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Wave Propogation Characteristics of Rotating Uniform Euler-Bernoulli Beams

K.G. Vinod1, S. Gopalakrishnan1 and R. Ganguli1

Abstract: A spectral finite element formulation for a
rotating beam subjected to small duration impact is pre-
sented in this paper. The spatial variation in centrifugal
force is modeled in an average sense. Spectrum and dis-
persion plots are obtained as a function of rotating speed.
It is shown that the flexural wave tends to behave non-
dispersively at very high rotation speeds. The numerical
results are simulated for two rotating waveguides of dif-
ferent dimensions. The results show that there is a steep
increase in responses with the response peaks and the re-
flected signals almost vanishing at higher rotating speeds.
The solution obtained in this work can be used as Ritz
functions for the spectral finite element method, where
the variable coefficient differential equation is present.

keyword: Wavenumber, spectrum relation, non-
dispersive, group speed, phase speed, transfer function,
Lagrangian.

1 Introduction

The problem of determining vibration characteristics of
rotating beams is a requirement in various branches of
engineering. The determination of the structural re-
sponse and modal frequencies are essential in the design
of rotating structural elements such as helicopter blades,
airplane propellers and turbo machinery blades. Such
beams can also be present as elements of complexmulti-
body dynamic systems (Huston and Liu (2005)). The
analysis of these structural elements leads to differen-
tial equations with variable coefficients; which are intro-
duced due to the variation of centrifugal force and ge-
ometry along the beam length. In general, rotation com-
plicates the analysis of engineering structures (Leu and
Chen (2006)). A number of solution techniques, with
varying degrees of applicability have been suggested in
the literature for the rotating beam problem. Wright,
Smith, Thresher, and Wang (1982) used the Frobenius
method to get the exact frequencies and mode shapes of a
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rotating beam with linear variation in flexural rigidity and
mass along the length. Naguleswaran (1994), presented
the dimensionless natural frequencies of a rotating beam
for different boundary conditions. He solved the mode
shape equation by the Frobenius method and the fre-
quency equations by trial and error. Banerjee (2000) de-
rived the dynamic stiffness matrix of a non-uniform, ro-
tating, Euler-Bernoulli beam using the Frobenius method
of solution in power series. He also modeled a tapered
beam assembling the dynamic stiffness matrices of uni-
form beams by approximating the tapered beam as an as-
sembly of many different uniform beams.

The finite element method has emerged as the analysis
technique of choice in recent years (Forth and Starosel-
sky (2005), Andreaus, Batra, and Porfiri (2005), Fedelin-
ski and Gorski (2006)). Several finite element method
based approaches for rotating beams have also been dis-
cussed in the literature. Nagaraj and Kumar (1975) used
Galerkin FEM for finding the vibration characteristics
of the rotating beam. Hoa (1979) analyzed the vibra-
tion frequencies of a rotating beam with a tip mass using
the finite element method, where he assumed a third or-
der polynomial for the lateral displacement. Putter and
Manor (1978) found the lead lag natural frequencies of
a radial beam mounted on a rotating disc using FE tech-
nique and he used a fifth degree polynomial as the dis-
placement function. The convergence of the FE model
depends on the number of elements used. That is, even
for obtaining the lower mode frequencies, a large size
eigenvalue problem needs to be solved. Furthermore, a
very large number of finite elements are required for de-
termining the higher mode frequencies.

Impact loads of small duration are normally encountered
in many rotating systems such as helicopter blades. Some
typical examples are the bird hit on helicopter or tur-
bine/compressor blades. Alternatively, such short du-
ration pulses are required, if one has to perform struc-
tural health monitoring studies. Short duration pulses
excite many higher order modes. In order to capture
these higher order modes accurately, it is necessary that
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element sizes shall be very small, of the order of the
wavelength of signal. This will increase the computa-
tion cost of conventional finite element method (CFEM)
enormously. Spectral finite element method (SFEM) is
an efficient technique for this case to achieve high accu-
racy using a limited number of elements, because in most
cases, it uses exact solution to the governing differen-
tial equation in the frequency domain, as the interpolat-
ing functions for element formulation (Wu, Liu, Scarpas,
and Ge (2006), Mitra and Gopalakrishnan (2006)). As
a result, the spectral element treats the distribution of
mass and rotational inertia of the structural element ex-
actly. Only one spectral element needs be placed be-
tween any two joints, substantially reducing the total
number of degrees of freedom in the system. The spec-
tral formulation requires that the assembled system of
equations be solved in the frequency domain and utilizes
the Fast Fourier Transform (FFT) to transform the time
domain responses to the frequency domain and back.
Spectral element method was originally proposed by
Narayanan and Beskos (1982) and popularized by Doyle
(1989). Spectral element for elementary isotropic waveg-
uides was formulated by Doyle (1988), Doyle and Farris
(1990) and higher order waveguides by Gopalakrishnan,
Martin, and Doyle (1992) and Martin, Gopalakrishanan,
and Doyle (1994). Similarly, spectral element for ele-
mentary and higher order composite waveguides were
formulated by Mahapatra and Gopalakrishnan (2000)
and Mahapatra and Gopalakrishnan (2003). Spectral ele-
ments for inhomogenous waveguides were formulated by
Chakraborty and Gopalakrishnan (2003), Chakraborty
and Gopalakrishnan (2005). These works show the ver-
satility of spectral FEM in handling high frequency im-
pact type load. Similar wave based methods are find-
ing increasing applications in the recent literature (Han,
Ding, and Liu (2005), Pluymers, Desmet, Vandepitte,
and Sas (2005))

In the present work, the response of a beam with centrifu-
gal force, subjected to a transverse impact load is studied
using the spectral FEM. The governing partial differen-
tial equation for a uniform rotating beam is derived using
Hamilton’s principle and the variable coefficient for the
centrifugal term is replaced by the maximum centrifugal
force. The rotating beam problem is now transformed to
a case of beam subjected to an axial force. Even though
this averaging seems to be a crude approximation, one
can use this as a powerful model in analyzing the wave

propagation characteristics of the rotating structure. Fur-
thermore, the solutions can be used as Ritz functions for
spectral finite element analysis of the variable coefficient
differential equation. The constant coefficient PDE is
solved using spectral analysis. The beam is subjected to
an impact load and the effect of axial force due to rotation
and flexural stiffness on the structure response, spectrum
relation and response amplitude is studied qualitatively
and presented.

2 Mathematical formulation
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Figure 1 : (a)Spectral finite element for a beam under
rotation, (b) Forces acting on an incremental length dx of
the rotating beam
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A rotating blade can be represented as a cantilever
beam having vibration displacements perpendicular to
the plane of rotation (flapping motion). Considering the
elementary theory of beams, the axial and transverse dis-
placement fields of a rotating blade can be represented
as a cantilever beam having vibration displacements per-
pendicular to the plane of rotation (flapping motion).
Considering the elementary theory of beams, the axial
and transverse displacement fields are

u(x,y, z, t)= u0(x, t)− z∂w(x, t)∂x
(1)

w(x,y, z, t)= w(x, t) (2)

The strain

εxx =
∂u0

∂x
− z∂

2w
∂x2

(3)

The governing equation can be derived from the Hamil-
ton’s principle where the action integral

∫ t2
t1 Ldt assumes

a stationary value. ie. δ
∫ t2

t1 Ldt = 0, where L is the La-
grangian given as

L = (T −V ) (4)

The total kinetic energy of the beam is

T =
1
2

∫ L
0

[
ρA(x)

((
∂u0

∂t
− z ∂

∂t

(
∂w
∂x

))2

+
(

∂w
∂t

)2
)

+
1
2
m(Ωx)2

]
dx

=
1
2

∫ L
0

[
ρA(x)

((
∂u0

∂t

)2

+
(

∂w
∂t

)2
)

+
1
2
m(Ωx)2

]
dx

(5)

where ρ is the mass density, A is the beam cross sec-
tion area, I is the moment of inertia and Ω is the rotation
speed.
The total potential energy is

V =
1
2

E
∫
V

ε2
xxdV +

∫ L
0

1
2
T (x)

(
∂w
∂x

)2

dx

=
∫ L

0

EA(x)
2

(
∂u0

∂x

)2

dx+
∫ L

0

EI(x)
2

(
∂2w
∂x2

)2

dx

+
∫ L

0

1
2
T (x)

(
∂w
∂x

)2

dx (6)

On substituting Eq. 5 and Eq. 6 in Eq. 4 and using the
Hamilton’s principle, we get the governing differential
equation for transverse displacement w(x, t) as

∂2

∂x2

(
EI(x)

∂2w
∂x2

)
− ∂

∂x

(
T (x)

∂w
∂x

)
+ρA(x)

∂2w
∂t2 = 0 (7)

where T (x) is the axial force due to centrifugal stiffening
and is given as

T (x) =
∫ L
x

ρA(x)Ω2xdx (8)

For a uniform, isotropic beam, Eq. 7 reduces to

EI
∂4w
∂x4

− ∂
∂x

(
T (x)

∂w
∂x

)
+ρA

∂2w
∂t2 = 0 (9)

For the spectral FEM formulation, we assume a uniform
beam and replace T (x) by the maximum force (at the
root, i.e. at x= 0 )

Tmax =
∫ L

0
ρA(x)Ω2xdx =

ρAΩ2L2

2
(10)

This allows us to represent Eq. 9 as a constant coefficient
PDE which can be written as

EI
∂4w
∂x4

−Tmax
∂2w
∂x2

+ρA
∂2w
∂t2 = 0 (11)

The above PDE (Eq. 11) governs the transverse displace-
ment of a beam with axial load undergoing out of plane
motion. In this particular problem, the axial load is pro-
portional to the rotation speed. Though approximate, this
mathematical model can give significant insight into the
study of spectrum relations of a rotating beam. The main
objective of the paper is to obtain Ritz functions for solv-
ing the variable coefficient partial differential equation
representing the exact variation of centrifugal force and
to see how the axial force affects the overall wave propa-
gation behavior of rotating beams.

3 Spectral finite element formulation

Spectral formulation begins by representing the trans-
verse displacement w(x, t) of the beam in spectral form
as

w(x, t) =
N

∑
n=1

ŵn(x,ωn)eiωnt (12)
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where ωn the circular frequency of the nth sampling point
and N is the Nyquist frequency. The sampling rate and
the number of sampling points (N1) should be sufficiently
large to have relatively good resolution of both high and
low frequencies respectively. On substituting Eq. 12 in
Eq. 11 we get,

N

∑
n=1

[
EI

∂4ŵn

∂x4
−Tmax

∂2ŵn

∂x2
+ρA(iωn)2ŵn

]
eiωnt = 0 (13)

The Eq. 13 must be satisfied for each n and hence can be
written as

EI
∂4ŵn

∂x4
−Tmax

∂2ŵn

∂x2
−ρAω2

nŵn = 0 (14)

Since the differential equation is a constant coefficient
one, it has the solution of the form ŵn = e−iknx. On sub-
stituting this solution in Eq.(14) we get,

k4n +
Tmax

EI
k2n −

ρAω2
n

EI
= 0 (15)

where kn is the wavenumber, which can be obtained as

kpn = ±

√√√√√−
(

ρAΩ2L2

2EI

)
±

√(
ρAΩ2L2

2EI

)2
+

(
4ρAω2

n
EI

)
2

(16)

Since Eq. 14 is a fourth order equation, we get four so-
lutions of which two are purely real and the other two
are purely imaginary. The subscript p corresponds to the
different modes of wave propagation. The real part gives
rise to the propagating component while the imaginary
part gives rise to the spatially damped mode. From Eq.
16 it is obvious that, there is no possibility for a cut off
frequency, above which the spatially damped mode turns
to be propagative. The above relation (Eq. 16) between
the wavenumber kn and frequency ωn is called the spec-
trum relation and for a beam, it is a nonlinear function
of frequency. Thus the phase speed which is defined
as c = ωn

(kn)R
is different for different ωn. In addition, it

should be noted that the phase speed is defined with re-
spect to real kn, since the real part represents the prop-
agative component of the wave. As a result, the speeds
change with frequencies, which makes the wave highly
dispersive. The group speeds can be evaluated using the
expression cg = dω

dk . This is the speed one has to use for
calculating the arrival of reflections.

Due to the inherent periodicity in wave analysis, it is
common that the signals from the neighboring window
propagates into view from the left, if the time window
(N1Δt) selected is not adequate. This will become promi-
nent for a dispersive system; say for beams, where the
low frequency components take an infinitely long time to
propagate into view. Thus the response will remain until
the time reaches infinity. This windowing problem exists
even for very high values of N1 and can be solved in a
computationally cheaper way by adding damping to the
system, so that all the signals eventually die out within
the chosen window. Mathematically, damping makes the
wavenumber complex and each term in the wave solu-
tion is multiplied by a e−

η
EI xterm. The governing PDE

with added damping in the spectral form is

EI
∂4ŵn

∂x4
−Tmax

∂2ŵn

∂x2
−ρAω2

nŵn + iωnηŵn = 0 (17)

4 Non-Dimensional form

To express the PDE in a non-dimensional form, we define

X =
x
L

; W =
w
L

;
dŵ
dx

=
dW
dX

; L
d2ŵ
dx2

=
d2W
dX2 ;

L2 d
3ŵ
dx3

=
d3W
dX3 ; L3 d

4ŵ
dx4

=
d4W
dX4 (18)

{
d4W
dX4 −

(
Ω2

2EI
ρAL4

)
d2W
dX2 −

(
ω2

n
EI

ρAL4

)
W +i

(
ωn
EI

ηL4

)
W

}

= 0 (19)

Defining

EI
ρAL4 = ω2

str;
ηωn

ρA
= ψ2 (20)

{
d4W
dX4 − 1

2

(
Ω

ωstr

)2 d2W
dX2 −

(
ωn

ωstr

)2

W +i

(
ψ

ωstr

)2

W

}

= 0 (21)

LetW = e−iknX be the solution, then

kpn = ±0.707

[
−1

2

(
Ω

ωstr

)2

±

{
1
4

Ω4

ω4
str

−4

(
− ω2

n

ω2
str

+ i
ψ2

ω2
str

)}1/2
]1/2

(22)
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The solution of Eq. 21 can be written as

W(X) =
{
C1e−ik1X +C2e−ik4X +C3eik2(1−X)

+C4eik3(1−X)
}

(23)

where k1 and k2 are the positive and negative real roots
and k3 and k4 are the positive and negative imaginary
roots.Then

W(X , t) =
N

∑
n=1

[
C1ne−ik1nX +C2ne−ik4nX

+C3neik2n(1−X) +C4neik3n(1−X)
]

eiωnt (24)

Defining the displacement boundary conditions in the
frequency domain as

at X = 0, W(0) =W 1, W
′(0) =W 2 (25)

at X = 1, W(1) =W 3, W
′(1) =W 4 (26)

W 1 =C1 +C2 +C3eik2 +C4eik3 (27)

W 2 = −ik1C1 − ik4C2 − ik2C3eik2 − ik3C4eik3 (28)

W 3 =C1e−ik1 +C2e−ik4 +C3 +C4 (29)

W 4 = −ik1C1e−ik1 − ik4C2e−ik4 − ik2C3 − ik3C4 (30)

{W} =

⎛
⎜⎜⎝
W 1

W 2

W 3

W 4

⎞
⎟⎟⎠ =

[
A
]
⎛
⎜⎜⎝
C1

C2

C3

C4

⎞
⎟⎟⎠ (31)

where,

[
A
]
=

⎛
⎜⎜⎜⎝

1 1 eik2 eik3

−ik1 −ik4 −ik2eik2 −ik3eik3

e−ik1 e−ik4 1 1
−ik1e−ik1 −ik4e−ik4 −ik2 −ik3

⎞
⎟⎟⎟⎠

{W} =
[
A
]{C} (32)

Defining the non-dimensional forces and moments as

d3W
dX3 = F̂

(
L2

EI

)
=

F̂

ω2
strmL

d2W
dX2 = M̂

(
L

EI

)
=

M̂

ω2
strmL2

(33)

Defining the force boundary conditions

at X = 0,
d3W
dX3 =

F̂1

ω2
strmL

;
d2W
dX2 =

M̂1

ω2
strmL2

(34)

at X = 1,
d3W
dX3 =

F̂2

ω2
strmL

;
d2W
dX2 =

M̂2

ω2
strmL2

(35)

F̂1

ω2
strmL

= ik
3
1C1 + ik

3
4C2 + ik

3
2C3eik2 + ik

3
3C4eik3 (36)

M̂1

ω2
strmL2

= −(−k21C1−k2
4C2 −k22C3eik2 −k2

3C4eik3) (37)

F̂2

ω2
strmL

= −ik
3
1C1e−ik1 − ik

3
4C2e−ik4 − ik

3
2C3 − ik

3
3C4 (38)

M̂2

ω2
strmL2

= −k21C−ik1
1 −k2

4C2e−ik4 −k2
2C3 −k2

3C4 (39)

{F} =

⎛
⎜⎜⎝
F̂1L
M̂1

F̂2L
M̂2

⎞
⎟⎟⎠

(
1

ω2
strmL2

)
=

[
B
]
⎛
⎜⎜⎝
C1

C2

C3

C4

⎞
⎟⎟⎠ (40)

where,

[
B
]
=

⎛
⎜⎜⎜⎜⎝

ik
3
1 ik

3
4 ik

3
2eik2 ik

3
3eik3

k
2
1 k

2
4 k

2
2eik2 k

2
3eik3

−ik
3
1e−ik1 −ik

3
4e−ik4 −ik

3
2 −ik

3
3

−k21e−ik1 −k24e−ik4 −k22 −k2
3

⎞
⎟⎟⎟⎟⎠

{F} =
[
B
]{C} (41)

But from Eq.(32)

{C}= [A]−1{W} (42)
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Substituting Eq.(42) in Eq.(41)

{F} =
[
B
][
A
]−1 {W}

[
K
]
=

[
B
][
A
]−1

(43)

Thus
[
K
]

is the non-dimensional dynamic stiffness ma-
trix in frequency domain.

F}=
[
K
]{W} (44)

The response at the nodes in the frequency domain is
{W} =

[
K
]−1{F}. Here

[
K
]−1

is the system trans-
fer function, represented as G. Applying the cantilever
boundary conditions, the reduced form of equation is
given as

(
W 3

W 4

)
=

(
G33 G34

G43 G44

)(
F2

M2

)
(45)

To find the response at X = 1 , when subjected to an im-
pact load at the same location, the above matrix further
reduces to

W 3 =G33F2 (46)

The response at any location X can be found by

W(X) = [ e−ik1X e−ik4X eik2(1−X) eik3(1−X) ]{C} (47)

Defining

ωn =
ωn

ω1
; t = tω1; v=

v
Lω1

(48)

where ω1is the first sampling frequency or the lowest har-
monic considered in the response spectrum. The non-
dimensional phase speed and group speed is defined as

cn =
ωn

(kn)R

cg =
dωn

d(kn)R
(49)
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Figure 2 : Variation of k wrt. ω for different
Ω , keeping ωstr constant(a) Euler beam1, L 0.6m,
mass 1.128kg, ωstr 40.5 rad/s,ω1 (first sampling fre-
quency) 6.136e3rad/s (b) Euler beam2, L 4.94m, mass
31.924kg,ωstr 5.198rad/s ,ω1 6.136e3rad/s

5 Numerical Results

Two uniform isotropic beams of length 0.6m and 4.94m
are taken as examples. Properties of the two beams are
given in Tab. 1 (Pawar and Ganguli (2003)). The aim is
to bring out the difference in wave propagation behavior
of these structural elements qualitatively, at different ro-
tation speeds/axial forces. So, the material failure due to
high stress is not considered in this study. All the cases
presented here are for a given mass and length.

5.1 Spectrum relations

5.1.1 Case1(Keeping ωstr fixed and vary Ω )

The non-dimensional real wavenumbers k1 and k2 are
plotted against non-dimensional frequency ω, for differ-
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Figure 3 : Variation of k wrt. ω for different ωstr , (0.5
1 2)ωstr keeping Ω constant (a)Euler beam1, L 0.6m,
mass 1.128kg, Ω 7500rad/s, ωstr 40.5rad/s, ω1 (first
sampling frequency) 6.136e3rad/s (b) Euler beam2, L
4.94m, mass 31.924kg, Ω 3000rad/s, ωstr 5.198rad/s,
ω1 6.136e3rad/s

Table 1 : Beam properties
Euler Bernoulli beam1
Length, m 0.6

Cross sectional area, m2 240 x 10 � 6

Moment of Inertia, m4 2000 x 10 � 12

E � GPa 200

Mass density, kg � m3 7840

Euler Bernoulli beam2
Length, m 4.94

Mass per unit length, ρA, kg � m 6.46
EIy

ρAω2L4 0.0168

ent Ω, keeping ωstr fixed. Fig. 2 indicates a quadratic
relationship between k and ω at zero or lower rotation
speeds. In Fig. 2a the wavenumber plots correspond-
ing to Ω = 0 and 1000rad/s are lying together. At high
rotation speeds, the spectrum relation becomes linear
or otherwise, the waves become non-dispersive. Also,
the wavenumber shows an inverse dependence on rota-
tion speed. For a non-rotating Euler-Bernoulli beam, the
spectrum relation kn =

√
ωn(

ρA
EI )

1
4 is dispersive in nature.

But for a rotating beam, at higher speeds, the above non-
linear relation shifts to a linear nature due to the relatively
negligible contribution from the ωn term, especially for
lower values of ωn . That is, the variation of kn is domi-
nated by the centrifugal force term at high Ω.

5.1.2 Case 2 (Keeping Ω fixed and vary ωstr)

The non-dimensional real wavenumbers k1 and k2 are
plotted against non-dimensional frequency ω, for differ-
ent ωstr, keeping Ω constant. From Fig. 3 it is apparent
that as ωstr goes up; i.e. as EI increases for a given mass
and length of the beam, the wavenumber decreases and
becomes more quadratic. The reason is quite obvious
from Eq. 22, since ωstr is in the denominator.

5.2 Dispersion relations

5.2.1 Case 1 (Keeping ωstr fixed and vary Ω )

Generally, for beams, different frequency components
travel at different speeds. Fig. 4 shows that, for a non-
rotating beam, the group speed is double the phase speed.
Also, c and cg rises with rotating speed and the difference
between them dips at high Ω. This is due to the reduction
in the wavenumber at high Ω, as observed in the previ-
ous section. As the limiting case, we can say that they
become equal and become constant for all ωn. For a non-
rotating beam, both c and cg are dispersive and shows
that the speeds approach infinity for very high frequen-
cies. This unreasonable limit is due to the limitation of
Euler-Bernoulli beam theory.

5.2.2 Case 2 (Keeping Ω fixed and vary ωstr )

Fig. 5 shows that as ωstr increases, the spectrum rela-
tion becomes more dispersive and also the difference be-
tween c and cg rise. So the input signal cannot maintain
its shape as it travels along the beam. As discussed ear-
lier, when ωstr decreases, the wavenumber increases and
hence the wave propagation speed decreases.
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Figure 4 : Variation of c and cgwrt. ω and Ω
keeping ωstr constant (a)Euler beam1, L 0.6m, mass
1.128kg, ωstr 5.198rad/s, ω1 (first sampling frequency)
6.136e3rad/s (b) Euler beam2, L 4.94m, mass 31.924kg,
ωstr 5.198rad/s, ω1 6.136e3rad/s

The variation of non-dimensional group speed and phase
speed with respect to rotation, for a given sampling fre-
quency is illustrated using the Euler beam2 properties.
Fig. 6a shows that when the sampling frequency is
3e4rad/s, the c and cg matches except at low rotation
speeds. This is in good agreement with the result shown
in Fig. 4. Fig. 6b shows that for the higher frequency,
3e6rad/s, difference between c and cg exists up to cer-
tain Ω, and the difference tends to zero at very high ro-
tation speeds. As mentioned earlier, it is very clear from
these plots that for non-rotating beams, the group speed
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Figure 5 : Variation of c and cgwrt. ω and ωstr keeping
Ω constant (a)Euler beam1, L 0.6m, mass 1.128kg, Ω
7500rad/s, ω1 (first sampling frequency) 6.136e3rad/s
(b)Euler beam2, L 4.94m, mass 31.924kg, Ω 3000rad/s,
ω1 6.136e3rad/s

is twice that of phase.

5.3 Impact response

High frequency content, short duration pulse as shown in
Fig. 7a is given at the beam tip. Fig. 7b shows the FFT
of the pulse or the input amplitude spectrum F̂2. The
Eq. 46 is evaluated for each sampling frequency up to
the Nyquist frequency to obtainW 3. The inverse trans-
form of the product ( jωW 3) gives the non-dimensional
transverse velocity of the beam at X = 1. The non-
dimensional transverse velocity v, at the impact location
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Figure 6 : Variation of c and cgwrt. Ω for a
given ω (a)Euler beam2 L 4.94m, mass 31.924kg, ωstr

5.198rad/s, ω 3e4rad/s (b) Euler beam2 L 4.94m, mass
31.924kg, ωstr 5.198rad/s, ω 3e6rad/s

is plotted and the wave characteristics studied by chang-
ing Ω and ωstr independently.

5.3.1 Case 1 (Keeping ωstr fixed and vary Ω )

Fig. 8 show that the velocity amplitude is directly depen-
dent on Ω. When rotation speed increases, the wavenum-
ber decreases and the spectrum relation becomes non-
dispersive. One can observe a steep increase in response
amplitude with increase in rotation speed and also the
incident response peek vanishes. Due to the linear spec-
trum relation at higher Ω, the reflected signal could re-
tain the same shape as the input signal and the same can
be observed from the plot. Furthermore, the time taken
for reflection decreases due to the reduction in wavenum-
ber and the consequent increase in the wave propagation
speed.
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Figure 7 : (a)Input force pulse (b) FFT of the input force
pulse

5.3.2 Case 2 (Keeping Ω fixed and vary ωstr )

From Fig. 9 it is apparent that the velocity amplitude
changes inversely with ωstr . Reduction in transverse dis-
placement amplitude, due to increased flexural stiffness
of the beam, decreases the transverse velocity. Also,
from the wavenumber plot it is understood that spec-
trum relation is quadratic and the wavenumber reduces
at higher values of ωstr . As a result, the spectrum re-
lation becomes dispersive and the wave propagation ve-
locity increases at higher ωstr. This can be verified by
observing the propagation time taken by the reflected sig-
nal.
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Figure 8 : Non-dimensional impulse response for differ-
ent Ω keeping ωstr constant. (a)Euler beam1, L 0.6m,
mass 1.128kg, ωstr 40.5rad/s, ω1 (first sampling fre-
quency) 6.136e3rad/s (b) Euler beam2, L 4.94m, mass
31.924kg, ωstr 5.198rad/s, ω1 6.136e3rad/s

6 Conclusion

An effort is made to study the wave propagation char-
acteristics of a uniform beam with axial force propor-
tional to rotation speed, using the spectral finite element
method (SFEM). The governing PDE is derived using
the Euler-Bernoulli beam theory and Hamilton’s princi-
ple. The system transfer function in the frequency do-
main is obtained using the spectral approach along with
the boundary conditions. The wavenumber is calculated
from the coefficients of the governing differential equa-
tion in the spectral form and the sampling frequency.
The dependence of wavenumber on the centrifugal force
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Figure 9 : Non-dimensional impulse response for differ-
ent ωstr keeping Ω constant. (a)Euler beam1, L 0.6m,
mass 1.128kg, ωstr 40.5rad/s, ω1 (first sampling fre-
quency) 6.136e3rad/s (b) Euler beam2, L 4.94m, mass
31.924kg, ωstr 5.198rad/s, ω1 6.136e3rad/s

term and the beam flexural stiffness is investigated. The
dispersive spectrum relation of non-rotating beam trans-
forms to non-dispersive at high rotation speeds. The
wave propagation speed increases with the rotation speed
and beam flexural stiffness.

The beam is subjected to an impact load and the re-
sponse is analyzed for different rotation speeds and beam
stiffness using two numerical examples, in a qualitative
way. The study reveals the effect of rotation speed on
the response and wave propagation behavior of the beam.
The transverse velocity amplitude rises with the rotating
speed and declines with the beam flexural stiffness. The
time of reflection of the input pulse decreases with in-
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creasing rotation speed and flexural stiffness. The input
pulse retains its original shape at high rotation speeds,
even after multiple reflections. Again, at high rotation
speeds, the reflected signal vanishes in the transverse ve-
locity response of the beam.

The solution from the present model can also be used as
the approximate solution to the problem where the vari-
able coefficients due to centrifugal stiffening, mass vari-
ation or flexural rigidity are present. Assuming the so-
lution obtained from this paper as the Ritz functions for
the variable coefficient ODE, the dynamic stiffness ma-
trix in the frequency domain can be obtained using the
principle of stationary potential energy (Gopalakrishnan
and Doyle (1994)). The accuracy of this approach im-
proves with the number of degrees of freedom or with
the number of elements used. Thus, it is advantageous
that the variable coefficient ODE need not be solved us-
ing the Frobenius method, which requires about 80 to 350
terms of the Frobenius series, for higher accuracy (Baner-
jee (2000); Wang and Wereley (2004)). This shows the
relevance of the present study in the analysis of rotating
beam problems using the spectral method.
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