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Meshless Local Petrov-Galerkin Method for Linear Coupled Thermoelastic
Analysis

J. Sladek1, V. Sladek1, Ch. Zhang2, C.L. Tan3

Abstract: The Meshless Local Petrov-Galerkin
(MLPG) method for linear transient coupled thermoelas-
tic analysis is presented. Orthotropic material properties
are considered here. A Heaviside step function as the
test functions is applied in the weak-form to derive
local integral equations for solving two-dimensional
(2-D) problems. In transient coupled thermoelasticity
an inertial term appears in the equations of motion.
The second governing equation derived from the energy
balance in coupled thermoelasticity has a diffusive
character. To eliminate the time-dependence in these
equations, the Laplace-transform technique is applied
to both of them. Local integral equations are written on
small sub-domains with a circular shape. They surround
nodal points which are distributed over the analyzed
domain. The spatial variation of the displacements and
temperature are approximated by the Moving Least-
Squares (MLS) scheme. After performing the spatial
integrations, a system of linear algebraic equations
for unknown nodal values is obtained. The boundary
conditions on the global boundary are satisfied by the
collocation of the MLS-approximation expressions for
the displacements and temperature at the boundary nodal
points. The Stehfest’s inversion method is then applied
to obtain the final time-dependent solutions.

keyword: Transient coupled thermoelasticity, Or-
thotropic materials, Moving least-squares interpolation,
2-D problems, Laplace-transform, Stehfest’s inversion

1 Indroduction

Dynamic thermoelasticity is relevant for many engineer-
ing problems since thermal stresses play an important
role in the integrity of structures. In the case of tra-
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ditional materials thermal effects on a body are limited
to strains due to the temperature gradient. For sophis-
ticated materials such as high performance composites
thermal effects can include heat production due to the
strain rate, i.e. the thermoelastic dissipation. Several
computational methods have been proposed over the past
years to analyze thermoelasticity problems. Many of
them have been directed to uncoupled problems in steady
or transient heat conduction states. Few investigations
have been done successfully for coupled thermoelastic-
ity. Domain-based approaches, particularly those in-
volving the finite element method (FEM), have been de-
veloped and applied to thermoelasticity [Keramidas and
Ting (1976); Prevost and Tao (1983); Cannarozzi and
Ubertini (2001)]. The boundary element method (BEM),
recognized since many years as a powerful tool in numer-
ical analysis, was applied for the first time to transient
uncoupled thermoelasticity by Rizzo and Shippy (1977).
Shiah and Tan (1999) applied the BEM for 2-D uncou-
pled thermoelasticity in anisotropic solids. Thermome-
chanical crack growth has been investigated by Prasad
(1998) using a dual BEM. Particular integral formula-
tions for 2-D and 3-D transient uncoupled thermoelas-
tic analyses have been presented by Park and Banerjee
(2002). The BEM has been successfully applied also
to coupled thermoelastic problems [Sladek and Sladek
(1984); Dargush and Banerjee (1991); Chen and Dar-
gush (1995); Suh and Tosaka (1989); Hosseini-Tehrani
and Eslami (2000)]. Dual reciprocity BEM has been pre-
sented by Gaul et al. (2003), and Kögl and Gaul (2000,
2003).

Recently developed sophisticated materials with ther-
moelastic dissipation are composites with anisotropic
properties. Governing equations for coupled thermal and
mechanical fields with anisotropic material properties are
much more complex than those in uncoupled thermoe-
lasticity for isotropic materials. Thus, efficient com-
putational methods are required to solve the boundary
or the initial-boundary value thermoelastic problems for
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anisotropic solids. In recent years, an increasing atten-
tion has been paid to the numerical analysis of coupled
thermoelasticity problems. In spite of the great success
of the FEM and BEM as effective numerical tools for
the solution of boundary or initial-boundary value prob-
lems in elasticity, there is still a growing interest in the
development of new advanced methods. In particular,
meshless formulations are becoming popular due to their
high adaptivity and low costs to prepare input and out-
put data for numerical analyses. A variety of meshless
methods has been proposed so far and some of them also
applied to transient heat conduction problems [Batra et
al. (2003); Sladek et al. (2003a,b, 2004a, 2006); Qian
and Batra (2004); Wang et al. (2006)] or to thermoelastic
problems [Sladek et al. (2001); Bobaru and Mukherjee
(2003); Qian and Batra (2004)].

The meshless method can be obtained from a weak-form
formulation on either the global domain or a set of lo-
cal subdomains. In the global formulation background
cells are required for the integration of the weak-form.
In methods based on local weak-form formulation, no
background cells are required and therefore they are of-
ten referred to as truly meshless methods. The meshless
local Petrov-Galerkin (MLPG) method is a fundamental
base for the derivation of many meshless formulations,
since trial and test functions can be chosen from differ-
ent functional spaces. By using the fundamental solution
as the test function, accurate numerical results can be ob-
tained, which were reported in previous papers for 2-D
transient heat conduction problems in isotropic, homoge-
neous or continuously nonhomogeneous solids [Sladek
et al. (2003a,b)], elasticity under static and dynamic
loads [Atluri et al. (2000, 2003); Sellountos and Polyzos
(2003); Sellountos et al. (2005)], and for 3-D problems
in homogeneous and isotropic solids under a static or a
dynamic load [Han and Atluri (2004a,b)].

In this paper, the MLPG method with a Heaviside step
function as the test functions [Atluri et al. (2003);
Atluri (2004); Sladek et al. (2004a,b)] is applied to
solve two-dimensional transient coupled thermoelasticity
problems. An inertial term exists in the equations of mo-
tion for transient thermoelasticity. The second govern-
ing equation derived from the energy balance has a diffu-
sive character. To eliminate the time-dependences in both
governing partial differential equations, the Laplace-
transform technique is applied such that they are satisfied
in the Laplace-transformed domain in a weak-form on

small fictitious subdomains. If the shape of subdomains
has a simple form, numerical integrations over them can
be easily carried out. Nodal points are introduced and
distributed over the analyzed domain and each of them
is surrounded by a small circle for simplicity, but with-
out loss of generality. The integral equations have a very
simple nonsingular form. The spatial variations of the
displacements and temperature are approximated by the
Moving Least-Squares (MLS) scheme [Belytschko et al.
(1996); Zhu et al. (1998)]. After performing the spa-
tial integrations, a system of linear algebraic equations
for unknown nodal values is obtained. The boundary
conditions on the global boundary are satisfied by the
collocation of the MLS-approximation expressions for
the displacements and temperature at the boundary nodal
points. To obtain the final time-dependent solutions, the
Stehfest’s inversion method [Stehfest (1970)] is applied.
The accuracy and the efficiency of the proposed MLPG
method are verified by numerical examples.

2 The MLPG in transient coupled thermoelasticity

A homogeneous, orthotropic and linear elastic solid is
considered. The equilibrium and the thermal balance
equations in transient coupled thermoelasticity [Nowacki
(1986)] can be written as

σi j, j(x,τ)−ρüi(x,τ)+Xi(x,τ) = 0, (1)

[ki j(x)θ, j(x,τ)],i−ρcθ̇(x,τ)−γi jθ0u̇i, j(x,τ)+Q(x,τ) = 0,

(2)

where σi j , τ, θ ,θ0 ,ui ,Xi and Q are the stress, time, tem-
perature difference, reference temperature, displacement,
density of body force vector and density of heat sources,
respectively. Also, ρ, ki j , c and γi j and are the mass
density, thermal conductivity tensor, specific heat, stress-
temperature modulus, respectively. The dots over a quan-
tity indicate the time derivatives. A static problem can be
considered formally as a special case of the dynamic one,
by omitting the acceleration üi(x,τ) in the equations of
motion (1) and the time derivative terms in equation (2).
Therefore, both cases are analyzed in this paper.

In the case of orthotropic materials, the relation between
the stress σi j and the strain εi j when temperature changes
are considered, is governed by the well known Duhamel-
Neumann constitutive equations for the stress tensor

σi j(x,τ) = ci jklεkl(x,τ)− γi jθ(x,τ), (3)
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where ci jkl are the material stiffness coefficients. The
stress-temperature modulus can be expressed through the
stiffness coefficients and the coefficients of linear thermal
expansion αkl

γi j = ci jklαkl . (4)

For plane problems the constitutive equation (3) is fre-
quently written in terms of the second-order tensor of
elastic constants [Lekhnitskii (1963)]. The constitutive
equation for orthotropic materials and plane strain prob-
lems has the following form⎡
⎣ σ11

σ22

σ12

⎤
⎦ =

⎡
⎣ c11 c12 0

c12 c22 0
0 0 c66

⎤
⎦

⎡
⎣ ε11

ε22

2ε12

⎤
⎦

−
⎡
⎣ c11 c12 c13

c12 c22 c23

0 0 0

⎤
⎦

⎡
⎣ α11

α22

α33

⎤
⎦θ

= C

⎡
⎣ ε11

ε22

2ε12

⎤
⎦− γθ, (5)

with γ =

⎡
⎣ c11 c12 c13

c12 c22 c23

0 0 0

⎤
⎦

⎡
⎣ α11

α22

α33

⎤
⎦ =

⎡
⎣ γ11

γ22

0

⎤
⎦.

Equation (5) can be reduced to a simple form for
isotropic materials

σi j = 2µεi j +λεkkδi j − (3λ+2µ)αθδi j , (6)

with Lame’s constants λand µ .

The following essential and natural boundary conditions
are assumed for the mechanical quantities

ui(x,τ) = ũi(x,τ) on Γu,

ti(x,τ) = σi j(x,τ)n j(x) = t̃i(x,τ) on Γt ,

and for the thermal quantities

θ(x,τ) = θ̃(x,τ) on Γp,

q(x,τ) = ki jθ, j(x,τ)ni(x) = q̃(x,τ) on Γq,

where Γu is the part of the global boundary with pre-
scribed displacements, while on Γt , Γp and Γq the trac-
tion vector ti , temperature and the heat flux q are pre-
scribed, respectively.

Initial conditions for the mechanical and thermal quanti-
ties have to be prescribed

ui(x,τ)|τ=0 = ui(x,0) and u̇i(x,τ)|τ=0 = u̇i(x,0)

θ(x,τ)|τ=0 = θ(x,0) in Ω.

Applying the Laplace-transform to the governing equa-
tions (1) and (2) we obtain

σi j, j(x, p)−ρp2ui(x, p) = −Fi(x, p), (7)

[
ki j(x)θ, j(x, p)

]
,i −ρcpθ(x, p)

− γi jθ0 pui, j(x, p)+R(x, p) = 0, (8)

where

Fi(x, p) = Xi(x, p)+ pui(x,0)+ u̇i(x,0),

R(x, p) = Q(x, p)+θ(x,0)

are the re-defined body forces and heat source, respec-
tively, in the Laplace-transformed domain with the initial
boundary conditions for the displacements ui(x,0), ve-
locities u̇i(x,0) and temperature θ(x,0) .

The Laplace-transform of a function f (x,τ) is defined as

L [ f (x,τ)] = f (x, p) =
∞Z

0

f (x,τ)e−pτdτ,

where p is the Laplace-transform parameter.

Instead of writing the global weak-form for the above
governing equations, the MLPG method constructs a
weak-form over the local fictitious subdomains such as
Ωs, which is a small region taken for each node inside
the global domain [Atluri (2004)]. The local subdomains
overlap each other, and cover the whole global domain Ω.
The local subdomains could be of any geometrical shape
and size. In the present paper, the local subdomains are
taken to be of circular shape. The local weak-form of the
governing equations (7) can be written as

Z

Ωs

[
σi j, j(x, p)−ρp2ui(x, p)+Fi(x, p)

]
u∗ik(x) dΩ = 0,

(9)

where u∗ik(x) is a test function.

Using

σi j, ju
∗
ik = (σi ju

∗
ik), j −σi ju

∗
ik, j
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and applying the Gauss divergence theorem one can write
Z

∂Ωs

σi j(x, p)n j(x)u∗ik(x)dΓ−
Z

Ωs

σi j(x, p)u∗ik, j(x)dΩ

+
Z

Ωs

[−ρp2ui(x, p)+Fi(x, p)
]

u∗ik(x)dΩ = 0, (10)

where ∂Ωs is the boundary of the local subdomain
which consists of three parts ∂Ωs = Ls ∪Γst ∪Γsu [Atluri
(2004)]. Here, Ls is the local boundary that is totally in-
side the global domain, Γst is the part of the local bound-
ary which coincides with the global traction boundary,
i.e., Γst = ∂Ωs ∩Γt , and similarly Γsu is the part of the lo-
cal boundary that coincides with the global displacement
boundary, i.e., Γsu = ∂Ωs ∩Γu.

By choosing a Heaviside step function as the test function
u∗ik(x) in each subdomain

u∗ik(x) =
{

δik at x ∈ Ωs

0 at x /∈ Ωs

and considering

t i(x, p) = σi j(x, p)n j(x),

the local weak-form (10) is converted to the following
local boundary-domain integral equations

Z

∂Ωs

ti(x, p)dΓ+
Z

Ωs

[−ρp2ui(x, p)+Fi(x, p)
]

dΩ = 0.

(11)

Rearranging the unknown terms on the left hand side we
get

Z

Ls+Γsu

t i(x, p)dΓ−
Z

Ωs

ρp2ui(x, p)dΩ

= −
Z

Γst

t̃ i(x, p)dΓ−
Z

Ωs

Fi(x, p)dΩ. (12)

Equation (12) represents overall force equilibrium on the
subdomain Ωs in the D’Lambert sense. In the case of
stationary problems the domain integral on the left-hand
side of the local boundary-domain integral equations dis-
appears. A pure boundary integral formulation is then
obtained under the assumption of vanishing body forces
and homogeneous initial conditions.

Similarly, the local weak-form of the governing equation
(8) can be written asZ

Ωs

{[
ki j(x)θ, j(x, p)

]
,i −ρcpθ(x, p)

−γi jθ0pui, j(x, p)+R(x, p)
}

u∗(x) dΩ = 0, (13)

where u∗(x) is a test function.

Applying the Gauss divergence theorem to the local
weak-form and considering the Heaviside step function
for the test function u∗(x) one can obtain

Z

Ls+Γsp

q(x, p)dΓ−
Z

Ωs

ρcpθ(x, p)dΩ

−
Z

Ωs

γi jθ0 pui, j(x, p)dΩ

= −
Z

Γsq

q̃(x, p)dΓ−
Z

Ωs

R(x, p)dΩ. (14)

Equation (14) is similarly recognized as the energy bal-
ance condition on the subdomain.

3 Numerical solution

In the MLPG method the test and the trial functions are
not necessarily from the same functional spaces. For in-
ternal nodes, the test functions are chosen as the Heav-
iside step function with its support on the local subdo-
main. The trial functions, on the other hand, are cho-
sen to be the moving least-squares (MLS) approximation
over a number of nodes which are spread within the do-
main of influence. The approximated functions for the
Laplace-transforms of the displacements and the temper-
ature can be written as [Atluri (2004)]

uh(x, p) = ΦΦΦT (x) · û(p) =
n

∑
a=1

φa(x)ûa(p),

θh(x, p) =
n

∑
a=1

φa(x)θ̂a(p), (15)

where the nodal values ûa(p) and θ̂a(p) are fictitious pa-
rameters for the displacements and the temperature, re-
spectively and φa(x) is the shape function associated with
the node a. The number of nodes n used for the approxi-
mation is determined by the weight function wa(x). In lit-
erature Gaussian distribution function or splines are usu-
ally used as the weight function [Atluri (2004)]. Gaus-
sian distribution function has only C0−continuity and it
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is not convenient for modeling the gradients of displace-
ments and temperature. Therefore, a 4th order spline type
weight function is applied in the present work

wa(x) =

{
1−6

(
da

ra

)2
+8

(
da

ra

)3 −3
(

da

ra

)4
, 0 ≤ da ≤ ra

0, da ≥ ra ,

(16)

where da = ‖x−xa‖ and ra is the size of the support do-
main. It is seen that the C1−continuity is ensured over
the entire domain, therefore the continuity conditions of
the tractions and the heat flux are satisfied. Splines of
7th order with C3−continuity are used for problems with
higher order derivatives in local integral equations and it
is not required to apply them in our case.

The traction vectors t i(x, p) at a boundary point x ∈ ∂Ωs

are approximated in terms of the same nodal values ûa(p)
as

th(x, p) = N(x)C
n

∑
a=1

Ba(x)ûa(p)−N(x)γ
n

∑
a=1

φa(x)θ̂a(p),

(17)

where the matrix N(x) is related to the normal vector n(x)
on ∂Ωs by

N(x) =
[

n1 0 n2

0 n2 n1

]
,

and the matrix Ba is represented by the gradients of the
shape functions as

Ba =

⎡
⎣ φa

,1
0
φa

,2

0
φa

,2
φa

,1

⎤
⎦ .

Similarly the heat flux q(x, p) can be approximated by

qh(x, p) = ki jni

n

∑
a=1

φa
, j(x)θ̂a(p). (18)

Satisfying the boundary conditions at those nodal points
on the global boundary, where the displacements and the
temperature are prescribed, and making use of the ap-
proximation formula (15), one may write the discretized
forms of the boundary conditions as

n

∑
a=1

φa(ζ)ûa(p) = ũ(ζ, p) for ζ ∈ Γu, (19)

n

∑
a=1

φa(ζ)θ̂a(p) = θ̃(ζ, p) for ζ ∈ Γp. (20)

Furthermore, from the MLS-approximations, equations
(17) and (18), for the unknown quantities in the local
boundary-domain integral equations (12) and (14), their
discretized forms are

n

∑
a=1

⎛
⎝ Z

Ls+Γsu

N(x)CBa(x)dΓ− Iρp2
Z

Ωs

φa(x)dΩ

⎞
⎠ ûa(p)

−
n

∑
a=1

⎛
⎝ Z

Ls+Γsu

N(x)γφa(x)dΓ

⎞
⎠ θ̂a(p)

= −
Z

Γst

t̃(x, p)dΓ−
Z

Ωs

F(x, p)dΩ, (21)

n

∑
a=1

⎛
⎝ Z

Ls+Γsp

nT KPa(x)dΓ−
Z

Ωs

ρcpφa(x)dΓ

⎞
⎠ θ̂a(p)

−
n

∑
a=1

⎛
⎝Z

Ωs

θ0pγT Ba(x)dΓ

⎞
⎠ ûa(p)

= −
Z

Γsq

q̃(x, p)dΓ−
Z

Ωs

R(x, p)dΩ, (22)

which are considered on the sub-domains adjacent to in-
terior nodes as well as to the boundary nodes on Γst and
Γsq. In equation (21), Iis a unit matrix defined by

I =
(

1 0
0 1

)

and in equation (22), we have used the notations

G =
[

γ11 γ12

γ12 γ22

]
, K =

[
k11 k12

k12 k22

]
,

Pa(x) =
[

φa
,1

φa
,2

]
, nT = (n1 , n2 ).

Collecting the discretized local boundary-domain inte-
gral equations together with the discretized boundary
conditions for the displacements and the temperature re-
sults in the complete system of linear algebraic equa-
tions for the computation of the nodal unknowns, namely,
the Laplace-transforms of the fictitious parameters ûa(p)



62 Copyright c© 2006 Tech Science Press CMES, vol.16, no.1, pp.57-68, 2006

and θ̂a(p). The time dependent values of the trans-
formed quantities can be obtained by an inverse Laplace-
transform. In the present analysis, the Stehfest’s inver-
sion algorithm [Stehfest (1970)] is used.

4 Numerical examples
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Figure 1 : A suddenly heated unit square panel

In order to test the accuracy of the present meshless
method a unit square panel under a sudden heating on
the top side is analyzed as the first example (Fig. 1).
The following analytical solution is available for uncou-
pled thermoelasticity in an isotropic material [Carslaw
and Jaeger (1959)]

θ(x2,τ) = 1− 4
π

∞

∑
n=0

(−1)n

2n+1
exp

[
−(2n+1)2π2κτ

4a2

]
×

cos

(
(2n+1)πx2

2a

)
,

u2(x2,τ) =
(1+ν)α
(1−ν)

x2Z

0

θ(x2,τ)dx2 ,

σ11(x2,τ) = − αE
(1−ν)

θ(x2,τ) , (23)

where a is the side length of the panel and κ = k/ρc is
the diffusivity coefficient. In the numerical analysis here,
the following material constants are used: k = 1 , ρ = 1 ,
c = 1, thermal expansion coefficient α = 0.02, Young’s
modulusE = 1and Poisson’s ratio ν = 0.3. Also, plane
strain condition is assumed.
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Figure 2 : Temporal variation of the temperature at two
different points on x2- axis

The mechanical displacement and the thermal fields on
the finite square panel are approximated by using 121
(11x11) equi-spaced nodes. The local sub-domains are
considered to be circular, each with a radius rloc = 0.08.

It can be seen from Fig. 2 that there is an excellent agree-
ment of the present results with the exact solution for the
time variation of the temperature at the two points con-
sidered. For the purpose of error analysis the Sobolev-
norm is calculated. The relative error of the temperature
in the considered time interval [0,T ] is defined as

r =
‖θnum−θexact‖

‖θexact‖ , (24)

where T = 1.2 and

‖θ‖=

⎛
⎝ TZ

0

θ2dτ

⎞
⎠

1/2

.

The relative error of the temperature, r, at both points is
less than 0.5%. For the total number of 441 nodes, the
relative error r = 0.15% has been obtained.

Numerical results for the displacement u2 at the free-end
of the panel and at the mid-point of the x2- axis are pre-
sented in Fig. 3. They are compared again with the an-
alytical results and an excellent agreement is observed
too. Numerical results for the direct stress σ11 are pre-
sented in Fig. 4, where it can be seen again that there
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Figure 3 : Temporal variation of the displacement u2 at
two different points on x2- axis
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Figure 4 : Temporal variation of the stress σ11
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Figure 5 : Coupling effect on the temporal variation of
the temperature at x2 = 0
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Figure 6 : Coupling effect on the temporal variation of
the displacement u2 at x2 = 1

is an excellent agreement of the present results and the
exact solution at both points considered.

Next, the coupling effect is analyzed in the same sam-
ple. A measure of the thermoelastic coupling is given
by the dimensionless thermoelastic coupling parameter
[Cannarozzi and Ubertini (2001)]

δ =
(1+ν)α2Eθ0

(1−ν)(1−2ν)ρc
,

where δ = 0 corresponds to the uncoupled case. For
traditional materials,δ ranges from 0.01 to 0.1. Here,

the thermoelastic coupling parameter isδ = 0.186 , which
corresponds to θ0 = 100 and the previously used mate-
rial constants. The coupling effects on the temperature
and the displacement u2 at points x2 = 0 and x2 = 1,
respectively, are presented in Figs. 5 and 6. One can ob-
serve that the influence of the mechanical-thermal cou-
pling on both quantities is weaker for small and large
time instants. The strongest influence appears at about
τ = 0.8for the considered material constants. A simi-
lar phenomenon has been observed also for a suddenly
heated half-space analyzed by Chen and Dargush (1995),
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Figure 7 : A suddenly heated hollow cylinder

and Hosseini-Tehrani and Eslami (2000).

In the second numerical example a hollow cylinder with
a prescribed Heaviside time variation of the temperature
on the outer surface is analyzed. On the inner surface
with radiusR1 = 8the temperature is kept at zero value.
The ratio of the outer and the inner radii is considered
as R2/R1 = 2 . The following material constants for an
isotropic hollow cylinder are considered: k = 1 , ρ = 1 ,
c = 1, α = 0.02, E = 1and ν = 0.25. For the numerical
calculations, 176 nodes with a regular node distribution
in the radial direction are employed, see Fig. 7. The local
sub-domains are considered to be circular with a radius
rloc = 0.6.

In the uncoupled theory, the exact solutions for the tem-
perature, the radial displacement and the hoop stresses
for this problem can be obtained as [Carslaw and Jaeger
(1959), Timoshenko and Goodier (1951)]

θ(r,τ) = T
ln(r/R1)

ln(R2/R1)

−π
∞

∑
n=1

T
J2

0 (R1αn)U0(rαn)
J2

0 (R1αn)−J2
0 (R2αn)

exp(−κα2
nτ) ,

ur(r,τ) =
(1+ν)α
(1−ν)

1
r

rZ

R1

θ(x,τ)xdx+C1r +
C2

r
,

σϕϕ =
αE

1−ν
1
r2

rZ

R1

θ(x,τ)xdx− αE
1−ν

θ(r,τ)

+
E

1−ν

(
C1

1−2ν
+

C2

r2

)
, (25)

where

U0(rαn) = J0(rαn)Y0(αnR2)−J0(αnR2)Y0(rαn) ,

and αn are the roots of the following transcendental equa-
tion

J0(r)Y0(rR2/R1)−J0(rR2/R1)Y0(r) = 0 ,

with J0(r) and Y0(r) being the Bessel functions of the
first and the second kind and zero-th order. The constants
C1 and C2 in equation (25) are defined as

C1 =
(1−2ν)α(1+ν)

1−ν
1

R2
2−R2

1

Z R2

R1

θ(r,τ)rdr,

C2 =
α(1+ν)

1−ν
R2

1

R2
2 −R2

1

Z R2

R1

θ(r,τ)rdr .

The computed results of the time variations of the tem-
perature at the mid-radius r = 12for uncoupled and cou-
pled problems are shown in Fig. 8. For the uncoupled
problem, the numerical results are compared with the ex-
act solution (25) and an excellent agreement is obtained.
For the coupled case,θ0 is selected as 150 for the pur-
pose of illustration. Withθ0 = 150 , for which δ = 0.2 , it
is evident that the temperature is lower in the entire time
interval in the coupled case as compared to the uncoupled
one.

The temporal variations of the hoop stress at the inner
surface are presented in Fig. 9. Here, relatively lower
values of the hoop stress are obtained in the coupled
problem; this is due to the lower temperature distribu-
tion. The corresponding variations of the hoop stress at
the outer surface are shown in Fig. 10. The influence
of the mechanical-thermal coupling on the hoop stress
is similar at both surfaces. The radial displacement is
computed at the mid-radius of the hollow cylinder. The
numerical results for both coupled and uncoupled cases
are presented in Fig. 11.

In the third numerical example, an orthotropic square
panel is analyzed. The boundary conditions are the same
as those in the first example, see Fig.1. A unit side length
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Figure 8 : Temporal variation of the temperature at the
mid-radius r = 12
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Figure 9 : Temporal variation of the hoop stress at the
inner surface
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Figure 10 : Temporal variation of the hoop stress at the
outer surface
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Figure 11 : Temporal variation of the radial displace-
ment at the mid-radius

of the panel is considered here again. Isotropic material
constants are assumed for the thermal coefficients and
orthotropic for the mechanical ones. The following ma-
terial constants are considered: k = 1 , ρ = 1 , c = 1,
α = 0.02, Young’s moduliiE1 = 1 , E2 = 2E1 and Pois-
son’s ratio ν = 0.3.

In uncoupled thermoelasticity, the same temporal varia-
tion of temperature as in the first example with results
shown in Fig. 2 is obtained, since the thermal material
parameters are the same in both cases. However, the
displacements and the stresses are influenced by the me-
chanical material properties, which are the same as those
used in the first example, except for the Young’s mod-
ulus E2 . Numerical results for the displacement, u2, at

the free-end of the panel, x2 = 1 , and at the mid-side of
the panel, x2 = 0.5 are presented in Fig. 12. The dis-
placements of the orthotropic panel are reduced in com-
parison with the isotropic one since the panel stiffness in
x2direction is larger than in the isotropic case. The direct
stressσ11 at the mid side of the panel, x2 = 0.5 is pre-
sented in Fig. 13. Here, σ11 is higher for the orthotropic
panel than for the isotropic one. The influence of the
coupling is investigated too. The temporal variations of
the temperature computed in the framework of coupled
thermoelasticity for isotropic and orthotropic panels are
shown in Fig.14. One can observe that the influence of
the orthotropic mechanical properties in the coupled the-
ory has a negligibly small influence on the temperature
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Figure 12 : Temporal variation of the displacement
in uncoupled thermoelasticity for the orthotropic square
panel
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Figure 13 : Temporal variation of the direct stress σ11 in
the orthotropic square panel

variation. A stronger influence of the orthotropic ther-
mal properties on the temperature can be expected. On
the other hand, the influence of the coupling on σ11 , as
seen in Fig. 13, due to the orthotropy of the material is
weak. The influence of the orthotropic mechanical prop-
erties on the mechanical stresses is much stronger than
the mechanical-thermal coupling, at least in the cases
considered here.
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Figure 14 : Temporal variation of the temperature for
coupled thermoelasticity

5 Conclusions

A meshless local Petrov-Galerkin method (MLPG) is
presented for plane transient coupled thermoelasticity in
orthotropic solids. The Laplace-transform technique is
applied to eliminate the time variable in the coupled gov-
erning partial differential equations. The analyzed do-
main is divided into small overlapping circular subdo-
mains. A unit step function is used as the test functions
in the local weak-form. The derived local boundary-
domain integral equations are nonsingular. The moving
least-squares (MLS) scheme is adopted for approximat-
ing the physical quantities. The proposed method is a
truly meshless method, which requires neither domain el-
ements nor background cells in either the interpolation or
the integration.

The present method is an alternative numerical tool to
many existing computational methods such as FEM or
conventional BEM. The main advantage of the present
method is its simplicity in comparison with conventional
BEM, where the fundamental solution is very compli-
cated in the isotropic case, and for orthotropic materials
it is even not available. In contrast to the conventional
BEM, the present method requires no fundamental so-
lutions and all integrands in the present formulation are
regular. Thus, no special numerical techniques are re-
quired to evaluate the integrals. The present formula-
tion possesses the generality of the FEM. Therefore, the
method is promising for numerical analysis of multi-field
problems, which cannot be solved effectively by the con-
ventional BEM. Moreover, the present meshless method
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seems to be more flexible than the standard FEM, since
an adaptation of the nodal distribution is easier than a
mesh adaptation.

The influence of the thermo-mechanical coupling on
temperature and mechanical fields is investigated for
both isotropic and orthotropic materials. In the present
paper, only an orthotropy of the mechanical properties is
considered in the numerical examples. The influence of
the thermal orthotropy on both the mechanical and the
thermal fields will be analyzed and reported in a future
paper
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