PDE using the similar idea [Chen W.; Hon
Y. C. (2003)]. Later, Young et al. [Young D. L.; Chen K.
H.; Lee C. W. (2005), Young D. L.; Chen K. H.; Lee C.
W. (2005)] proposed the novel meshless method, namely
regularized meshless method (RMM), to deal with 2-D
problems including the Laplace problem and Helmholtz
problem of exterior acoustics.

The RMM can be seen as one kind of MFS. The method
eliminates the well-known drawback of equivocal arti-
ficial boundary. The subtracting and adding-back tech-
nique [Chen K. H.; Kao J. H.; Chen J. T.; Young D. L.;
Lu M. C. (2006), Young D. L.; Chen K. H.; Lee C. W.
(2005), Young D. L.; Chen K. H.; Lee C. W. (2005)] can
regularize the singularity and hypersingularity of the ker-
nel functions. This method can simultaneously distribute
the observation and source points on the real boundary
even using the singular kernels instead of non-singular
kernels [Chen W.; Hon Y. C. (2003)]. The diagonal
terms of the influence matrices can be extracted out by
using the proposed technique. However, previous paper
[Young D. L.; Chen K. H.; Lee C. W. (2005)] were lim-
ited to the exterior acoustic problem with a single radiator
or scatter.

Following the success of previous applications [Young
D. L.; Chen K. H.; Lee C. W. (2005)], we investigate
the eigenfrequency of interior acoustics with multiply-
connected domain by using the RMM in this study. The
rationale for choosing double-layer potential as radial ba-
sis function (RBF) instead of the single-layer potential in
the RMM is to take the advantage of the regularization

of the subtracting and adding-back technique. A general-
purpose program was developed to solve the multiply-
connected eigenproblems of Laplace operator. True and
spurious eigenvalues will be examined by using the tech-
nique of SVD updating term. Furthermore, the results
will be compared with analytical solutions and those of
BEM, FEM and PM to show the validity of our method.

2 Formulation

2.1 Governing equation and boundary conditions

Consider an eigenproblem with an acoustic pressure field
u(x), which satisfies the Helmholtz equation as follows:

(∇2 +k2)u(x) = 0, x ∈ D, (1)

subject to boundary conditions,

u(x) = u = 0, x ∈ Bu
p, p = 1, 2, 3, · · · , m (2)

t(x) = t = 0, x ∈ Bt
q, q = 1, 2, 3, · · · , m (3)

where ∇2 is the Laplacian operator, k is the wave number,
D is the domain of the problem, t(x) = ∂u(x)/∂nx, m is
the total number of boundaries including m-1 numbers of
inner boundaries and one outer boundary (the mth bound-
ary), Bu

p is the essential boundary (Dirichlet boundary) of
the pth boundary in which the potential is prescribed by
u and Bt

q is the natural boundary (Neumann boundary)
of the qth boundary in which the flux is prescribed by
t. Both Bu

p and Bt
q construct the whole boundary of the

domain D as shown in Fig. 1 (a).

2.2 Conventional method of fundamental solutions

By employing the RBF technique [Chen J. T.; Chen I. L.;
Lee Y. T. (2005), Cheng A. H. D. (2000)], the representa-
tion of the eigensolution for multiply-connected problem
as shown in Fig. 1 (a) can be approximated in terms of
the α j strengths of the singularities at s j as

u(xi) =
N

∑
j=1

T (s j,xi)α j

=
N1

∑
j=1

T (s j,xi)α j +
N1+N2

∑
j=N1+1

T (s j,xi)α j + · · ·

+
N

∑
j=N1+N2+···+Nm−1+1

T (s j,xi)α j, (4)
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Figure 1 : (a) The distribution of the source points and observation points and definitions of r,θ,ρ,φ by using the
conventional MFS for the multiply-connected problems; (b) The distribution of the source points and observation
points and definitions of r,θ,ρ,φ by using the RMM for the multiply-connected problems.

t(xi) =
N

∑
j=1

M(s j,xi)α j

=
N1

∑
j=1

M(s j,xi)α j +
N1+N2

∑
j=N1+1

M(s j,xi)α j + · · ·

+
N

∑
j=N1+N2+···+Nm−1+1

M(s j,xi)α j, (5)

where xi and s j represent the ith observation point and the
jth source point, respectively, α j are the jth unknown co-
efficients (strength of the singularity), N1,N2, · · · ,Nm−1

are the numbers of source points on m-1 numbers of in-
ner boundaries, respectively, Nm is the number of source
points on the outer boundary, while N is the total num-
bers of source points (N = N1 + N2 + · · · + Nm) and
M(s j,xi) = ∂T (s j,xi)/∂nxi. After matching boundary

conditions, the coefficients
{

α j
}N

j=1 are determined. The
distributions of source points and observation points are
shown in Fig. 1 (a) for the MFS. The chosen bases are the
double layer potentials [Young D. L.; Chen K. H.; Lee C.
W. (2005)] as

T (s j,xi) = − iπk
2

H(1)
1 (kri j)

((xi − s j),n j)
ri j

, (6)

M(s j,xi) =
iπk
2
{kH(1)

2 (kri j)
((xi − s j),n j)((xi − s j),ni)

r2
i j

−H(1)
1 (kri j)

nknk

ri j
}, (7)

where ( , ) is the inner product of two vectors, H(1)
2 (kri j)

is the second-order Hankel function of the first kind, ri j =∣∣s j −xi

∣∣, n j is the normal vector at s j, and ni is the normal
vector at xi.

It is noted that the double-layer potentials have both
singularity and hypersingularity when source and field
points coincide, which leads to difficulty in the conven-
tional MFS. The fictitious distance between the fictitious
(auxiliary) boundary (B′) and the physical boundary (B),
defined by d, shown in Fig. 1 (a) needs to be chosen de-
liberately. To overcome the above mentioned shortcom-
ing, s j is distributed on the real boundary, as shown in
Fig. 1 (b), by using the proposed regularized technique
as stated in the following Section 2.3. The rationale for
choosing double- layer potential as the form of RBFs in-
stead of the single-layer potential in the RMM is to take
the advantage of the regularization of the subtracting and
adding-back technique, so that no fictitious distance is
needed when evaluating the diagonal coefficients of in-
fluence matrices which will be explained in Section 2.4.
The single-layer potential can not be chosen because the
following Eqs. (13), (16), (19) and (22) in Section 2.3 are
not provided. If the single layer potential is used, the reg-
ularization of subtracting and adding-back technique can
not work [Young D. L.; Chen K. H.; Lee C. W. (2005)].

2.3 Regularized meshless method

When the collocation point xi approaches the source
point s j, the potentials in Eqs. (6) and (7) are approxi-
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mated by:

lim
xi→s j

T (s j,xi) = T (s j,xi) = −nkyk

r2
i j

, (8)

lim
xi→s j

M(s j,xi) = M(s j,xi)+
k2

4
i

= (
2((xi − s j),n j)((xi − s j),ni)

r4
i j

− (n j,ni)
r2

i j

)+
k2

4
i, (9)

by using the limiting form for small arguments and the
identities form the generalized function as shown below
[Abramowitz M.; Stegun I. A. (1972)]

lim
ri j→0

H(1)
1 (kri j) =

kri j

2
+

2
πkri j

i, (10)

lim
ri j→0

H(1)
2 (kri j) =

(kri j)2

8
+

4
π(kri j)2 i. (11)

The kernels in Eqs. (8) and (9) have the same singularity
order as the Laplace equation. Therefore, Eqs. (4) and
(5) for the multiply-connected domain problems can be
regularized by using the above mentioned regularization
of subtracting and adding-back technique [Chen K. H.;
Kao J. H.; Chen J. T.; Young D. L.; Lu M. C. (2006),
Young D. L.; Chen K. H.; Lee C. W. (2005), Young D.
L.; Chen K. H.; Lee C. W. (2005)] as follows:

u(xI
i) =

N1

∑
j=1

T (sI
j,xI

i )α j + · · ·

+
N1+···+Np

∑
j=N1+···+NP−1+1

T (sI
j,xI

i )α j + · · ·

+
N1+···+Nm−1

∑
j=N1+···+Nm−2+1

T (sI
j,xI

i)α j

+
N

∑
j=N1+···+Nm−1+1

T (sO
j ,xI

i )α j

−
N1+···+Np

∑
j=N1+···+NP−1+1

T (sI
j,xI

i )αi,

xI
i ∈ Bp, p = 1, 2, 3, · · · , m−1, (12)

where xI
i is located on the inner boundary (p =

1, 2, 3, · · · , m − 1) and the superscripts I and O

denote the inward and outward normal vectors, respec-
tively, and

N1+···+Np

∑
j=N1+···+Np−1+1

T (sI
j,xI

i ) = 0, xI
i ∈ Bp,

p = 1, 2, 3, · · · , m−1. (13)

Therefore, we can obtain

u(xI
i ) =

N1

∑
j=1

T (sI
j,xI

i )α j + · · ·+
i−1

∑
j=N1+···+Np−1+1

T (sI
j,xI

i )α j

+
N1+···+Np

∑
j=i+1

T (sI
j,xI

i)α j + · · ·

+
N1+···+Nm−1

∑
j=N1+···+Nm−2+1

T (sI
j,xI

i )α j

+
N

∑
j=N1+···+Nm−1+1

T (sO
j ,xI

i )α j

−
[

N1+···+Np

∑
j=N1+···+NP−1+1

T (sI
j,xI

i )−T (sI
i ,xI

i)

]
αi,

xI
i ∈ Bp, p = 1, 2, 3, · · · , m−1. (14)

When the observation point xO
i locates on the outer

boundary (p = m), Eq. (12) becomes

u(xO
i ) =

N1

∑
j=1

T (sI
j,xO

i )α j +
N1+N2

∑
j=N1+1

T (sI
j,xO

i )α j + · · ·

+
N1+···+Nm−1

∑
j=N1+···+Nm−2+1

T (sI
j,xO

i )α j

+
N

∑
j=N1+···+Nm−1+1

T (sO
j ,xO

i )α j

−
N

∑
j=N1+···+Nm−1+1

T (sI
j,xI

i )αi,

xO and I
i ∈ Bp, p = m, (15)

where

N

∑
j=N1+···+Nm−1+1

T (sI
j,xI

i )αi = 0, xI
i ∈ Bp, p = m. (16)
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Hence, we obtain

u(xO
i ) =

N1

∑
j=1

T (sI
j,xO

i )α j +
N1+N2

∑
j=N1+1

T (sI
j,xO

i )α j + · · ·

+
N1+···+Nm−1

∑
j=N1+···+Nm−2+1

T (sI
j,xO

i )α j

+
i−1

∑
j=N1+···+Nm−1+1

T (sO
j ,xO

i )α j +
N

∑
j=i+1

T (sO
j ,xO

i )α j

−
[

N

∑
j=N1+···+Nm−1+1

T (sI
j,xI

i )−T (sO
i ,xO

i )

]
αi,

xI and O
i ∈ Bp, p = m. (17)

Similarly, the boundary flux is obtained as

t(xI
i) =

N1

∑
j=1

M(sI
j,xI

i)α j + · · ·

+
N1+···+Np

∑
j=N1+···+Np−1+1

M(sI
j,xI

i)α j + · · ·

+
N1+···+Nm−1

∑
j=N1+···+Nm−2+1

M(sI
j,xI

i )α j

+
N

∑
j=N1+···+Nm−1+1

M(sO
j ,xI

i )α j

−
N1+···+Np

∑
j=N1+···+NP−1+1

M(sI
j,xI

i )αi,

xI
i ∈ Bp, p = 1, 2, 3, · · · , m−1. (18)

where

N1+···+Np

∑
j=N1+···+Np−1+1

M(sI
j,xI

i) = 0, xI
i ∈ Bp,

p = 1, 2, 3, · · · , m−1. (19)

Therefore, we obtain

t(xI
i ) =

N1

∑
j=1

M(sI
j,xI

i )α j + · · ·+
i−1

∑
j=N1+···+Np−1+1

M(sI
j,xI

i )α j

+
N1+···+Np

∑
j=i+1

M(sI
j,xI

i )α j + · · ·

+
N1+···+Nm−1

∑
j=N1+···+Nm−2+1

M(sI
j,xI

i )α j

+
N

∑
j=N1+···+Nm−1+1

M(sO
j ,xI

i )α j

−
[

N1+···+Np

∑
j=N1+···+NP−1+1

M(sI
j,xI

i)−M(sI
i ,xI

i )

]
αi,

xI
i ∈ Bp, p = 1, 2, 3, · · · , m−1. (20)

When the observation point locates on the outer bound-
ary (p = m), Eq. (18) yields

t(xO
i ) =

N1

∑
j=1

M(sI
j,xO

i )α j +
N1+N2

∑
j=N1+1

M(sI
j,xO

i )α j + · · ·

+
N1+···+Nm−1

∑
j=N1+···+Nm−2+1

M(sI
j,xO

i )α j

+
N

∑
j=N1+···+Nm−1+1

M(sO
j ,xO

i )α j

−
N

∑
j=N1+···+Nm−1+1

M(sI
j,xI

i )αi,

xO and I
i ∈ Bp, p = m. (21)

where

N

∑
j=N1+···+Nm−1+1

M(sI
j,xI

i ) = 0, xI
i ∈ Bp, p = m. (22)
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Hence, we obtain

t(xO
i ) =

N1

∑
j=1

M(sI
j,xO

i )α j +
N1+N2

∑
j=N1+1

M(sI
j,xO

i )α j + · · ·

+
N1+···+Nm−1

∑
j=N1+···+Nm−2+1

M(sI
j,xO

i )α j

+
i−1

∑
j=N1+···+Nm−1+1

M(sO
j ,xO

i )α j +
N

∑
j=i+1

M(sO
j ,xO

i )α j

−
[

N

∑
j=N1+···+Nm−1+1

M(sI
j,xI

i)−M(sO
i ,xO

i )

]
αi,

xO and I
i ∈ Bp, p = m. (23)

The detailed derivations of Eqs. (13), (16), (19) and (22)
can be found in the reference [Young D. L.; Chen K. H.;
Lee C. W. (2005)]. According to the dependence of nor-
mal vectors for inner and outer boundaries [Young D. L.;
Chen K. H.; Lee C. W. (2005)], their relationships are{

T (sI
j,xI

i ) = −T (sO
j ,xO

i ), i �= j
T (sI

j,xI
i ) = T (sO

j ,xO
i ), i = j

(24)

{
M(sI

j,xI
i) = M(sO

j ,xO
i ), i �= j

M(sI
j,xI

i) = M(sO
j ,xO

i ), i = j
(25)

where the left and right hand sides of the equal sign in
Eqs. (24) and (25) denote the kernels for observation and
source point with the inward and outward normal vectors,
respectively.

By using the proposed technique, the singular terms in
Eqs. (4) and (5) have been transformed into regular terms

(−
[

N1+N2+···+Np

∑
j=N1+N2+···+NP−1+1

T (sI
j,xI

i )−T (sI or O
i ,xI or O

i )

]

and −
[

N1+···+Np

∑
j=N1+···+Np−1+1

M(sI
j,xI

i )−M(sI or O
i ,xI or O

i )

]
)

in Eqs. (14), (17), (20) and (23), respectively,
where p = 1, 2, 3, · · · , m. The terms of

N1+···+Np

∑
j=N1+···+NP−1+1

T (sI
j,xI

i ) and
N1+···+Np

∑
j=N1+···+Np−1+1

M(sI
j,xI

i ) are

the adding-back terms and the terms of T (sI or O
i ,xI or O

i )
and M(sI or O

i ,xI or O
i ) are the subtracting terms in the

two brackets for regularization. After using the above
mentioned method of regularization of subtracting
and adding-back technique, we are able to remove the
singularity and hypersingularity of the kernel functions.

2.4 Derivation of influence matrices for arbitrary do-
main problems

By collocated N observation points to match with the
BCs from Eqs. (14) and (17) for the Dirichlet problem,
the linear algebraic equation is obtained

{u} = {0}= [T ]{α}⇔⎧⎨
⎩ 0

⎫⎬
⎭

N×1

=

⎡
⎢⎣

[T11]N1×N1
· · · [T1m]N1×Nm

...
. . .

...
[Tm1]Nm×N1

· · · [Tmm]Nm×Nm

⎤
⎥⎦

N×N⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎨
⎪⎩

α1
...
αN1

⎫⎪⎬
⎪⎭

...⎧⎪⎨
⎪⎩

αN1+N2+···+Nm−1+1
...
αN

⎫⎪⎬
⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

N×1

, (26)

where

[T11] =

⎡
⎢⎢⎢⎢⎣

−
[

N1

∑
j=1

T (sI
j,xI

1)−T (sI
1,xI

1)

]
· · ·

...
. . .

T (sI
1,xI

N1
) · · ·

· · · T (sI
N1

,xI
1)

. . .
...

· · · −
[

N1

∑
j=1

T (sI
j,xI

N1
)−T (sI

N1
,xI

N1
)

]
⎤
⎥⎥⎥⎥⎦

N1×N1

, (27)

[T1m] =

⎡
⎢⎣

T (sO
N1+···+Nm−1+1,xI

1) · · · T (sO
N ,xI

1)
...

. . .
...

T (sO
N1+···+Nm−1+1,xI

N1
) · · · T (sO

N ,xI
N1

⎤
⎥⎦

N1×Nm

,(28)

[Tm1] =

⎡
⎢⎣

T (sI
1,xO

N1+···+Nm−1+1)
...
T (sI

1,xO
N)

· · · T (sI
N1

,xO
N1+···+Nm−1+1)

. . .
...

· · · T (sI
N1

,xO
N)

⎤
⎥⎦

Nm×N1

, (29)
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[Tmm] =

⎡
⎢⎢⎢⎢⎢⎣

−
⎡
⎣ N

∑
j=N1+···+Nm−1+1

T (sI
j,xI

N1+···+Nm−1+1)

−T (sO
N1+···+Nm−1+1,xO

N1+···+Nm−1+1)

⎤
⎦

...
T (sO

N1+···+Nm−1+1,xO
N)

· · · T (sO
N ,xO

N1+···+Nm−1+1)
. . .

...

· · · −
[

N
∑

j=N1+···+Nm−1+1
T (sI

j,xI
N)−T (sO

N,xO
N)

]
⎤
⎥⎥⎥⎥⎦

Nm×Nm

.

(30)

For the Neumann problem, Eqs. (20) and (23) yield

{t} = {0}= [M]{α}⇔⎧⎨
⎩ 0

⎫⎬
⎭

N×1

=

⎡
⎢⎣

[M11]N1×N1
· · · [M1m]N1×Nm

...
. . .

...
[Mm1]Nm×N1

· · · [Mmm]Nm×Nm

⎤
⎥⎦

N×N⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎨
⎪⎩

α1
...
αN1

⎫⎪⎬
⎪⎭

...⎧⎪⎨
⎪⎩

αN1+N2+···+Nm−1+1
...
αN

⎫⎪⎬
⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

N×1

,

(31)

in which

[M11] =

⎡
⎢⎢⎢⎢⎣

−
[

N1

∑
j=1

M(sI
j,xI

1)−T (sI
1,xI

1)

]
· · ·

...
. . .

M(sI
1,xI

N1
) · · ·

· · · M(sI
N1

,xI
1)

. . .
...

· · · −
[

N1

∑
j=1

M(sI
j,xI

N1
)−M(sI

N1
,xI

N1
)

]
⎤
⎥⎥⎥⎥⎦

N1×N1

, (32)

[M1m] =

⎡
⎢⎣

M(sO
N1+···+Nm−1+1,xI

1)
...
M(sO

N1+···+Nm−1+1,xI
N1

)

· · · M(sO
N,xI

1)
. . .

...
· · · M(sO

N,xI
N1

⎤
⎥⎦

N1×Nm

, (33)

[Mm1] =

⎡
⎢⎣

M(sI
1,xO

N1+···+Nm−1+1) · · ·
...

. . .
M(sI

1,xO
N) · · ·

· · · M(sI
N1

,xO
N1+···+Nm−1+1)

. . .
...

· · · M(sI
N1

,xO
N)

⎤
⎥⎦

Nm×N1

, (34)

[Mmm] =

⎡
⎢⎢⎢⎢⎢⎣

−
⎡
⎣ N

∑
j=N1+···+Nm−1+1

M(sI
j,xI

N1+···+Nm−1+1)

−M(sO
N1+···+Nm−1+1,xO

N1+···+Nm−1+1)

⎤
⎦

...
M(sO

N1+···+Nm−1+1,xO
N)

· · · M(sO
N,xO

N1+···+Nm−1+1)
. . .

...

· · · −
[

N
∑

j=N1+···+Nm−1+1
M(sI

j,xI
N)−M(sO

N ,xO
N)

]
⎤
⎥⎥⎥⎥⎦

Nm×Nm

.

(35)

For the mixed-type problem, a linear combination of Eqs.
(26) and (31) is required to satisfy the mixed-type BCs.

2.5 Extraction of the eigenvalues

In order to sort out the eigenvalues, the SVD technique
is utilized [6]. We obtain Eqs. (26) and (31) by using
the double-layer potentials approach for the Dirichlet and
Neumann problems, respectively. Form Eqs. (26) and
(31), we can obtain eigenvalues by using the SVD tech-
nique as follows:

[T ] = [ΦT ] [ΣT ] [ΨT ]H , (36)

[M] = [ΦM] [ΣM] [ΨM]H , (37)

where the superscript H denotes the transpose and con-
jugate, ΣT and ΣM are diagonal matrices with diagonal
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elements of positive or zero singular values and [ΦT ],
[ΦM], [ΨT ] and [ΨM ] are the left and right unitary ma-
trices corresponding with [T ] and [M], respectively. Thus
the minimum singular value of [T ] or [M] as a function of
k can be utilized to detect the eigenvalue and eigenmodes
by using unitary vectors. However, spurious eigenvalues
are present for multiply-domain eigenproblem. Spurious
eigenvalue can be extracted out by SVD updating term
techniques as shown in the next section.

2.6 Treatments of spurious eigenvalues

In order to sort out the spurious eigenvalues, the SVD
updating term is utilized [Chen J. T.; Chen I. L.; Lee Y.
T. (2005), Chen J. T.; Lin J. H.; Kuo S. R.; Chyuan S. W.
(2001)]. We can combine Eqs. (26) and (31) by using the
SVD updating term as follows:

[P]{α} =
[

[T ]N×N
[M]N×N

]
{α} = {0} . (38)

The rank of the matrix [P] must be smaller than N to
have a spurious mode [Chen J. T.; Chen I. L.; Lee Y.
T. (2005)]. By using the SVD technique, the matrix in
Eq. (38) can be decomposed into

[P] =
[

ΦT 0
0 ΦM

][
ΣT 0
0 ΣM

][
ΨT 0
0 ΨM

]H

. (39)

Based on the equivalence between the SVD technique
and the Least-squares method, we extract out the spu-
rious eigenvalue by detecting zero singular values for [P]
matrix.

2.7 Flowchart of solution procedures

Following the section 2.3 to section 2.6, the flowchart of
solution procedures by using the RMM is shown in Fig.
2.

3 Numerical examples

In order to show the accuracy and validity of the pro-
posed method, four cases with simply-connected and
multiply-connected domain subjected to the Dirichlet
and Neumann BCs are considered.

Case 1: Square problem (simply-connected case)

The length of the square domain is L = 1.0. All the
boundary conditions are the Dirichlet type (u = 0) as

Figure 2 : Flowchart of solution procedures.

shown in Fig. 3. The analytical solution of true
eigenequations [Chen J. T.; Chang M. H.; Chen K. H.;
Lin S. R. (2002)] for this case is shown below:

kmn = π
√

(m/L)2 +(n/L)2, m,n = 1,2,3 · · · , (40)

The former five eigenvalues for the Dirichlet BC by using
our proposed method is shown in Fig. 4. Good agree-
ment is obtained after comparing with analytical solu-
tions. Since the domain is simply connected, no spuri-



Regularized Meshless Method for Solving Acoustic Eigenproblem with Multiply-Connected Domain 35

Figure 3 : Problem sketch for the case 1.

Figure 4 : The first minimum singular value versus wave
number.

ous eigenvalue is found as expected in simply-connected
case.

Case 2: Annular problem

The inner and outer radii of domain are r1 = 0.5 and
r2 = 2.0, respectively. All the boundary conditions are
the Dirichlet type (u = 0) and Neumann type (t = 0)
as shown in Fig. 5. The analytical solution of true
eigenequations [Chen J. T.; Liu L. W.; Hong H. K.
(2003)] for Dirichlet and Neumann types, respectively,

Figure 5 : Problem sketch for case 2.

is shown below:

Jn(kr1)Yn(kr2)−Jn(kr2)Yn(kr1) = 0, (Dirichlet) (41)

J′n(kr1)Y ′
n(kr2)−J′n(kr2)Y ′

n(kr1) = 0, (Neumann). (42)

The analytical solutions of spurious eigenequations
[Chen J. T.; Liu L. W.; Hong H. K. (2003)] for both types
are the same as:

J′n(kr1) = 0. (43)

The minimum singular value versus wave number by us-
ing our proposed method for the Dirichlet and Neumann
BCs are shown in Figs. 6 (a) and (b), respectively.

Good agreement is obtained after comparing with analyt-
ical solutions. The spurious eigenvalues for the Dirich-
let and Neumann problems are found out by employing
SVD updating term as shown in Fig. 6 (c).

From Fig. 6 (c), we find that one spurious eigenvalue ap-
pear at ks = 3.68 (J′11) in the range of 0 < k ≤ 5. This
spurious eigenvalue (J′11) is found to be the true eigen-
value of Neumann eigenproblem of interior circular with
radius 0.5.

Case 3: A circular domain with two equal holes

In this case, the eigenvalues were obtained by Chen and
his coworkers [Chen J. T.; Liu L. W.; Chyuan S. W.
(2004)]. The radius R of the outer boundary is 1.0 and
the eccentricity e and radius c of the inner circular bound-
aries are 0.5 and 0.3, respectively, as shown in Fig. 7.
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Figure 6 : (a) The result of RMM and analytical solution
for the Dirichlet BC; (b) The result of RMM and analyt-
ical solution for the Neumann BC.

Figure 7 : Problem sketch for case 3.

Table 1 : The former five eigenvalues for a circular do-
main with two equal holes by using different approaches.

All the boundary conditions are the Dirichlet type (u =
0). Numerical data of eigenvalues for RMM, BEM, FEM
and point-matching method (PM), are shown in Table 1.
In Table 1, the (S) and (A) symbols denote the symmetric
and antisymmetric with respect to the x and y axis, re-
spectively [Chen J. T.; Liu L. W.; Chyuan S. W. (2004)].
It is easy to find that the mode shapes of RMM, BEM
and PM approach match well. In this case, the first spuri-
ous eigenvalue ks = 6.14 is found by comparing with the
analytical solution J′11. From Table 1, it is found that the
former five eigenvalues match well with those of RMM
and BEM. On the other hand, the former five eigenmodes
are shown in Fig. 8, respectively, by using the RMM and
the BEM approach. Good agreement is made.

Case 4: A circular domain with four equal holes

In this case, the eigenvalues were obtained by Chen and
his coworkers [Chen J. T.; Liu L. W.; Chyuan S. W.
(2004)]. The radius R of outer boundary is 1.0 and the
eccentricity e and radius c of the inner circular bound-
aries are 0.5 and 0.1, respectively. Dirichlet problem is
considered as shown in Fig. 9.
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Figure 8 : Eigenmodes of the RMM and BEM for the
case 3.

Figure 9 : Problem sketch for case 4.

Table 2 : The former five eigenvalues for a circular do-
main with four equal holes by using different approaches.

The former five eigenvalues by using the RMM, BEM,
FEM and PM are listed in Table 2, where the results of
PM miss the eigenvalues of k2 and k3.

In this case, no spurious eigenvalue is found in the range
of 0 < k < 6 sine the first spurious eigenvalue is 18.412
(J′11). The eigenvalues of k2 and k3 are roots of multiplic-
ity two by finding the second successive zero singular
value in SVD when using RMM and BEM. Besides, the
symmetry of the fourth mode shape by using the PM is
quite different with the results of RMM and BEM. The
former five eigenmodes of the RMM and the BEM are
shown in Fig. 10. Agreeable results of the RMM are
obtained by comparing with the BEM data.

4 Conclusions

In this study, we used the RMM to solve the acous-
tic eigenproblems with multiply-connected domain sub-
jected to the Dirichlet and Neumann BCs, respectively.
Only the boundary nodes on the physical boundary are
required. The perplexing fictitious boundary in the MFS
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Figure 10 : Eigenmodes of the RMM and BEM for the
case 4.

is then circumvented. Despite the presence of singular-
ity and hypersingularity of double-layer potentials, the
finite values of the diagonal terms of the influence ma-
trix can be extracted out by employing subtracting and
add-back techniques. Four numerical experiments were
performed to demonstrate not only the occurring mecha-
nism of spurious eigenvalue due to inner boundaries but
also the suppression of the spurious eigenvalue by us-
ing SVD technique of updating term. The numerical re-
sults were obtained by applying the developed program
to problems of simply-connected and multiply-connected
domain subjected to Dirichlet and Neumann BCs. Nu-
merical results agreed very well with analytical solutions
and those of BEM, FEM and the PM.
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