
Copyright c© 2006 Tech Science Press CMES, vol.16, no.2, pp.69-82, 2006

Distributed Finite Element Normalized Approximate Inverse Preconditioning

G.A. Gravvanis1 and K.M. Giannoutakis1

Abstract: A new class of normalized explicit opti-
mized approximate inverse finite element matrix tech-
niques, based on normalized finite element approximate
factorization procedures, for solving sparse linear sys-
tems resulting from the finite element discretization of
partial differential equations in three space variables are
introduced. A new parallel normalized explicit pre-
conditioned conjugate gradient square method in con-
junction with normalized approximate inverse finite el-
ement matrix techniques for solving efficiently sparse fi-
nite element linear systems on distributed memory sys-
tems is also presented along with theoretical estimates
on speedups and efficiency. The performance on a dis-
tributed memory machine, using Message Passing Inter-
face (MPI) communication library, is also investigated.
Applications on characteristic non-linear initial / bound-
ary value problems in three dimensions are discussed and
numerical results are given.

keyword: Finite element method, sparse linear sys-
tems, normalized approximate factorization procedures,
normalized approximate inverses, preconditioning, par-
allel preconditioned conjugate gradient methods, parallel
computations, distributed computations.

1 Introduction

Let us consider the linear system resulting from the finite
element (FE) discretization of an elliptic boundary value
problem in three dimensions, i.e.,

Au = s, (1)

where A is a non-singular large sparse symmetric posi-
tive definite, diagonally dominant (n×n) matrix, with all
the off-center band terms grouped into regular bands of
width �1 and �2 at semi-bandwidths m and p respectively,
viz.,

1 Department of Electrical and Computer Engineering, School of
Engineering, Democritus University of Thrace, 12 Vas. Sofias
street, GR 67100 Xanthi, Greece; Email: {ggravvan, kgian-
nou}@ee.duth.gr

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

�

	
		

	

na
1-n

b

pa
1-p

b

ma
1-m

b
2

a
1

b
1

a

A

m

0

21

p

��

symmetric

Vκ,η

Wχ,λ

(2)

while u is the FE solution and s is a vector, of which the
components result from a combination of source terms
and imposed boundary conditions.

The solution of sparse finite element linear systems is
of central importance to scientific and engineering com-
putations. Because of their use in many important ap-
plications the need for efficient solvers and the related
software has been an important objective for the deriva-
tion of parallel and distributed solvers and software, [Akl
(1997); Benzi (2002); Dongarra, Duff, Sorensen, and
van der Vorst (1998); Gravvanis (2002); Saad and van der
Vorst (2000)]. The cost-effectiveness of parallel iterative
methods over parallel direct solution methods for solving
sparse finite element linear systems is now commonly ac-
cepted, especially for three - dimensional problems.

For symmetric positive definite problems, the rate of
convergence of the conjugate gradient method depends
on the distribution of the eigenvalues of the coefficient
matrix. Hence the preconditioned matrix will have a
smaller spectral condition number, and the eigenvalues
clustered around one, [Benzi (2002); Gravvanis (2002);
Greenbaum (1997); Saad (1996); Saad and van der Vorst
(2000)]. The preconditioned form of the linear system
(Eq. 1) is

MAu = Ms, (3)

70 Copyright c© 2006 Tech Science Press CMES, vol.16, no.2, pp.69-82, 2006

where M is a preconditioner. The preconditioner M has
to satisfy the following conditions: (i) MA should have a
“clustered” spectrum, (ii) M can be efficiently computed
in parallel and (iii) finally “M× vector” should be fast
to compute in parallel, [Benzi (2002); Benzi, Meyer, and
Tuma (1996); Gravvanis (2002, 1998); Grote and Huckle
(1997); Huckle (1999); Saad (1996); Saad and van der
Vorst (2000); van der Vorst (1989)]. Recently, new paral-
lel numerical algorithms and related software have been
produced for solving sparse finite element linear systems,
by parallel approximate inverse preconditioning methods
on multiprocessor and multi-computer systems. The ef-
fectiveness of the explicit approximate inverse precondi-
tioning methods is related to the fact that the approximate
inverses exhibit a similar “fuzzy” structure as the coeffi-
cient matrix and are close approximant to the coefficient
matrix, [Gravvanis (2002, 1998); Gravvanis and Gian-
noutakis (2003)].

It is known that finite element approximate factorization
procedures and inverse matrix algorithms are in general
complicated. However as the demand for solving sparse
finite element linear systems grows, the need to use effi-
cient sparse equations solvers based on approximate fac-
torization procedures and inverse matrix algorithms be-
comes one of great importance, [Gravvanis (2002, 1998);
Gravvanis and Giannoutakis (2005)].

In Section 2, we present approximate inverse finite ele-
ment matrix algorithms, based on the normalized approx-
imate factorization of the coefficient finite element ma-
trix A. In Section 3, parallel normalized explicit precon-
ditioned conjugate gradient - type methods are presented,
for distributed memory parallel systems, using the MPI
(Message Passing Interface) communication library. The
implementation of the proposed parallel method is pre-
sented and theoretical estimates on speedups and effi-
ciency is given. Finally, in Section 4 the performance
of the parallel normalized explicit preconditioned conju-
gate gradient method is illustrated by solving sparse finite
element linear system on a distributed system using the
communication library MPI and speedups are given. Ad-
ditionally the performance and applicability of the nor-
malized explicit preconditioned conjugate gradient - type
methods is illustrated by solving characteristic non-linear
initial/boundary value problems in three dimensions and
numerical results are given and discussed.

2 Normalized finite element approximate factoriza-
tion and optimized approximate inverses

In this section we present the normalized approximate
inverse matrix techniques based on an algorithmic pro-
cedure of inverting a real (n×n) matrix A without invert-
ing the decomposition factors, [Gravvanis (2002, 1998);
Gravvanis and Giannoutakis (2003)].

Let us now assume the normalized approximate fac-
torization, [Gravvanis and Giannoutakis (2005, 2004,
2003); Lipitakis and Evans (1984)], such that:

A≈ Dr1,r2 Tt
r1,r2

Tr1,r2 Dr1,r2 ,

r1 ∈ [1, . . .m−1) , r2 ∈ [1, . . . p−1) , (4)

where r1, r2 are the “fill-in” parameters, i.e. the num-
ber of outermost off-diagonal entries retained at semi-
bandwidths m and p, Dr1,r2 is a diagonal matrix and Tr1,r2

is a sparse upper (with unit diagonal elements) triangular
matrix of the same profile as the coefficient matrix A.

Dr1,r2 = diag

{
d1, . . . ,dm−1

...dm, . . .,dp−1
...dp, . . . ,dn

}
,

(5)

�

�

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

	

������
��

1
r

2
r

1
1-n

g

1
1-p

g

1
1-m

g

1
1

g1

2
r,

1
rT

m

0

21

p

��

Hδ,ζ

Fπ,τ

(6)

Then, the elements of the decomposition factors
Dr1,r2 and Tr1,r2 , can be computed by the Finite
Element Approximate Normalized Factorization algo-
rithm (henceforth called the FEANOF-3D algorithm),
[Gravvanis and Giannoutakis (2005)], and can be ex-
pressed by the following compact algorithmic scheme:

d1 =
√

a1 (7)

for i = 2 to m−1

di =

(
ai−

(
bi−1

di−1

)2
)1/2

(8)

Distributed Finite Element Normalized Approximate Inverse Preconditioning 71

gi−1 =
bi−1

di−1di
(9)

let µ = r1 +�1

for j = 1 to n−m+1
if r2 < p−m+1 or j < p−m+1 then

The equations to determine the elements of Tr1,r2 proved
to be non-linear and a simple iterative Picard-type
scheme was used in an inner loop to determine the values
of dm, . . . ,dp−1, as the direct solution of these equations
proved to be intractable, [Lipitakis and Evans (1984)].

Find the first non-zero element of submatrix Vκ,η of the j-
th column of A (the procedure IXNOS can be used, [Lip-
itakis and Evans (1984)]).

dm+ j−1 = dm+ j−2 (10)
if j < �1 then

hk, j = vk,n
dkdm+ j−1

(11)

else
hk+1− j, j = vk,n

dkdm+ j−1
(12)

gm+ j−2 = bm+ j−2

dm+ j−2dm+ j−1
(13)

if j < r1 +�1−1 then
if (j < �1) and (k < r1) then

for i = k +1 to r1

hi, j =−gi−1hi−1, j (14)
if i < j +1 then

hi, j = hi, j +
vi, j−i+1

didm− j+1
(15)

else
for i = k +�1− j +1 to µ− j

hi, j =−gi+ j−�1−1hi−1, j (16)
if i < �1 +1 then

hi, j = hi, j +
vi+ j−�1,�1−i+1

di+ j−�1dm+ j−1
(17)

if j < µ−1 then
p = µ− j +1 (18)

else
p = k +�1− j +1 (19)

if (j < µ−1)and(k > m−1) then
p = k +�1− j +1 (20)

if j > �1−1 then
for i = p to µ−1

if (i > m+2�1− j−1)and(j > �1 +1) then

hi, j =−gi+ j−�1−1hi−1, j−
i−1
∑

λ=1
hλ−i+µ,i+ j−µhλ, j (21)

else

hi, j =−gi+ j−�1−1hi−1, j−
i−1
∑

λ=1
hλ+ j−�1,i+ j−µhλ, j (22)

if i < �1 +1 then
hi, j = hi, j +

vi+ j−�1 ,�1−i+1

di+ j−1dm+ j−1
(23)

else
if k < r1 +1 then

p = r1 +1 (24)
else

p = k +1 (25)
for i = p to r1− j +1

hi, j =−gi−1hi−1, j−
i−1
∑

λ=1
hλ,i−r1

hλ, j (26)

if i < j +1 then
hi, j = hi, j +

vi, j−i+1

didm+ j−1
(27)

if j < �1 then

dm+ j−1 =
√

am+ j−1

1+
r1+ j−2

∑
λ=1

(hλ, j)
2
+(hr1+ j−1, j+gm+ j−2)2

(28)

else

dm+ j−1 =
√

am+ j−1

1+
r1+�1−2

∑
λ=1

(hλ, j)
2
+(hr1+�1−1, j+gm+ j−2)2

(29)

if (r2 < p−m+1) or (j ≥ p−m+1) then

The equations to determine the elements of Tr1,r2 proved
to be non-linear and a simple iterative Picard-type
scheme was used in an inner loop to determine the val-
ues of dp, . . .,dn, as the direct solution of these equations
proved to be intractable, [Lipitakis and Evans (1984)].

Find the first non-zero element of submatrix Wχ,λ of the
(j− p+m)th column of A (the procedure IXNOS can be
used, [Lipitakis and Evans (1984)]).

dm+ j−1 = dm+ j−2 (30)
if j− p+m ≤ �2 then

fχ, j−p+m = wχ,λ
dkdm+ j−1

(31)

else
fχ+�2− j+p−m, j−p+m = wχ,λ

dkdm+ j−1
(32)

if j− p+m ≤ r2 +�2−2 then
if j− p+m ≤ �2 then

fi, j−p+m =−di−1 fi−1, j−p+m (33)
if i < j− p+m+1 then

fi, j−p+m = fi, j−p+m− wi, j−p+m−i+1

didm+ j−1
(34)

for i = χ+1, . . . , r2 + j− p+m−1
else

fi, j−p+m =−gi+ j−p+m−�2−1 fi−1, j−p+m (35)
if i≤ �2 then
fi, j−p+m = fi, j−p+m− wi+ j−p+m−�2 ,�2−i+1

didm+ j−1
(36)

for i = χ+�2− j + p−m+1, . . . ,

r2 +�2− j + p−m+1
if j− p+m > �2 then

if (i≥ p+2�2− j + p−m) and

72 Copyright c© 2006 Tech Science Press CMES, vol.16, no.2, pp.69-82, 2006

(j− p+m ≥ �2 +2) then
fi, j−p+m = −gi+ j−p+m−�2−1 fi−1, j−p+m−

i−1
∑

k=1
hk−i+r2+�2,i+ j−p+m−r2−�2 fk, j−p+m(37)

else
fi, j−p+m = −gi+ j−p+m−�2−1 fi−1, j−p+m−

i−1
∑

k=1
hk+ j−p+m−�2,i+ j−p+m−r2−�2 fk, j−p+m (38)

then, if i≤ �2

fi, j−p+m = fi, j−p+m + wi+ j−p+m−�2 ,�2−i+1

di+ j−p+m−�2 dm+ j−1
(39)

for either i = r2 +�2− j +1+ p−m, . . . , r2 +�2−1
and χ < p

or i = χ+�2− j + p−m+1, . . . , r2 +�2−1
and χ≥ p, with j < r2 +�2−1

or i = χ+�2− j + p−m+1, . . . , r2 +�2−1
for all j− p+m ≥ r2 +�2−1

if j− p+m ≤ �2 then

dm+ j−1 =
√

wm+ j−1

1+
r1+�1−1

∑
k=1

h2
k, j+

r2+ j−p+m−1

∑
k=1

f 2
k, j−p+m

(40)

else

dm+ j−1 =
√

wm+ j−1

1+
r1+�1−1

∑
k=1

h2
k, j+

r2+�2−1

∑
k=1

f 2
k, j−p+m

(41)

The memory requirements of the FEANOF-
3D algorithm is ≈ (r1 + r2 +2�1 +2�2 +4)n
words, while the computational work required is

≈
[
(r1 +�1)

2 +(r2 +�2)
2
]

n multiplicative operations

and n square roots, [Gravvanis and Giannoutakis
(2005)].

The computational implementation of the factorization
procedure requires the coefficient matrix A to be stored as
diagonal, co-diagonals and the V , W submatrices (stored
in a band-like scheme, i.e. only �1 and �2 vector spaces).
In this case the submatrix V = (vκ,η) is to be stored such
that V = (vκ,η), κ ∈ [1,n−m+1], η ∈ [1, �1] denotes
the elements of the κ-th row and (κ+η+m−2)-th col-
umn of A in its usual arrangement. In a similar way
the submatrix W =

(
wχ,λ

)
is to be stored such that wχ,λ,

χ ∈ [1,n− p+1], λ ∈ [1, �2] denotes the elements of the
χ-th row and (χ+λ+ p−2)-th column of A.

The factorization procedure requires the submatrix H =
(hi, j), i ∈ [1, r1 +�1−1], j ∈ [1,n−m+1] of the ma-
trix Tr1,r2 to be stored such that hi, j (for i ≤ m− 1) de-
notes the elements in the i-th row and the (m + j−1)-th
column (if j ≤ �1) or the elements in the (i+ j−�1)-th

row and the (m + j−1)-th column (if j > �1) while hi, j

(for i > m−1) denotes the elements in the i-th row and
the (i + j)-th column (if i + j ≤ m + �1− 1) or the ele-
ments in the (2i+ j−m−�1 +1)-th row and (i + j)-th
column (if i + j > m + �1− 1) of the coefficient matrix
A in its usual arrangement. The submatrix F = (fi, j),
i ∈ [1, r2 +�2−1], j ∈ [1,n− p+1] of the matrix Tr1,r2

can be stored such that fi, j (for i ≤ p− 1) denotes the
elements in the i-th row and the (p + j− 1)-th column
(if j ≤ �2) or the elements in the (i+ j−�2)-th row
and the (p + j−1)-th column (if j > �2) while fi, j (for
i > p− 1) denotes the elements in the i-th row and the
(i+ j)-th column (if i+ j≤ p+�2−1) or the elements in
the (2i+ j− p−�2 +1)-th row and (i + j)-th column (if
i+ j > p+�2−1) of the coefficient matrix A in its usual
arrangement.

Let Mδl
r1,r2

= (µi, j), i ∈ [1,n], j ∈ [max(1, i−δl +1) ,
min(n, i+δl−1)] be the banded form of the normalized
approximate inverse of the coefficient matrix A, i.e.

Mδl
r1,r2

=
(
Dr1,r2 Tt

r1,r2
Tr1,r2 Dr1,r2

)−1

= D−1
r1,r2

(
Tt

r1,r2
Tr1,r2

)−1
D−1

r1,r2
= D−1

r1,r2
M̂δl

r1,r2
D−1

r1,r2
, (42)

where

M̂δl
r1,r2

=
(
Tt

r1,r2
Tr1,r2

)−1
. (43)

Then, the elements of the inverse M̂δl
r1,r2

can be computed,
by retaining δl elements in the lower and upper part of the
inverse and using an optimized storage scheme, [Gravva-
nis (2002)], and by solving recursively the systems:

M̂δl
r1,r2

Tt
r1,r2

= (Tr1,r2)
−1 and Tr1,r2 M̂δl

r1,r2
=
(
Tt

r1,r2

)−1
,

(44)

without inverting the decomposition factors Tr1,r2 and
Tt

r1,r2
.

The storage requirements of the normalized opti-
mized approximate inverse are only n × (2δl−1)-
vector spaces. The Normalized Optimized Banded
Approximate Inverse Finite Element Matrix algorith-
mic procedure (henceforth called the NOROBAIFEM-
3D algorithm) for computing the elements of the approx-
imate inverse, using a “fish-bone” pattern, can be ex-
pressed by the following compact form:

Let r�1 = r1 +�1; r�2 = r2 +�2;

Distributed Finite Element Normalized Approximate Inverse Preconditioning 73

r�11 = r�1−1; r�21 = r�2−1; mr1 = m− r1;
pr2 = p− r2; m�1 = m+�1; p�2 = p+�2;
nmr1 = n−m+ r1; npr2 = n− p+ r2.

For i = n to 1
for j = i to max(1, i−δl +1)

if j > nmr1 then
if i = j then

if i = n then
µ̂1,1 = 1 (45)

else
µ̂n−i+1,1 = 1−g j · µ̂n− j,δl+1 (46)

else
µ̂n−i+1,i− j+1 = −g j · µ̂n−i+1,i− j (47)

else
if j > npr2 and j ≤ nmr1 then

if i = j then
µ̂n−i+1,1 = 1−g j · µ̂n− j,δl+1−

nmr1− j

∑
k=0

hr�11−k, j+k+1−r1 · µ̂x,y(48)

call mw(n,δl, i, j +mr1+k,x,y)
else

µ̂n−i+1,i− j+1 = −g j · µ̂n−i+1,i− j−
nmr1− j

∑
k=0

hr�11−k, j+k+1−r1 · µ̂x,y(49)

call mw(n,δl, i, j +mr1+k,x,y)
else
if j≥ r�1 and j ≤ npr2 then

if i = j then
µ̂n−i+1,1 = 1−g j · µ̂n− j,δl+1−

npr2− j

∑
k=0

fr�21−k, j+k+1−r2 · µ̂x1,y1−
nmr1− j

∑
k=0

hr�11−k, j+k+1−r1 · µ̂x2,y2 (50)

call mw(n,δl, i, j +k + pr2,x1,y1)
call mw(n,δl, i, j +k +mr1,x2,y2)

else
µ̂n−i+1,i− j+1 = −g j · µ̂n−i+1,i− j−

npr2− j

∑
k=0

fr�21−k, j+k+1−r2 · µ̂x1,y1−
nmr1− j

∑
k=0

hr�11−k, j+k+1−r1 · µ̂x2,y2 (51)

call mw(n,δl, i, j +k + pr2,x1,y1)
call mw(n,δl, i, j +k +mr1,x2,y2)

else
if i = j then

if = 1 then
µ̂n,1 = 1−g1 · µ̂n−1,δl+1−

�2

∑
k=1

f1,k · µ̂x1,y1−
�1

∑
k=1

h1,k · µ̂x2,y2 (52)

call mw(n,δl,1, p+k−1,x1,y1)
call mw(n,δl,1,m+k−1,x2,y2)

else
µ̂n−i+1,1 = 1−g j · µ̂n− j,δl+1−

j−1
∑

k=1
h j−k,�1+k · µ̂x1,y1−
�1

∑
k= j+1−r1

h j,k · µ̂x2,y2−
j−1
∑

k=1
f j−k,�2+k · µ̂x3,y3−
�2

∑
k= j+1−r2

f j,k · µ̂x4,y4 (53)

call mw(n,δl, i,m�1+k−1,x1,y1)
call mw(n,δl, i,m+k−1,x2,y2)
call mw(n,δl, i, p�2+k−1,x3,y3)
call mw(n,δl, i, p+k−1,x4,y4)

else
µ̂n−i+1,i− j+1 = −g j · µ̂n−i+1,i− j−

j−1
∑

k=1
h j−k,�1+k · µ̂x1,y1−
�1

∑
k= j+1−r1

h j,k · µ̂x2,y2−
j−1
∑

k=1
f j−k,�2+k · µ̂x3,y3−
�2

∑
k= j+1−r2

f j,k · µ̂x4,y4 (54)

call mw(n,δl, i,m�1+k−1,x1,y1)
call mw(n,δl, i,m+k−1,x2,y2)
call mw(n,δl, i, p�2+k−1,x3,y3)
call mw(n,δl, i, p+k−1,x4,y4)

for j = i−1 to max(1, i−δl +1)
µ̂n−i+1,δl+i− j = µ̂n−i+1,i− j+1 (55)

The procedure mw(n,δl, s,q,x,y), [Gravvanis (2002)],
can then be described as follows:

procedure mw(n,δl, s,q,x,y)
if s≥ q then

x = n+1− s (56)
y = s−q+1 (57)

else
x = n+1−q (58)
y = δl +q− s (59)

The computational work of the NOROBAIFEM-3D

74 Copyright c© 2006 Tech Science Press CMES, vol.16, no.2, pp.69-82, 2006

algorithm is O [nδl (r1 + r2 +�1 +�2 +1)] multiplicative
operations, while the storage of the approximate in-
verse is only n× (2δl − 1)-vector spaces. This opti-
mized form is particularly effective for solving “narrow-
banded” sparse systems of very large order , i.e. δl <<

n/2. The construction of parallel inverses has been stud-
ied in [Gravvanis (1998)], and currently is under further
investigation.

It should be noted that this class of normalized approxi-
mate inverse includes various families of approximate in-
verses according to the requirements of accuracy, storage
and computational work, as can be seen by the following
diagrammatic relation:

class I

A−1 ≡ D−1M̂D−1←D−1
r1,r2

̂̃Mδl

r1=m−1,r2=p−1D−1
r1,r2
←

class II
D−1

r1,r2
M̂δl

r1=m−1,r2=p−1D−1
r1,r2
←

class III class IV
D−1

r1,r2
M̂δl

r1,r2
D−1

r1,r2
←D−2

r1,r2
(60)

where the entries of the class I inverse have been retained
after the computation of the exact inverse (r1 = m− 1,
r2 = p−1), while the entries of the class II inverse have
been computed and retained during the computational
procedure of the (approximate) inverse (r1 = m− 1,
r2 = p−1). The entries of the class III inverse have been
retained after the computation of the approximate inverse
(r1 ≤m−1, r2 ≤ p−1). Hence an approximate inverse
is derived in which both the sparseness of the coefficient
matrix is relatively retained and storage requirements are
substantially reduced. The class IV of approximate in-
verse retains only the diagonal elements, i.e. δl = 1 hence
M̂δl

r1,r2
= I, resulting in a fast inverse algorithm.

It is known that the larger in magnitude elements of
the inverse matrices resulting from the discretization of
P.D.E’s in three space variables, in almost every case, are
clustered around the diagonals at distances ρ1m and ρ2 p
(with ρ1 = 1,2, . . .,m−1 and ρ2 = 1,2, . . ., p−1) from
the main diagonal in a “recurring wave”-like pattern,
[Gravvanis (2002, 1998); Gravvanis and Giannoutakis
(2003)]. It is reasonable to assume that the value of the
retention parameter δl can be chosen as multiples of m
and p.

3 Parallel Normalized explicit preconditioned con-
jugate gradient methods

In this section we present a class of normalized ex-
plicit preconditioned conjugate gradient schemes, based
on the derived NOROBAIFEM-3D algorithm. The
Normalized Explicit Preconditioned Conjugate Gradient
(NEPCG) method for solving linear systems has been
presented in [Gravvanis and Giannoutakis (2003)]. The
computational complexity of the NEPCG method is
≈ O [(2δl +2�1 +2�2 +11)n mults+3n adds]ν opera-
tions, where ν denotes the number of iterations required
for convergence to a predetermined tolerance level.

The Normalized Explicit Preconditioned Conjugate
Gradient Square (NEPCGS) method can be expressed
by the following compact algorithmic scheme:

Let u0 be an arbitrary initial approximation to the solu-
tion vector u. Then,

set u0 = 0, and e0 = 0, (61)
solve r0 = D−1

r1,r2
M̂δl

r1,r2
D−1

r1,r2
(s−Au0), (62)

set σ0 = r0, and p0 = (σ0, r0), (63)

Then, for i = 0,1, . . ., (until convergence) compute the
vectors ui+1, ri+1, σi+1 and the scalar quantities αi, βi+1

as follows:

form qi = Aσi, (64)

calculate αi = pi/
(

σ0,D−1
r1,r2

M̂δl
r1,r2

D−1
r1,r2

qi

)
, (65)

compute ei+1 = ri +βiei−αiD−1
r1,r2

M̂δl
r1,r2

D−1
r1,r2

qi, (66)
di = ri +βiei +ei+1, (67)

form ui+1 = ui +αidi, and qi = Adi, (68)
compute ri+1 = ri−αiD−1

r1,r2
M̂δl

r1,r2
D−1

r1,r2
qi, (69)

set pi+1 = (σ0, ri+1) and βi+1 = pi+1/pi, (70)
compute σi+1 = ri+1 +2βi+1ei+1 +β2

i+1σi. (71)

The computational complexity of the NEPCGS method
is ≈O [(4δl +4�1 +4�2 +19)n mults +8n adds]ν oper-
ations, where ν denotes the number of iterations required
for convergence to a predetermined tolerance level.

The Normalized Explicit Preconditioned BIconjugate
Conjugate Gradient-STAB (NEPBICG-STAB)
method, has also been presented in [Gravvanis
and Giannoutakis (2003)]. The computational
complexity of the NEPBICG-STAB method is

Distributed Finite Element Normalized Approximate Inverse Preconditioning 75

≈ O [(6δl +4�1 +4�2 +22)n mults+6n adds]ν op-
erations, where ν denotes the number of iterations
required for convergence to a predetermined tolerance
level. The effectiveness of the normalized explicit
preconditioned schemes, using the NOROBAIFEM-3D
algorithm, is related to the fact that the normalized
approximate inverse exhibits a similar “fuzzy” structure
as the coefficient matrix A.

Let us consider that the coefficient matrix A, the normal-
ized optimized approximate inverse D−1

r1,r2
M̂δl

r1,r2
D−1

r1,r2
and

the vectors s, ui, ri, σi, qi, are distributed in a block-row
distribution. In this balanced distribution we partition the
matrices and vectors into blocks of consecutive rows, and
assign a panel of elements to each process. The proces-
sors operate with local data, and need synchronization
points before matrix × vector multiplications and after
inner products.

Let local n be the number of rows allocated to each
processor (i.e. local n := n/no proc). Then, the
Parallel form of the Normalized Explicit Preconditioned
Conjugate Gradient Square (PNEPCGS) can be ex-
pressed by the following algorithmic procedure:
Let u0 be an arbitrary initial approximation to the
solution vector u. Then,

for (j = myrank ∗ local n+1) to
(myrank ∗ local n+ local n)

(myrank is the rank of each process)
(r∗0) j = s j−A(u0) j (72)

if δl = 1 then
for (j = myrank ∗ local n+1) to

(myrank ∗ local n+ local n)
(r0) j = (r∗0) j /

(
d2
)

j (73)

else
gather distributed r∗0 onto each process
for (j = myrank ∗ local n+1) to

(myrank ∗ local n+ local n)

(r0) j =

(
min(n, j+δl−1)

∑
k=max(1, j−δl+1)

µ̂ j,k (r∗0)k /dk

)
/(d) j (74)

for (j = myrank ∗ local n+1) to
(myrank ∗ local n+ local n)

(σ0) j = (r0) j (75)

(p0) j =
(
(σ0) j , (r0) j

)
(76)

Gather local p0 to root process, compute their sum and
scatter it to all processes.

Then, for i = 0,1, . . ., (until convergence) compute
in parallel the vectors ui+1, ri+1, σi+1 and the scalar
quantities αi, βi+1 as follows:

for (j = myrank ∗ local n+1) to
(myrank ∗ local n+ local n)

(qi) j = A(σi) j (77)
if δl = 1 then

for (j = myrank ∗ local n+1) to
(myrank ∗ local n+ local n)

(gi) j = (qi) j /
(
d2
)

j (78)

else
gather distributed qi onto each process
for (j = myrank ∗ local n+1) to

(myrank ∗ local n+ local n)

(gi) j =

(
min(n, j+δl−1)

∑
k=max(1, j−δl+1)

µ̂ j,k (qi)k /dk

)
/(d) j (79)

for (j = myrank ∗ local n+1) to
(myrank ∗ local n+ local n)

(ti) j =
(
(σ0) j , (gi) j

)
(80)

Gather local ti to root process, compute their sum
and scatter it to all processes
ai = pi/ti (81)

for (j = myrank ∗ local n+1) to
(myrank ∗ local n+ local n)

(ei+1) j = (ri) j +bi (ei) j−ai (gi) j (82)
(fi) j = (ri) j +bi (ei) j +(ei+1) j (83)
(ui+1) j = (ui) j +ai (fi) j (84)

for (j = myrank ∗ local n+1) to
(myrank ∗ local n+ local n)

(qi) j = A(fi) j (85)
if δl = 1 then

for (j = myrank ∗ local n+1) to
(myrank ∗ local n+ local n)

(gi) j = (qi) j /
(
d2
)

j (86)

else
gather distributed qi onto each process
for (j = myrank ∗ local n+1) to

(myrank ∗ local n+ local n)

(gi) j =

(
min(n, j+δl−1)

∑
k=max(1, j−δl+1)

µ̂ j,k (qi)k /dk

)
/(d) j (87)

for (j = myrank ∗ local n+1) to
(myrank ∗ local n+ local n)

(ri+1) j = (ri) j−ai (gi) j (88)
for (j = myrank ∗ local n+1) to

76 Copyright c© 2006 Tech Science Press CMES, vol.16, no.2, pp.69-82, 2006

(myrank ∗ local n+ local n)
(pi+1) j =

(
(σ0) j , (ri+1) j

)
(89)

Gather local pi+1 to root process, compute their sum
and scatter it to all processes
bi+1 = pi+1/pi (90)
for (j = myrank ∗ local n+1) to

(myrank ∗ local n+ local n)
(σi+1) j = (ri+1) j +2bi+1 (ei+1) j +b2

i+1 (σi) j (91)

The computational complexity of the PNEPCGS
method is ≈ O [(4δl +4�1 +4�2 +19)n
local n mults +8local n adds]ν operations,
while the total communication cost is ≈
O [5ts log(no proc)+2local n(no proc−1) tw]ν,
where ν denotes the number of iterations required for the
convergence to a certain level of accuracy, ts the message
latency, and tw the time necessary for a word to be sent.

Thus, the speedup and efficiency of the PNEPCGS
method can be defined as follows:

Sp =
1

1
no proc + 5ts log(no proc)

O(δl)ntm
+ 2(no proc−1)tw

O(δl)

(92)

and

Ep =
1

1+ 5tsno proc log(no proc)
O(δl)ntm

+ 2(no proc−1)tw
O(δl)

(93)

where tm denotes the computational time of one multipli-
cation. Hence, for δl → ∞, Sp → no proc and Ep → 1,
that is optimum.

The total number of arithmetic operations required for
the parallel computation of the solution uν is:

O
(

n1/2 (δl +�1 +�2)
1/2 local n logε−1

)
, (94)

while the total communication cost is:

O

[
n1/2 logε−1

(δl +�1 +�2)
1/2

(ts log(no proc)

+ local n no proc tw)] . (95)

4 Numerical Results

In this section we examine the effectiveness of the new
proposed schemes for solving characteristic three dimen-
sional boundary value problems.

Model problem I: Let us consider the following 3D
elliptic partial differential equation subject to Dirichlet
boundary conditions:

uxx +uyy +uzz +u = F , (x,y, z)∈ R, (96)
u(x,y, z) = 0, (x,y, z)∈ ∂R, (96.a)

where R is the unit cube and ∂R denotes the boundary
of R. The domain is covered by a non-overlapping trian-
gular network resulting in a hexagonal mesh. The right
hand side vector of the system Eq. 1 was computed as
the product of the matrix A by the solution vector, with
its components equal to unity. The “fill-in” parameters
were set to r1 = r2 = 2 and the width parameters were
set to �1 = �2 = 3. The iterative process was terminated
when ‖ri‖∞ < 10−5.

The parallel numerical results were performed on a Be-
owulf cluster, which consists of forty eight (48) AMD
Athlon XP, running at 1.7 GHz with 1.5GB RAM and
20Gb local boot drive connected in a 2Gbit network us-
ing Myrinet switch.

For communication operations, the MPI collective com-
munication routines MPI Allreduce and MPI Allgather
were used for sending and receiving data among dis-
tributed processes, [Pacheco (1997); Quinn (2003)].

The speedups and the number of iterations of the
PNEPCGS method for several values of the “retention”
parameter δl with n = 8000, m = 21, p = 401 with
r1 = r2 = 2 and �1 = �2 = 3 are given in Tab. 1.

In Fig. 1, Fig. 2 and Fig. 3 the speedups and processors
allocated for several values of the “retention” parame-
ter δl, the speedups versus the “retention” parameter δl
for several numbers of processors and the parallel ef-
ficiency for several values of the “retention” parameter
δl are presented respectively for the PNEPCGS method
with n = 8000, m = 21, p = 401 with r1 = r2 = 2 and
�1 = �2 = 3.

In Fig. 4 the performance evaluation measurements of
the PNEPCGS method are given with n = 8000, m = 21,
p = 401 with r1 = r2 = 2 and �1 = �2 = 3.

It is observed by the experimental results that the com-
munication cost is responsible for the performance of
the PNEPCGS method for small values of parameter δl,
where the choice of symmetric multiprocessor systems is
recommended, in contrast with large values of δl where
speedups and efficiency tend to become optimum.

Model problem II: Let us consider the following non-

Distributed Finite Element Normalized Approximate Inverse Preconditioning 77

Table 1 : Speedups and processors allocated of the PNEPCGS method for several values of δl, with n = 8000,
m = 21 and p = 401, with r1 = r2 = 2 and �1 = �2 = 3.

Speedups Number of
“Retention” Number of processors PNEPCGS
parameter 2 4 8 16 32 iterations

δl = 1 0.5669 0.3405 0.2267 0.1409 0.0852 11
δl = 2 0.4948 0.2678 0.1758 0.1066 0.0645 11
δl = m 0.7593 0.4770 0.2822 0.1974 0.1246 9
δl = 2m 0.9759 0.6869 0.4070 0.3024 0.1955 7
δl = p 1.8004 3.0555 3.2012 3.3146 3.3813 6

δl = 2p 1.8591 3.2250 5.0216 5.1399 5.3410 5
δl = 3p 1.8784 3.3414 5.2458 5.5970 8.2806 5
δl = 4p 1.8834 3.4010 6.9428 7.1225 9.6978 5
δl = 6p 1.8901 3.4112 6.9970 7.2610 9.8880 5

Figure 1 : Speedups and processors allocated of the PNEPCGS method for several values of δl, with n = 8000,
m = 21 and p = 401, with �1 = �2 = 3 and r1 = r2 = 2.

linear P.D.E. in three space variables:

εLΔu = αeβu, εL→ 0+, (x,y, z) ∈Ω, (97)

with boundary conditions:

u(x,y, z) = 0. (97.a)

A non-overlapping triangular network resulting in a
hexagonal mesh covered the domain. The width pa-
rameters at semi-bandwidths m and p were chosen to
be �1 = �2 = 3 and the “fill-in” parameters were set to
r1 = r2 = 2. The initial guess was u(0) = 1.0.

The quasi-linearized Newton scheme is of the following

form:

−Lhu(k+1) +
h2

εL
αβeu(k)

u(k+1)

= −h2

εL
αeβu(k)

+
h2

εL
u(k)αβeβu(k)

, (98)

with Lh denoting the discretized finite element operator.

The termination criterion for the normalized explicit
preconditioned conjugate gradient - type schemes was
‖ri‖∞ < 10−4, where ri is the recursive residual.

The criterion for the termination of the Newton method
was max

j

∣∣∣(u(k+1)
j −u(k)

j

)
/
(

1+u(k+1)
j

)∣∣∣ < 10−4, j ∈
[1,n].
Numerical results for the Newton compact iterations in

78 Copyright c© 2006 Tech Science Press CMES, vol.16, no.2, pp.69-82, 2006

Figure 2 : Speedups versus the “retention” parameter δl of the PNEPCGS method for several numbers of processors,
with n = 8000, m = 21 and p = 401, with �1 = �2 = 3 and r1 = r2 = 2.

Figure 3 : Parallel efficiency of the PNEPCGS method for several values of δl, with n = 8000, m = 21 and p = 401,
with �1 = �2 = 3 and r1 = r2 = 2.

conjunction with the NEPCG and NEPCGS method
based on the NOROBAIFEM-3D algorithm, for several
values of the parameters εL, α, β and the “retention” pa-
rameter δl, with n = 3375, m = 16, p = 226, r1 = r2 = 2
and �1 = �2 = 3, are presented in Tab. 2 and Tab. 3 re-
spectively.

Model problem III: Let us consider the following non-
linear parabolic P.D.E. in three space variables:

εt
∂u
∂t −εLΔu = αeβu,εt,εL→ 0+, (x,y, z) ∈Ω, t > 0, (99)

with initial conditions:

u(x,y, z,0) = g(x,y, z) , 0≤ x,y, z≤ 1, (99.a)

and non-linear boundary conditions:

u(x,y, z, t) = 0, t > 0. (99.b)

A non-overlapping triangular network resulting in a
hexagonal mesh covered the region, for the computation
of an approximate solution of the perturbation problem.
Then, by using backward differences for ut and the finite

Distributed Finite Element Normalized Approximate Inverse Preconditioning 79

Figure 4 : Performance evaluation measurements of the PNEPCGS method, with n = 8000, m = 21 and p = 401,
with �1 = �2 = 3 and r1 = r2 = 2.

Table 2 : The convergence behavior for solution of the Newton method in conjunction with the NEPCG method for
various values of εL, α, β, δl, with n = 3375, m = 16, p = 226, �1 = �2 = 3 and r1 = r2 = 2.

εL α = β Newton method number of NEPCG iterations
(outer iter.) δl = 1 δl = 2 δl = m δl = 2m δl = p

1.0 3 21 21 18 17 15
1.0 0.01 2 15 15 13 12 11

0.000001 2 15 15 13 12 11
1.0 4 29 28 24 22 20

0.01 0.01 2 15 15 13 12 11
0.000001 2 15 15 13 12 11

1.0 10 42 42 40 37 35
0.000001 0.01 3 26 26 23 20 19

0.000001 2 15 15 13 12 11

element scheme, with a row-wise ordering used such that
the width parameters �1, �2 of the bands were kept to low
values, i.e. �1 = �2 = 3, then the resulting coefficient ma-
trix is of the form given in (2). The “fill-in” parameters
were set to r1 = r2 = 2. The initial guess was u(0) = 1.0.

The termination criterion for the normalized explicit
preconditioned conjugate gradient - type schemes was
‖ri‖∞ < 10−4, where ri is the recursive residual. The cri-
terion for the termination of the Newton and the steady

state solution was max
j

∣∣∣(u(k+1)
j −u(k)

j

)
/
(

1+u(k+1)
j

)∣∣∣<
10−4, j ∈ [1,n].

The quasi-linearized Newton scheme is of the following
form:

h2

εL

(εt

Δt
−αβeβu(k)

)
u(k+1)

i, j −Lhu(k+1)
i, j

=
h2

εL

(
εtu(k)

Δt
+
(

1−βu(k)
)

αeβu(k)

)
, (100)

with Lh denoting here the corresponding discretized finite
element operator.

Numerical results for the steady state solution using
backward differences combined with Newton compact it-
erations in conjunction with the NEPCG and NEPCGS

80 Copyright c© 2006 Tech Science Press CMES, vol.16, no.2, pp.69-82, 2006

Table 3 : The convergence behavior for solution of the Newton method in conjunction with the NEPCGS method
for various values of εL, α, β, δl, with n = 3375, m = 16, p = 226, �1 = �2 = 3 and r1 = r2 = 2.

εL α = β Newton method number of NEPCGS iterations
(outer iter.) δl = 1 δl = 2 δl = m δl = 2m δl = p

1.0 3 13 13 11 9 7
1.0 0.01 2 9 9 8 6 6

0.000001 2 9 9 8 6 6
1.0 4 17 16 15 12 10

0.01 0.01 2 9 9 8 6 6
0.000001 2 9 9 8 6 6

1.0 10 18 18 17 16 15
0.000001 0.01 3 15 16 14 11 10

0.000001 2 9 9 8 6 6

Table 4 : The convergence behavior for steady state solution of the Newton method in conjunction with the NEPCG
method for various values of εt , εL, α, β, δl and the time step Δt, with n = 3375, m = 16, p = 226, �1 = �2 = 3 and
r1 = r2 = 2.

εt εL = α = β Δt no of outer Newton method number of NEPCG iterations
iter for s.s.s. inner iter. δl = 1 δl = 2 δl = m δl = 2m δl = p

1 0.05 3 6 23 23 21 18 17
0.01 4 8 31 30 28 25 22

10−1 0.1 0.05 4 7 28 28 24 22 19
0.01 6 11 42 41 37 34 30

0.01 0.05 7 13 50 50 44 41 38
0.01 16 31 88 88* 87 81 74

1 0.05 3 6 19 18 17 14 13
0.01 3 6 21 21 21 18 15

10−2 0.1 0.05 3 5 18 18 16 14 13
0.01 4 7 25 25 22 20 18

0.01 0.05 4 7 28 27 24 22 19
0.01 6 11 42 41 37 34 30

1 0.05 2 4 11 10 10 10 7
0.01 3 6 16 17 15 14 11

10−3 0.1 0.05 3 5 14 14 13 11 10
0.01 3 5 17 17 15 13 12

0.01 0.05 3 5 18 17 15 14 13
0.01 4 7 25 24 22 20 18

1 0.05 2 4 9 9 9 8 7
0.01 2 4 9 9 9 8 7

10−6 0.1 0.05 2 3 9 9 8 7 6
0.01 2 3 9 9 8 7 6

0.01 0.05 2 3 8 8 8 7 6
0.01 2 3 9 9 8 7 6

*The number of outer and inner (Newton method) iterations was 15 and 29 iterations respectively

method, based on the NOROBAIFEM-3D algorithm,
for several values of the parameters εt , εL, α, β the time-

step Δt and the “retention” parameter δl, with n = 3375,
m = 16, p = 226, r1 = r2 = 2 and �1 = �2 = 3, are pre-

Distributed Finite Element Normalized Approximate Inverse Preconditioning 81

Table 5 : The convergence behavior for steady state solution of the Newton method in conjunction with the
NEPCGS method for various values of εt , εL, α, β, δl and the time step Δt, with n = 3375, m = 16, p = 226,
�1 = �2 = 3 and r1 = r2 = 2.

εt εL = α = β Δt no of outer Newton method number of NEPCGS iterations
iter for s.s.s. inner iter. δl = 1 δl = 2 δl = m δl = 2m δl = p

1 0.05 3 6 13 17 12 11 9
0.01 4 8 19 18 18 13 13

10−1 0.1 0.05 4 7 18 18 16 14 12
0.01 6 11 27 28 25 20 20

0.01 0.05 7 13 32 32 28 24 22
0.01 16 31 53 55 52 48 43

1 0.05 3 6 10* 11 10 9 9
0.01 3 6 12* 15 10 9 9

10−2 0.1 0.05 3 5 11 13 10 9 7
0.01 4 7 17 15 15 11 11

0.01 0.05 4 7 18 18 16 14 12
0.01 6 11 27 28 25 20 20

1 0.05 2 4 6** 7 5 5 5
0.01 3 6 8* 9 8 8 7

10−3 0.1 0.05 3 5 8◦ 10 8 8 7
0.01 3 5 9◦ 12 8 8 7

0.01 0.05 3 5 11 13 10 9 7
0.01 4 7 17 15 15 11 11

1 0.05 2 4 6** 7 5 5 5
0.01 2 4 6** 7 5 5 5

10−6 0.1 0.05 2 3 5 6 4 4 4
0.01 2 3 5◦◦ 6 4 4 4

0.01 0.05 2 3 5◦◦ 6 4 4 4
0.01 2 3 5◦◦ 6 4 4 4
* The number of inner iterations (Newton method) was 7 iterations
** The number of inner iterations (Newton method) was 5 iterations
◦ The number of inner iterations (Newton method) was 6 iterations
◦◦ The number of inner iterations (Newton method) was 4 iterations

sented in Tab. 4 and Tab. 5 respectively.

It should be noted that the convergence behavior of the
NEPCG and NEPCGS method for the “retention” pa-
rameter δl = 2p was almost of the same order as for the
“retention” parameter δl = p.

Finally, the parallel normalized explicit approximate in-
verse finite element preconditioning methods can be ef-
ficiently used for solving three dimensional highly non-
linear elliptic and parabolic partial differential equations.

Acknowledgement: The authors would like to thank
indeed Professor M.P. Bekakos, Director of the Digital
Systems Laboratory of Democritus University of Thrace

for proposing to use the Beowulf cluster of University
of Ioannina, and Professor I.E. Lagaris, Department of
Computer Science, University of Ioannina for allowing
us to use the Beowulf cluster.

References

Akl, S. (1997): Parallel Computation: Models and
Methods. Prentice Hall.

Benzi, M. (2002): Preconditioning techniques for large
linear systems: A survey. Journal of Computational
Physics, vol. 182, pp. 418–477.

82 Copyright c© 2006 Tech Science Press CMES, vol.16, no.2, pp.69-82, 2006

Benzi, M.; Meyer, C.; Tuma, M. (1996): A sparse ap-
proximate inverse preconditioner for the conjugate gra-
dient method. SIAM J. Sci. Comput., vol. 17, pp. 1135–
1149.

Dongarra, J.; Duff, I.; Sorensen, D.; van der Vorst,
H. (1998): Numerical Linear Algebra for High-
Performance Computers. SIAM.

Gravvanis, G. (1998): Parallel matrix techniques. In
Papailiou, K.; Tsahalis, D.; Periaux, J.; Hirsch, C.; Pan-
dolfi, M.(Eds): Computational Fluid Dynamics, vol-
ume I, pp. 472–477. Wiley.

Gravvanis, G. (2002): Explicit Approximate Inverse
Preconditioning Techniques. Archives of Computational
Methods in Engineering, vol. 9(4), pp. 371–402.

Gravvanis, G.; Giannoutakis, K. (2003): Normal-
ized Explicit Finite Element Approximate Inverses. I.
J. Differential Equations and Applications, vol. 6(3), pp.
253–267.

Gravvanis, G.; Giannoutakis, K. (2004): On the rate
of convergence and computational complexity of normal-
ized implicit preconditioning for solving finite difference
equations in three space variables. I. J. of Computational
Methods, vol. 1(2), pp. 367–386.

Gravvanis, G.; Giannoutakis, K. (2005): Normal-
ized implicit preconditioned methods based on normal-
ized finite element approximate factorization procedures.
In K.J.Bathe(Ed): Computational Fluid and Solid Me-
chanics 2005, volume 2, pp. 1115–1119. Elsevier.

Greenbaum, A. (1997): Iterative methods for solving
linear systems. SIAM.

Grote, M.; Huckle, T. (1997): Parallel preconditioning
with sparse approximate inverses. SIAM J. Sci. Comput.,
vol. 18, pp. 838–853.

Huckle, T. (1999): Approximate sparsity patterns for
the inverse of a matrix and preconditioning. Applied
Numerical Mathematics, vol. 30, pp. 291–303.

Lipitakis, E.; Evans, D. (1984): Solving linear finite
element systems by normalized approximate matrix fac-
torization semi-direct methods. Computer Methods in
Applied Mechanics & Engineering, vol. 43, pp. 1–19.

Pacheco, P. (1997): Parallel programming with MPI.
Morgan Kaufmann Publishers.

Quinn, M. (2003): Parallel Programming in C with
MPI and OpenMP. Mc-Graw Hill.

Saad, Y. (1996): Iterative methods for sparse linear
systems. PWS Publishing.

Saad, Y.; van der Vorst, H. (2000): Iterative solution
of linear systems in the 20th century. J. Comp. Applied
Math, vol. 123, pp. 1–33.

van der Vorst, H. (1989): High performance precondi-
tioning. SIAM J. Sci. Stat. Comput., vol. 10, pp. 1174–
1185.

