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Multiscale Simulation of Nanoindentation Using the Generalized Interpolation
Material Point (GIMP) Method, Dislocation Dynamics (DD) and Molecular

Dynamics (MD)
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Abstract: A multiscale simulation technique coupling
three scales, namely, the molecular dynamics (MD) at the
atomistic scale, the discrete dislocations at the meso scale
and the generalized interpolation material point (GIMP)
method at the continuum scale is presented. Discrete
dislocations are first coupled with GIMP using the prin-
ciple of superposition (van der Giessen and Needleman
(1995)). A detection band seeded in the MD region is
used to pass the dislocations to and from the MD sim-
ulations (Shilkrot, Miller and Curtin (2004)). A com-
mon domain decomposition scheme for each of the three
scales was implemented for parallel processing. Simula-
tions of indentation were performed on the (111) plane
of Cu at 0 ˚ K using a cylindrical indenter. The effects
of indenter radius and indentation speed on the indenta-
tion load-depth curve and nucleation of dislocations were
investigated. For simulations at finite temperatures, spa-
tially averaged velocities were used to reduce atom vi-
brations in the transition region to achieve seamless cou-
pling. Simulations were also performed at different tem-
peratures using a wedge indenter.

keyword: Multiscale Simulation, GIMP, MD, Discrete
Dislocations, Nanoindentation, Coupling, Mesoplasticity

1 Introduction

Multiscale modeling has been receiving increasing atten-
tion in modeling material behavior in recent time due to
its unique capability to simulate and link physical events
occurring at various spatial and temporal scales. At the
atomic scale, simulation techniques based on atom mo-
tion, such as molecular dynamics (MD) and Monte Carlo
(MC) simulations can reveal the fundamental aspects of
material deformation provided the amount of computa-
tion is accommodated by the current computing power
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and appropriate interatomic potentials used (Raff, Mal-
she, Hagan, Doughan, Rockley, and Komanduri (2005)).
At larger scales, where atomistic simulation cannot be
readily applied due to excessive computing cost, tech-
niques such as discrete dislocation dynamics and crystal
plasticity (Liu, Wang, Yoshino, Roy, Lu and Komanduri
(2005); Hasebe (2006)) at the mesoscopic level and fi-
nite element analysis at the macroscopic level have been
employed. With appropriate coupling techniques, sim-
ulation at different scales can be bridged to obtain ac-
curate information in areas where atomistic resolution is
desired while allowing the dislocation and continuum de-
scriptions to model the material behaviors in areas farther
away without significant loss of accuracy.

Several techniques have been proposed for simulations
bridging two or more scales (Kohlhoff, Gumbsch and
Fischmeister (1991); Shilkrot, Miller and Curtin (2004);
Curtin and Miller (2003); Shiari, Miller and Curtin
(2005); Raffi-Tabar, Hua and Cross (1998); Tewary and
Read (2004); Shen and Atluri (2004 a, b, c); Shen and
Atluri (2005)). At each individual scale, simulation tech-
niques have been well established. However, the treat-
ment at the transition region, or the handshake region,
overlapped by the outer boundary of the atomistic region
and the inner boundary of the continuum region is where
the difficulties arise (Kohlhoff, Gumbsch and Fischmeis-
ter (1991); Shilkrot, Miller and Curtin (2004); Curtin and
Miller (2003); Shen and Atluri (2004a)). For example, in
multiscale simulation, the finite element method (FEM)
is often used at the continuum level. However, spurious
effects can occur when waves with the wavelength larger
than the element size are transmitted from the MD region
into the continuum region, and waves with wavelength
smaller than the element size are reflected back artifi-
cially (Raffi-Tabbar, Hua and Cross (1998)), causing ar-
tificial overheating in the MD region. Efforts were made
to minimize the wave reflection while enforcing the dis-
placement and force continuity, as well as energy conser-
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vation in the handshake region. Cai, de Koning, Bulatov
and Yip (2000) proposed the Green’s function method in
dynamic coupling between the two regions and this tech-
nique shows advantages in minimizing the wave reflec-
tion. Shen and Atluri (2004c) decomposed the atom dis-
placements into long and short wave-length components
in the equivalent continuum region to achieve seamless
multiscale simulation. Shen and Atluri (2005) further de-
veloped a tangent stiffness formulation for coupling be-
tween the meshless local Petrov-Galerkin (MLPG) and
MD, where the displacements of the nodes and atoms
are solved in one coupled set of linear equations so that
the internal forces are balanced at the transition region.
Another multi-scale framework merging two scales, the
microscale and the continuum scale, was developed to
create a hybrid elasto-viscoplastic simulation model cou-
pling discrete dislocation dynamics with finite element
analysis based on the principle of superposition (Zbib
and Diaz de la Rubia (2002)). At intermediate scale,
the dislocation modeling was used in bridging the con-
tinuum and atomistic simulations (Raffi-Tabar, Hua and
Cross (1998)). The involvement of dislocation dynam-
ics in connecting the atomistic and continuum scales en-
ables the model to handle plastic deformation through the
explicit motion of dislocation defects in the continuum
region. With this feature, the multiscale model is com-
pletely structured for applications, such as nanoindenta-
tion (Shiari, Miller and Curtin (2005)).

Plastic deformation in crystalline metals is the result of
motion of large number of dislocations. Various discrete
dislocation (DD) models have been developed in the
past two decades, and dislocations are usually described
as line singularities in an elastic medium (Amodeo and
Ghoniem (1990); Gulluoglu and Hartley (1992); Kubin
and Canova (1992); Fang and Dahl (1993); Groma and
Pawley (1993); van der Giessen and Needleman (1995);
Zbib, Rhee and Hirth (1998)). On the interactions of the
dislocations, the long-range forces are well-represented
by the linear elastic fields outside a dislocation core ra-
dius of about five Burgers vectors from a dislocation.
Within a distance of several Burgers vectors from the
core, the displacement field around the dislocation is
nonlinear and cannot be described accurately by linear
elasticity (Amodeo and Ghoniem (1990)). Instead, a
set of constitutive rules were used to represent the short
range interactions between dislocations. Recently, non-
linear deformation has been considered in coupling to

represent the physical phenomenon. The coupled atom-
istic/continuum discrete dislocation (CADD) method has
demonstrated its capability in detecting dislocations in
the atomistic region and converting the atomistic dislo-
cations into discrete dislocations in the continuum region
(Shilkrot, Miller and Curtin (2004)). A dynamic version
of the CADD method has been used to study the nanoin-
dentation process as a function of temperature and veloc-
ity of indentation (Shiari, Miller and Curtin (2005)).

While FEM has been developed as an appealing simula-
tion technique at the continuum scale, it is subjected to
some difficulties, including the complexity in mesh gen-
eration for computational bodies with complex geome-
tries and severe mesh distortion under large nonlinear
deformations. To overcome some of the limitations of
FEM, the material point method (MPM) (Sulsky, Zhou
and Schreyer (1995); Sulsky and Schreyer (1996)) was
introduced for dynamic simulations and the general in-
terpolation material point (GIMP) method (Bardenhagen
and Kober (2004)) was presented with improved simu-
lation stability. In these methods, material points that
can conform to the geometry complexity with ease are
used to discretize the computational body. Further, these
methods can avoid the mesh entanglement problem be-
cause of the use of Lagrangian description for material
points carrying physical quantities and the use of Eule-
rian description for convection of physical variables and
solution of field equations. Wang, Karuppiah, Lu, Roy,
and Komanduri (2005) developed an algorithm to use ir-
regular grid in MPM for adaptive mesh. Ma, Lu, and
Komanduri (2006) introduced the structured mesh refine-
ment technique in GIMP to model structures with stress
concentration effectively. Lu, Daphalapurkar, Wang,
Roy and Komanduri (2006) developed a method to seam-
lessly couple MD and MPM based on one-to-one cor-
resondence of the atoms and the material points in the
transition region. To overcome the stability problem of
MPM (Bardenhagen and Kober (2004)), a method for
multiscale simulation bridging two scales, namely, the
continuum scale using the GIMP method and the atom-
istic scale using MD was proposed and verified in 2D
using the multilevel refinement technique in a parallel
computing environment (Ma, Lu, Wang, Roy, Hornung,
Wissink and Komanduri (2005); Ma, Lu, Wang, Hor-
nung, Wissink and Komanduri (2006)). Coupling be-
tween GIMP and MD is achieved by using compatible
deformation, force, and energy fields in the transition re-
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gion between GIMP and MD. This coupling framework
can overcome some inherent limitations of FEM, while
maintaining the advantages of the multiscale modeling
with a scheme for time-saving in parallel computing.

In this paper, we present a multiscale simulation scheme,
encompassing GIMP at the continuum scale, MD at the
atomistic scale, and DD at the mesoscale to link GIMP
and MD. The technique has expanded the previous GIMP
and MD coupling method (Ma, Lu, Wang, Hornung,
Wissink and Komanduri (2006)) by introducing discrete
dislocations in the framework of coupling. Dislocation
accommodation and propagation mechanisms are intro-
duced by detecting dislocations through the MD simu-
lation in real time and then passing them through the
boundary. This facilitates in alleviating the artificial wave
propagation problem in direct GIMP and MD coupling.
The new method can handle larger numerical model
without drastically increasing the computational costs, as
the introduction of DD allows some regions previously
modeled by MD to be simulated by DD. DD can substi-
tute MD in simulating some of the critical areas without
significant loss of accuracy and the computation is more
economical for the same model.

2 Coupling scheme among GIMP, DD, and MD

2.1 Coupling of GIMP and MD

In this section, we briefly review an algorithm that cou-
ples the continuum scale with the atomistic scale directly.
At the continuum scale, the generalized interpolation ma-
terial point (GIMP) method is used. Fig. 1 illustrates the
coupling scheme in which the atomistic region is embed-
ded in the continuum region, as shown in Fig. 1 (a). A
transition region, where the communication between the
two regions takes place, is constructed by overlapping
the material points and the atoms by certain width and is
divided into three zones, namely, the inner zone, the “in-
communicado” zone, and the outer zone, as shown in Fig.
1 (b). A common background grid is used to carry out the
communication by interpolating the physical quantities,
such as the velocity and forces, back and forth between
the continuum region and the atomistic region. The ma-
terial points in the inner zone, shown in Fig. 1 (b), are
updated from atomistic simulation, and then join the rest
of the material points in the GIMP simulation. The ve-
locities of the atoms in the outer zone are updated by the
continuum region, and then boundary conditions are pro-

vided for the MD simulation.

Refinement algorithms in GIMP have been developed to
split the material points to the size of atoms at the tran-
sition region to achieve seamless coupling. However, if
dislocations cannot be modeled explicitly in the contin-
uum region, the atomistic region has to be large enough
so that the dislocations do not propagate to the transition
region to allow the continuum region to remain elastic.

2.2 Bridging the continuum and atomistic scales with
DD

In order to detect dislocations when they are generated
in the MD region and then pass them into the contin-
uum region, the method for dislocation detection and
passing proposed by Shilkrot, Miller and Curtin (2004)
was implemented into the GIMP and MD coupling. Sev-
eral layers of atoms at the border of the MD region and
the continuum region form the detection band elements
which are triangular in shape. During deformation, the
Lagrangian strain tensor, E, of an element in the detec-
tion band is given by (Shilkrot, Miller and Curtin (2004))

E =
1
2
[FT F− I] (1)

where I is the second order identity tensor, F is the de-
formation gradient tensor and it is decomposed into

F = FeFp. (2)

In Eq. (2), Fe is related to the lattice stretching while
Fpcorresponds to the plastic shearing of the slip systems
of the crystal. For the case of ideal slip deformation, Fe =
I. Fpcan be represented by

Fp = R
(

I+
b⊗m

d

)
, (3)

where R is the lattice rotation and d is the interplanar
distance, b and m are the Burgers vector and the normal
vector of the slip plane, respectively. Substituting Eq. (3)
into Eq.(1) , we get the plastic slip strain tensor as

Ep =
1
2
[(Fp)T Fp − I] =

(b⊗m)sym

d
+

(m⊗b)(b⊗m)
2d2

(4)

For each of the detection band elements, both the actual
strain E and the plastic slip strain Ep are computed af-
ter the positions of the atoms are updated at each com-
putational step. The norm L2 represents the difference
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Figure 1 : Illustration of coupled GIMP and MD simulations. The circles represent atoms and squares (smaller than
physical size) material points. The material points connect to each other without a gap to represent the continuum

between the actual strain and the plastic slip strain.

L2 =
√

(E−Ep
i ) : (E−Ep

i ) (5)

If the zero Burgers vector (b = 0) minimizes L2, no dislo-
cations are detected. Otherwise, the core of the detected
dislocation is assigned to the centroid of the detection
band element. For 2D triangular lattices, E can be com-
puted from constant strain triangles as in finite element
method (FEM).

Once the dislocations reside in the continuum region, the
field variables of the body with the instantaneous disloca-
tion distribution can be solved by the discrete dislocation
technique (Kubin and Canova (1992); van der Giessen
and Needleman (1995)). Each dislocation i is character-
ized by its Burgers vector bi and the unit normal vector
mi of its slip plane. The current state of the body in terms
of the displacement, strain, and stress fields is computed
as the superposition of two fields,

u = ũ+ û, ε = ε̃+ ε̂, σ = σ̃+ σ̂ (6)

where the (∼) fields are the fields associated with N dis-
locations in their current configuration but in an infinite
homogeneous medium. The complimentary (∧) fields
are used to enforce the correct boundary conditions. The
solution for σ̃, ε̃, and ũ is the superposition of the fields
of individual dislocations:

σ̃ =
N

∑
i=1

σ̃i, ε̃ =
N

∑
i=1

ε̃i, ũ =
N

∑
i=1

ũi (7)

where the analytical solutions σ̃i, ε̃i, and ũi of the indi-
vidual field are available for straight dislocations in 2D
stress state in an infinitely large isotropic material (Hirth
and Lothe (1982)).

On the update of dislocations, the Peach-Koehler (P-K)
force pi is the driving force for the evolution in the dislo-
cation topology and it is computed by

pi = (mi)T · (σ̂+
N

∑
j �=i

σ̃ j) ·bi. (8)

Using the linear drag relation, the magnitude of the glide
velocity of dislocation i, vi is computed from the Peach-
Koehler force through

pi = Bvi, (9)

where B is the drag coefficient. Then each dislocation i
is displaced by viΔt, followed by the determination of the
stress and strain state for the updated dislocation struc-
ture.

2.3 Parallel processing

The parallel processing scheme for coupling GIMP with
MD has been developed using domain decomposition for
both MD and GIMP (Ma, Lu, Wang, Hornung, Wissink
and Komanduri (2006)). It is noted that only the finest
level of GIMP is coupled with MD. The MD code used
in this paper is the LAMMPS code (Plimpton (1995))
developed at the Sandia National Laboratories. For all
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Figure 2 : Illustration of the domain decomposition and
refinement for the coupling simulation of 2D indentation
using GIMP, DD and MD

the coarser levels, pure GIMP calculation is carried out.
When the discrete dislocation is incorporated into the
coupling algorithm, care must be taken in the multi pro-
cessor distributed processing. The DD algorithm shows
that the amount of computation related to DD is propor-
tional to N 2, where N is the number of dislocations.

In this investigation, the computational cost of DD is
much less than that of MD and GIMP. Hence, we still
adopt the same physical domain decomposition as in
GIMP for DD. Fig. 2 is a schematic of an indentation
problem used in the coupling simulation. The area im-
mediately beneath the indenter is modeled by MD. Three
levels of successive refinements in GIMP are shown
with the finest level decomposed into six rectangular
patches. Other levels are also divided into six patches
and these patches are not shown. To reduce data trans-
ferring among processors in coupling, the MD region is
decomposed into six rectangular regions. Each MD re-
gion in coupling is assigned to a patch residing in the
same processor as used for the simulation of a GIMP re-
gion. Thus, each processor handles both MD and GIMP
regions in coupling. Although using the same domain
decomposition for MD and GIMP in the finest level does
not produce the best load balance among the processors,
this approach is simple to implement and effective in the
communication between GIMP and MD in the transition
region. This is because material points and atoms in ex-
change of information are stored and processed by the
same processor. Hence, no inter-processor communica-
tion is necessary.

Update the velocities of the
boundary atoms  

One regular MD step, but do not
update the velocities of the boundary
atoms  

Update the material particles inside
MD region and detect new
dislocations

No

Yes, next increment 

Communicate and update DD in
each node 

Recursively advance each GIMP
patch in each level; in the
meanwhile, update DD; but do not
update the material particles inside
the MD region 

N times? 

Figure 3 : Flow chart of the coupling algorithm for each
increment

When discrete dislocations, shown as small squares in
Fig. 2, are introduced into the model, we keep the do-
main decomposition intact. Fig. 3 shows the overall
flowchart of the coupling algorithm incorporating GIMP,
DD and MD. Each DD is updated within each patch
where it resides because the local continuum stress is
needed to compute the Peach-Koehler force applied on
it. Because the long-range forces from all other DDs
have to be computed, i.e., loop all the DDs, we store the
updated information of all the DDs’ in each processor.
Hence, inter-processor communication can be avoided.
The cost is that after each step, i.e., after all patches in
each level and the DDs are updated, the updated DD in-
formation has to be transmitted to other processors. To
achieve this, firstly, each processor sends the local up-
dated DD information, including newly created DDs, to
one master node and the master node assembles all the
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Figure 4 : 2D modeling of an indentation problem with a cylindrical indenter

updated dislocations. Next, the master node broadcasts
all the dislocation information to all other processors. It
may be noted that each dislocation carries a position and
a Burgers vector (four double variables in 2D) and the
communication overhead is usually negligible compared
to GIMP and MD computations.

2.4 Contact solver for MD

The contact algorithm to determine the contact force for
each atom that penetrates into the rigid indenter is more
straightforward at the atomistic scale than at the contin-
uum scale. A repulsive potential between the indenter
and the atoms in contact can be defined as a function of
the penetration depth in the form

Φ = K · ||d||n (10)

where d is the shortest penetration depth vector measured
from the atom to the indenter surface, K is a constant that
controls the strength of the repulsive potential. The expo-
nent n was chosen as 3 in Kelchner, Plimpton and Hamil-
ton (1998) and 2 in Miller, Shilkrot and Curtin (2004). In
this approach, the magnitude of K is usually determined
numerically to achieve both simulation stability and con-
tact compatibility. Eventually, a range of magnitude can
be used for K and convergence becomes the decisive is-
sue. Extra numerical experiments have to be performed
to narrow the range of K.

In our investigations, we avoid using the above approach
by explicitly solving for the contact force on each atom
in contact by considering the penetration depth and its
velocity. The penetration depth d can be first determined
from the atom location and velocity, if no contact is as-

sumed. If there is penetration, it must be eliminated dur-
ing the time increment, Δt, from d = 1

2aΔt2, where a is
the acceleration. One can determine the contact force
Fc = ma · a = 2ma

d
Δt2 , where ma is the mass of the atom.

The contact force can then be decomposed into three
components in the Cartesian coordinates based on the lo-
cal outward normal vector of the indenter surface. Fric-
tion laws can be added as appropriate, to the force based
contact algorithm.

3 Simulation of nanoindentation

3.1 Cylindrical indenter

When a long rigid cylindrical indenter is indented into
a workpiece, the middle section can be assumed to be in
the plane-strain condition. In this investigation, as shown
in Fig. 4, the indentations were performed along the[
112

]
direction on the FCC copper modeled by the em-

bedded atom method (EAM) potential (Daw and Baskes
(1984)) and this problem was modeled as a 2D indenta-
tion on the (111) plane. The drag coefficient B in Eq. (9)
for copper is taken at 1.5 × 10–4 Pa·s (Fusenig and Nem-
bach (1975)). The simulations were conducted at 0 ˚ K.

Fig. 5 (a) shows a typical load-depth curve from simula-
tion. The initial loading curve is relatively smooth and no
dislocations were observed in the atomistic region. The
atom distribution corresponding to point A is plotted in
Fig. 5 (b). At the first drop, point B in the load-depth
curve, dislocation twinning below the indenter was ob-
served, as in Fig. 5 (c). The first dislocation moves along
the

[
011

]
direction. The other dislocation is nucleated

immediately after the first one and it moves along
[
110

]
(negative X) direction. These two dislocations advanced
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Figure 5 : (a) Load-depth curve using a cylindrical indenter; (b)-(e) Workpiece showing the indent and generation
of dislocations at different stage of indentation

in a straight path as the indenter continues to indent into
the workpiece. The workpiece stiffens until the next dis-
location is generated at points C and D with these states
shown in Fig. 5 (d) and (e). The next dislocation is in
the

[
101

]
direction, as shown in Fig. 5 (e). All subse-

quent dislocations are in these three directions and the

workpiece softens when each dislocation was generated
below the indenter. The initial portion of the unloading
in the load-depth curve is related to the velocity of the
indenter as it will be discussed later. In the constant un-
loading portion, the load-depth curve is parallel to the
elastic loading part.
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Figure 6 : Comparison of load-depth curves using different contact algorithms
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Figure 7 : Effect of the indentation velocity on the load-depth curve

The next numerical example is to validate the force-based
contact algorithm by comparing with the results from
the repulsive potential based contact algorithm (Kelch-
ner, Plimpton and Hamilton (1998)). The velocity his-
tory of the rigid indenter is shown in Fig. 6 (a). The

load-depth curves from three simulations with different
contact conditions are shown in Fig. 6 (b), (c), and (d),
respectively. All three simulations give similar magni-
tudes of load and dislocation patterns. When the repul-
sive contact potential is used, the loading curve appears
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Figure 8 : Effect of the indenter size on the load-depth
curve

to be smoother for K = 500 than for K = 1000, where K
is defined in Eq. (10). The initial portions of the unload-
ing curves are quite different when K is different, as can
be seen in Fig. 6 (c) and (d). For this reason, the con-
tact force based algorithm was used in subsequent simu-
lations.

To investigate the effect of indentation velocity, simula-
tions were performed with several indentation velocities
with a fixed indenter radius. The overall workpiece size
is also fixed at 86.8 nm × 57.8 nm. The size of the MD
region is 28.9 nm × 21.7 nm. The MD time step is 2 fs
(1 fs = 10−15 s) and the temporal refinement factor is 5,
i.e., the GIMP time step is 10 fs. First, an indenter with
a radius of 3.6 nm is used in the simulations at three in-
dentation velocities, 7.2 m/s, 36 m/s and 72 m/s. Fig. 7
(a) shows the indentation load-depth curves at different
velocities of indentation. It can be seen that the indenta-
tion load is higher if the indentation velocity is higher at
a fixed depth of indentation. Another observation is that
the indentation depth at the onset of the first slippage in
the workpiece is larger, if the indentation speed is lower.
Under this condition, the deformation can propagate fur-
ther so that there is less strain gradient in the workpiece.
Same phenomena are observed for these three indenta-
tion velocities when the indenter radius is changed to 7.2
nm. However, if the indentation speed is further reduced
to 1.8 m/s, the load-depth curve is almost identical to the
one with the indentation speed of 7.2 m/s, as shown in
Fig. 7 (b). This indicates a quasi-static condition has
been reached and the load-depth curve is converged.
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Figure 9 : Load-depth curves when the ratio of the work-
piece size and to the indenter radius is a constant

Fig. 8 shows three load-depth curves for three different
indenter radii when the indentation speed was fixed at 72
m/s. Size of the workpiece is the same as the one used in
Fig. 7. In this case, there is a strong dependence on the
indenter size. The slope of the load-depth curves in the
elastic region increases with indenter radius.

In the theory of elasticity, assuming that the workpiece
is an infinite half space, the relation between indentation
load P, depth h, and indenter radius R is given as (Glad-
well (1980))

P = C

(
h− 1

2
h2

R

)
, (11)

where C is a constant depending on the material proper-
ties only. It can be seen that when the indentation depth
h is much smaller than the indenter radius R, the indenta-
tion load P is linearly dependent on h. To investigate the
effect of the workpiece boundaries on the simulation, the
indenter radius and the workpiece size are changed si-
multaneously so that their ratio is a constant. Under this
condition, each simulation would experience the same
amount of boundary effect relatively. Fig. 9 shows the
results for three indenter radii, namely, 3.6 nm, 7.2 nm,
and 14.4 nm when the indentation velocity is fixed at 72
m/s. It can be seen that the slopes for the three curves are
the same before slippage occurs, which is consistent with
the predictions in elasticity.

To further verify the coupling model, pure MD simula-
tion was performed with an indenter radius of 7.2 nm.
From the load-depth curves in Fig. 10, a reasonably good
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Figure 10 : Comparison of the load-depth curves be-
tween the coupled simulations and purely MD simula-
tions

agreement between the coupling and the purely MD sim-
ulation can be seen.

As discussed in previous sections, the load-depth curves
drop slightly when the dislocations are generated below
the indenter. Despite different indenter radii and inden-
tation velocities used, the slip patterns are similar in the
model. Fig. 11 shows the overall model in the simulation
with three slip bands in the MD region. Distributions
of the normal stress in the Y-direction, σY in the GIMP
region and locations of the discrete dislocations (repre-
sented by the solid triangles) are also shown in Fig. 11.

3.2 Wedge indenter

The force based contact algorithm can be applied to
wedge indenters by computing the penetration depth d
based on the outward normal vectors of the wedge sur-
faces. A wedge indenter with an included tip angle of
120 degrees was used in the simulation. Fig. 12 (b)-(f)
shows the slip patterns in the MD region at various inden-
tation depths. Comparing with Fig. 5, slip occurs shortly
after the wedge indenter touches the workpiece. The first
slippage was initiated at a depth of ∼4 Å. More slippage
was developed subsequently along the three possible slip
directions. Significant amount of slip was developed on
the contact surface, resulting in the pile-ups of the mate-
rial, which is different for the case of cylindrical indenter.
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Figure 11 : Slip bands, discrete dislocations and stress
distributions in the cylindrical indentation model

3.3 Finite temperature

In conducting multiscale simulations at finite temper-
atures, thermal vibrations of atoms can cause adverse
effects in coupling because vibrations can generate in-
stantaneous oscillations in the magnitude of strain and
stress. Thermostat algorithms have been proposed in the
literature (Bernstein, Aziz and Kaxiras (2000); Plimp-
ton (2005)) to control thermal vibrations by removing
some kinetic energy in the MD system. For example,
the atom velocities can be rescaled to keep the instan-
taneous temperature at a constant (Bernstein, Aziz and
Kaxiras (2000); Plimpton (2005)), or a damping factor
can be used to dissipate extra kinetic energy (Jang and
Voth (1997); Shiari, Miller and Curtin (2005)). Since the
instantaneous temperature is proportional to the kinetic
energy, and the MD region is relatively small in coupling,
the temperature can increase quickly in the simulation of
indentation when the indentation velocity is high. Fig. 13
shows the temperature change during simulation of 2337
Cu atoms using a wedge indenter at three indentation ve-
locities. At the indentation velocity of 360 m/s, large
portion of atoms has started to translate at the same sim-
ulation time, resulting in higher instantaneous tempera-
tures. Shiari, Miller and Curtin (2005) reported a similar
phenomenon with a cylindrical indenter at an indentation
speed of 3000 m/s.

The atom velocities are composed of two parts, one rep-
resenting the thermal vibration and the other represent-
ing deformation and translation. Thermostat algorithms
do not distinguish between these two. Ideally, the de-
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Figure 12 : (a) Load-depth curve using a wedge indenter; (b)-(f) Workpiece showing the indent and generation of
dislocations at different stage of indentation

formation part of the velocity should not be altered in
the coupling simulation in order to maintain displace-
ment compatibility with the continuum region. Filter-
ing algorithms, such as moving time average and Fourier
transform, can be used to separate the thermal vibration
from deformation/translational motion in the frequency
domain. However, these algorithms require storage of
history data for each atom and they are very computa-
tionally intensive for coupling simulations.

In this investigation, in order to maintain displacement
compatibility between the continuum and atomistic re-
gions, thermostat algorithms are not used. To minimize
the effect due to atomic vibrations in the transition re-
gion, a spatial average velocity of each atom in the inner

zone is used. The average velocity is computed with the
first nearest neighboring atoms. For the 2D triangular lat-
tice, each atom has six first nearest neighboring atoms. In
addition, the process of interpolating atom velocities to
the background grid can reduce the atom vibrations be-
cause each background node receives interpolation from
multiple atoms. This technique does not allow heat ex-
change between MD and GIMP and it is only suitable for
problems that do not involve much temperature change
in nature, such as the indentation problem.

Fig. 14 shows the load-depth curves at different tem-
peratures. The indentation velocity was chosen as 36
m/s because the instantaneous temperature does not vary
much at this speed as can be seen in Fig. 13. The
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Figure 13 : Instantaneous temperatures as functions of
time at different indentation velocities

load-depth curves at the four initial temperatures over-
lap each other. The onset of dislocations appears to be
independent of temperature when a wedge indenter is
used. Shiari, Miller and Curtin (2005) reported strong
dependence of the onset of dislocations on the tempera-
ture when a cylindrical indenter was used. The coupled
simulations in this work show a similar temperature de-
pendence in slip patterns. Fig. 15 shows the slip patterns
at a simulation time of 50 ps and an indentation depth of
18 Å at four temperatures. The slip patterns are different
at different temperatures even when the applied indenta-
tion load is nearly identical.

4 Conclusions

A multiscale simulation algorithm coupling molecular
dynamics (MD) at the atomistic scale, discrete disloca-
tion (DD) at the meso scale and generalized interpola-
tion material point (GIMP) method at the macro scale is
developed for material simulations based on prior cou-
pling method between MD and GIMP (Ma, Lu, Wang,
Hornung, Wissink and Komanduri (2006)). Force and
displacement compatibilities are ensured at the transition
region. 2D indentation problems were investigated using
the multiscale simulation algorithm using a cylindrical
indenter and a wedge indenter.

1. Discrete dislocations are coupled with GIMP based
on the principle of superposition proposed by van
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Figure 14 : Load-depth curves at different temperatures
using a wedge indenter

der Giessen and Needleman (1995). The total dis-
placement and traction generated by the disloca-
tions and GIMP on the boundary equal to the ex-
ternally applied displacement and traction, respec-
tively. Discrete dislocations are coupled with MD
using the detection algorithm proposed by Shilkrot,
Miller and Curtin (2004).

2. A coupling algorithm incorporating GIMP, DD, and
MD is developed with parallel processing using a
common domain decomposition scheme. In parallel
processing, each processor updates all the material
points, discrete dislocations, and atoms in its sub-
domain.

3. The coupling algorithm is used to simulate the in-
dentation on Cu (111) plane with a cylindrical in-
denter and a wedge indenter. Initially, dislocation
nucleation and subsequent propagation of disloca-
tions are observed for the indentation simulation us-
ing both indenters.

4. For simulations with a cylindrical indenter, the ef-
fects of indenter radius, indentation speed, and tem-
perature on the dislocation patterns and the load-
depth curve are investigated. The effect of the size
of the workpiece on the load-depth curve was also
studied. Dislocation twinning that occurs below the
indenter can be related to the drops in the load-depth
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Figure 15 : Slip patterns at different temperatures when the indentation depth is 18 Å

curve, i.e., the generation of a new dislocation below
the indenter causes an instant drop in the load-depth
curve. Slip bands in three directions are developed
in the MD region due to indentation and they are
independent of indenter radius and velocities.

5. Spatial averaging technique is used to maintain dis-
placement compatibility at finite temperatures. In
the transition region, the atom velocity is averaged
with six nearest neighboring atoms in 2D for cou-
pling to reduce the adverse effect of thermal vibra-
tions on the continuum region. This technique is ap-
propriate for simulations of problems under isother-
mal conditions, such as nanoindentation.
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