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Cumulative Nonlinear Effects in Acoustic Wave Propagation

Ivan Christov1, C.I. Christov2 and P.M. Jordan3

Abstract: Two widely-used weakly-nonlinear
models of acoustic wave propagation — the
inviscid Kuznetsov equation (IKE) and the
Lighthill–Westervelt equation (LWE) — are in-
vestigated numerically using a Godunov-type
finite-difference scheme. A reformulation of the
models as conservation laws is proposed, mak-
ing it possible to use the numerical tools devel-
oped for the Euler equations to study the IKE and
LWE, even after the time of shock-formation. It is
shown that while the IKE is, without qualification,
in very good agreement with the Euler equations,
even near the time of shock formation, the same
cannot generally be said for the LWE.

Keyword: Compressible flows, shock waves,
nonlinear acoustics

1 Introduction

Singular surfaces are an important class of nonlin-
ear wave phenomena. Physically, these surfaces
represent propagating wavefronts, across which
one or more quantities of interest suffer a jump
discontinuity (or jump for short). What is most in-
teresting about such nonlinear waves, in particular
the subclass known as acceleration waves1, is the
fact that under certain conditions, even when the
initial input is continuous, the jump amplitude can
exhibit finite-time blow-up, also known as “gra-
dient catastrophe” in the mathematical literature.
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1 See the review articles by Chen (1973) and McCarthy
(1975). Also, in some of the earlier works in the field,
acoustic acceleration waves are referred to as “sonic dis-
continuities;” see, e.g., Thomas (1957).

The general study of acceleration waves has been,
and remains, a topic of great interest in many ar-
eas of the physical sciences. This is especially
true in the literature of continuum mechanics,
where numerous works detailing cases of finite-
time blow-up have appeared (see, e.g., Cole-
man and Gurtin (1967); Chen (1973); McCarthy
(1975); Elcrat (1977); Lindsay and Straughan
(1978); Greenspan and Nadim (1993); Müller and
Ruggeri (1993); Saccomandi (1994); Quintanilla
and Straughan (2004) and the references therein].
To some researchers, blow-up of an acoustic ac-
celeration wave’s amplitude can only mean one
thing: The formation of a shock wave, i.e., a prop-
agating jump in the velocity component perpen-
dicular to the wavefront [Chen (1973)]. To others,
however, this is an unproven conjecture [Coleman
and Gurtin (1967); Fu and Scott (1991)]. A cen-
tral question here is the following: What happens
to the waveform after finite-time blow-up occurs?

The classical context for investigating the prop-
erties of acoustic acceleration waves is provided
by the dynamic theory of lossless compressible
fluids, the basis of which are the equations of
Euler. In addition to the Euler equations, how-
ever, several weakly-nonlinear models also ap-
pear in the literature of this field. Of these,
the Lighthill–Westervelt equation (LWE) and the
inviscid Kuznetsov equation (IKE) are the best
known. Yet, numerical studies of these (approx-
imate) equations are scarce, as noted in the sur-
vey articles on nonlinear acoustics by Makarov
and Ochmann (1996; 1997a,b). In fact, the only
comparative (numerical) study of the latter mod-
els known to the present authors is that of Kagawa
et al. (1992), who reported significant discrepan-
cies between the solution of LWE and the refer-
ence solution for certain problems involving self-
focusing apertures. Moreover, their results sug-
gest that the IKE is a very good model of the exact
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dynamics.

Expanding upon our work in Christov et
al. (2006), we present an in-depth study of
these weakly-nonlinear models by means of a
Godunov-type numerical scheme and singular
surface analysis. These techniques are applied to
the Euler equations, IKE, and LWE alike. The re-
sults obtained are compared and contrasted in or-
der to assess the range of applicability of each of
the approximate models. We also briefly touch
upon the question of what happens after finite-
time blow-up occurs.

2 Governing equations

Consider a lossless compressible fluid, which is
assumed to behave as a perfect gas [as defined on
p. 79 of Thompson (1972)], that is initially in its
equilibrium state. Assuming a homentropic flow,
the equations of mass and momentum conserva-
tion, along with the polytropic equation of state,
which we collectively refer to here as the Euler
equations, are given by

pt +∇ · (pv) = 0, (1)

p [vt +(v ·∇)v]+∇℘ = 0, (2)

℘=℘0(p/p0)γ , (3)

respectively. Here, v is the velocity vector, p(> 0)
is the mass density,℘(> 0) is the thermodynamic
pressure, the constant γ(> 1), which is known
as the adiabatic index, is equal to the ratio of
specific heats, and all body forces have been ne-
glected. Moreover, by equilibrium state we mean
the unperturbed, quiescent state in which℘=℘0,
p = p0, η = η0, and v = (0,0,0), where η is the
specific entropy and ℘0, p0, and η0 are constants.
Additionally, we note that the assumption of ho-
mentropic flow means that ηt + v ·∇η = ∇η = 0
for all t ≥ 0 [see pp. 59–60 of Thompson (1972)].

Before proceeding to our numerical studies, we
first review the conditions under which finite-time
blow-up occurs. For simplicity, we limit our at-
tention to one-dimensional (1D) flow along the x-
axis, i.e., a flow such that v = (u(x, t),0,0). Also,
it should be noted that our presentation, which
follows those given by a number of other authors
[e.g., Thomas (1957); Elcrat (1977)], is rooted in

the theory of singular surfaces and is carried out
on the exact, fully nonlinear (1D) Euler equations.

3 Acceleration wave analysis

Let us begin by considering a smooth planar sur-
face x = Σ(t) that is propagating along the x-
axis of a Cartesian coordinate system in a region
occupied by a perfect gas. Let the speed of Σ
with respect to the gas immediately ahead of it
be U(> 0). Here, following the usual convention,
a “+” superscript denotes the region into which
Σ is advancing and a “−” superscript denotes the
region behind Σ. Furthermore, suppose that both
u and p are continuous functions of x and t, but
that at least one of their first derivatives, say ut ,
suffers a jump across Σ; i.e., [[u]] = [[p]] = 0, but
[[ut]] �= 0, where [[F]]≡ F−−F+ and for any func-
tion F we assume that F∓ ≡ limx→Σ(t)∓ F(x, t) ex-
ist2. If F− �= F+, then Σ is termed a singular
surface with respect to F . In our particular case,
F = ut , hence Σ is classified as an acceleration
wave [Chen (1973)]. Thus, given the above, and
the value of [[ut]] at t = 0, the task now is to deter-
mine [[ut]] for all later times.

A fundamental result of singular surface theory
is known as Hadamard’s lemma [see, e.g., Chen
(1973); McCarthy (1975); Bland (1988)]. For
the problem at hand, Hadamard’s lemma takes the
form

D[[F]]
Dt

= [[Ft ]]+V [[Fx]], (4)

where the 1D displacement derivative D/Dt gives
the time-rate-of-change measured by an observer
traveling with Σ and V ( �= 0) denotes the velocity
of Σ measured by an observer at rest. Now, since
we have assumed [[u]] = [[p]] = 0, then by Eq. (4)
it follows that

V [[ux]]+ [[ut]] = 0, V [[px]]+ [[pt]] = 0. (5)

Let us also take the jumps of Eqs. (1) and (2),
which is permissible since they hold on both sides
of Σ. After employing the formula for the jump
of a product, [[A B]] = A +[[B]] + B+[[A ]] +

2 We should note that F+ and F− are, at most, functions of
t only.
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[[A ]][[B]], and simplifying, we get the two addi-
tional jump relations

[[pt]]+u+[[px]]+p+[[ux]] = 0,

p+[[ut]]+p+u+[[ux]]+℘+
p [[px]] = 0.

(6)

Using Eqs. (5) and (6)1, we can express the jumps
in px, pt , and ux in terms of the jump in ut . This
yields, after simplifying and setting A(t)≡ [[ut]],

[[ux]] = −V−1A,

[[pt]] =
p+

V −u+ A,

[[px]] =
−p+

V(V −u+)
A.

(7)

Since U > 0 by assumption, and U = |V −u+| by
definition, it follows that V �= u+.

The next step is to determine V . Clearly, nonzero
values of V that satisfy the above system of four
jump equations, i.e. Eqs. (5) and (6), exist only if
the determinant of the corresponding coefficient
matrix is zero. This leads to the propagation con-
ditionU2 =℘+

p , and consequently the well known
result

V = u+±
√

℘+
p . (8)

Henceforth, we will take Σ to be right-running,
i.e., we disregard the “−” case and assume u+ ≥
0.

Having determined the propagation velocity, the
next step is to derive the equation governing A(t).
Although we omit the remaining details, it is a
relatively straightforward, but rather lengthy, pro-
cess using Hadamard’s lemma, Eqs. (1) and (2),
and the above jump relations to show that the
jump amplitude satisfies the quadratic Bernoulli
equation

DA
Dt

−Λ(t)A2 +κ(t)A = 0, (9)

where

Λ(t) =
1
V

(
1+

p+℘+
pp

2U2

)
,

κ(t) =
Up+

x

2p+ − 1
2

D

Dt
ln

(
U
p+

)
− u+

t −Vu+
x

V

−℘+
pp

(
p+

t −Vp+
x

)
2VU

+
u+

t +u+u+
x

2U
.

(10)

For definiteness, we further assume that the gas
ahead of Σ is in its equilibrium state. Thus, u+ =
0, p+ = p0, ℘+

p = c2
0, and ℘+

pp = c2
0(γ − 1)/p0,

where c0 ≡ √
γ℘0/p0 denotes the sound speed

in the undisturbed gas. Consequently, κ(t) = 0,
Λ(t) = Λ0 ≡ c−1

0 (γ + 1)/2, and the jump ampli-
tude solution is easily found to be

A(t) =
A(0)

1−Λ0A(0)t
, (11)

where A(0)( �= 0) denotes the value of A, i.e., [[ut]],
at time t = 0. According to Eq. (11), the evolution
of A(t) can be described, qualitatively, as follows:

(i) If A(0)< 0 {⇒ that Σ is expansive [see Chen
(1973)]}, then A(t) → 0 from below as t →
∞.

(ii) If A(0) > 0 {⇒ that Σ is compressive [see
Chen (1973)]}, then limt→t∞ A(t)= ∞, where
the breakdown time t∞ is given by t∞ =
[Λ0A(0)]−1.

We note that contained in case (ii) are the condi-
tions for finite-time blow-up.

4 Review of the model equations

As shown/noted in a number of works [see Chris-
tov et al. (2006) and the references therein],
Eqs. (1)–(3) can be combined into a single equa-
tion for the velocity (or acoustic) potential φ ,
namely

[1−ε(γ −1)φt ]φxx−2εφxφtx −φtt

= 1
2 ε2(γ + 1)(φx)2φxx, (12)

where φx(x, t) = u(x, t) and (0 <)ε = u0/c0 is the
Mach number. Here, we note that Eq. (12), and
all others henceforth, are expressed in terms of the
following dimensionless variables:

φ ′ = φ/(u0x0),
x′ = x/x0,

t ′ = t(c0/x0),
u′ = u/u0,

p′ = p/p0,

(13)
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where u0(> 0) and x0(> 0) denote a characteris-
tic speed and length, respectively, and all primes
have been omitted but are assumed understood.

Notice that if ε 
 1, then the right-hand-side of
Eq. (12) can be neglected to obtain a weakly-
nonlinear approximation. However, in the lit-
erature, another weakly-nonlinear approximation
is commonly used, which was first derived by
Kuznetsov (1971) for thermoviscous gases. The
lossless version of the latter, which we call the in-
viscid Kuznetsov equation (IKE), reads [see, e.g.,
Naugolnykh and Ostrovsky (1998)]

φxx − [1+ε(γ −1)φt]φtt = 2εφxφxt . (14)

In Christov et al. (2006), we showed how the IKE
can be derived directly from Eq. (12) through a
leading-order binomial series expansion in ε .

Another common weakly-nonlinear model can be
derived from Eq. (14) by employing the linear-
impedance assumption (LIA) φx ≈ −φt [Nau-
golnykh and Ostrovsky (1998); Christov et al.
(2006)] on the right-hand (i.e., the perturbing)
side of Eq. (14) only. This yields the Lighthill–
Westervelt equation (LWE):

φxx − [1+ε(γ +1)φt]φtt = 0. (15)

It should be noted that the LIA is exact for linear
progressive (e.g., harmonic) plane waves. Hence,
it can be expected that the LIA is a reasonable ap-
proximation for motions that do not significantly
deviate from the linear profile. It should also be
noted that all three of our model equations yield
the same expressions for A(t) [see Eq. (11)] and
t∞.

5 Reformulation of the governing equations
as conservation laws

In order to study the full range of applicability
of the approximate models, we must be able to
solve the equations numerically for times beyond
the blow-up (or shock-formation) moment. To
this end, we use the so-called MUSCL–Hancock
scheme — a shock-capturing, upwind Godunov-
type method, — which we have implemented as
described in Christov et al. (2006). Note that
such schemes can only be applied to conservation

laws, and so we must reformulate the equations
discussed above as such.

To this end, we begin by observing that the 1D
Euler equations correspond to the following con-
servation law:(

p

pu

)
t

+
(

εpu
εpu2 +ε−1pγ/γ

)
x

= 0. (16)

To rewrite the weakly nonlinear potential equa-
tions as conservation laws, we begin with the
well-known relations u = φx and p−1 = −εφt . In
the case of the IKE, this yields, as a preliminary
step, the system[

ε2u2 − γp+ 1
2(γ −1)p2]

t −εux = 0,

ut +ε−1px = 0,
(17)

which is not (yet) in the desired form. Next, we
introduce the variable transformation:

p̃ = γp− 1
2(γ −1)p2 − ε2u2 ⇐⇒

p =
1

γ −1

(
γ ∓

√
γ2 −2(γ −1)(ε2u2 + p̃)

)
.

(18)

Here, we observe that for consistency, the “−”
sign must selected so that p → 0 when p̃,u → 0.
Now, rewriting Eq. (17) in terms of these new
variable and simplifying, we obtain the following
conservation law corresponding to the IKE:(

p̃
u

)
t
+

(
εu

−[ε(γ −1)]−1
√

γ2 −2(γ −1)(ε2u2 + p̃)

)
x

= 0. (19)

Lastly, for completeness, we restate (in terms of
the above parameters) the following conservation
law corresponding to the LWE, which was derived
in Christov et al. (2006) following a similar ap-
proach to the one used above for the IKE:(

p̃
u

)
t
+

(
εu

−[ε(γ +1)]−1
√

(γ +2)2 −2(γ +1)p̃

)
x

= 0, (20)

where p̃ = (γ +2)p− 1
2(γ +1)p2 in this case.

The derivation of conservation laws for the
weakly nonlinear models was an essential step
in our study because we may now apply a va-
riety of advanced numerical solution techniques.
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Because of its simplicity and efficiency, we have
chosen the MUSCL–Hancock scheme. The lat-
ter is a second-order-accurate generalization of
Godunov’s scheme that allows us to simulate all
three models (Euler, IKE, and LWE) using a uni-
fied approach. [For a recent higher-order general-
ization of such methods, applied to compressible
MHD flows, see Balbás and Tadmor (2006).]

It should be noted that one could have also
used the discontinuous Galerkin method [see,
e.g., Bargmann and Steinmann (2005) and the
references therein] or the promising new tech-
nique, the so-called L1-minimization FEM, which
is especially effective in the case of (ill-posed)
boundary-value problems [see Guermond and
Popov (2007)].

6 Numerical results

In this section, we present and discuss numerical
solutions of the conservation laws derived above
subject to the initial conditions

ρ(x,0) = 0, u(x,0) = 0, (21)

and the boundary conditions (BC)

{
(density BC) ρ(0, t)
(velocity BC) εu(0, t)

}

= [H(t)−H(t− tw)] f (t), (22)

where H( · ) denotes the Heaviside unit step func-
tion and ρ ≡ p− 1 is the dimensionless acoustic
density or condensation. Recall that, initially, the
medium is in its equilibrium state, as stated by
Eqs. (21), and hence remains so ahead of Σ for all
t > 0. Furthermore, Eq. (22) states that a pulse
of finite duration (or width) tw is introduced at the
boundary x = 0, either in the density or velocity
field, at time t = 0+. In the simulations below,
we assume the propagation medium to be air at
20◦C, implying γ = 1.4 and hence t∞ = 1 for a
Mach number of ε = 0.26503. We have also taken
tw = 1 for the sake of simplicity.

In Fig. 1, we compare the solutions of the conser-
vation laws corresponding to the Euler equations,
the LWE, and the IKE with the linear wave equa-
tion solution. In addition, we have plotted the tan-

gent line, as given by Eq. (11), at the wavefront to
illustrate the amplitude of Σ.

The results in Fig. 1 show that the solution of the
IKE remains very close to the solution of the Eu-
ler equations, while the solution of the LWE de-
viates from the latter as time advances. The dis-
crepancy can be attributed to a saturation of the
nonlinearity in the LWE [Christov et al. (2006)];
i.e., the LIA changes the nature of the nonlin-
earity in the equations of motion. Moreover, it
is interesting to note the dynamics of the LWE
when a velocity BC is imposed — in particular,
the much faster rate of steepening exhibited be-
hind the wavefront. Even though the LWE re-
tains the exact dynamics of Euler equations at the
wavefront Σ, as can be verified analytically, it un-
desirably alters the profile behind Σ. Clearly, this
shortcoming of the LWE stems directly from the
use of the LIA because the IKE (in whose deriva-
tion the LIA is not used) does not exhibit the latter
distortion. In a sense, the LIA alters cumulative
nonlinear effects (e.g., steepening and breaking)
in the equations of motion, while retaining the lo-
cal nonlinear effects (e.g., finite-time blow-up at
the wavefront Σ). Additionally, we observe that
after the time of shock formation3, all three non-
linear profiles show an increase in Σ’s speed of
propagation, with the LWE exhibiting the great-
est increase. The agreement between the Euler
and IKE profiles, while still good, has slightly de-
teriorated.

In Fig. 2, following the same color convention as
Fig. 1, we present two measures of the error ad-
mitted by the approximate solutions as a function
of time for the density BC. Here, we observe that
the errors for the velocity BC are qualitatively the
same but quantitatively larger. The left panel of
Fig. 2 shows that there is a saturation of the error
over time, which correlates well with the fact that
the solution profiles eventually become vertical at
Σ, at which point they are no longer changing with
t. The most striking feature seen in the left panel,
however, is that the error for LWE is consistently

3 As noted on p. 402 of Thompson (1972), under the
weakly-nonlinear approximation, small-amplitude shocks
are very nearly isentropic; and thus a flow with weak
shocks can still be treated as approximately homentropic.
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Figure 1: Eight snapshots in time (consecutively down each column) of the scaled dimensionless acoustic
density, ρ/ε , vs. x for f (t) = ε sin(πt) with ε = 0.26503, and t∞ = 1. The left column gives the density BC,
and the right column shows the results for the velocity BC. The Euler equations, the LWE, and the IKE are
in blue, red, and green, respectively. The solution of the linear wave equation is in dashed black. (Note that
in the printed version “blue,” “green” and “red” refer to the darkest, lightest and intermediate shade of gray
present, respectively.)
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Figure 2: The left panel shows the growth of the L1 norm of the difference between the exact (Euler) solution
and the IKE and LWE solutions in log-linear scales, and the right panel shows in linear scales the growth of
the maximal percentage error, as functions of time. The color convention is the same as that of Fig. 1.

an order of magnitude greater than the error for
IKE, which further exemplifies the inadequacy of
the LWE, and consequently use of the LIA in the
nonlinear context.

In the right panel of Fig. 2 is shown the maxi-
mal percentage error. For the LWE, this quantity
grows to about 10× that of the IKE (≈ 20% vs.
2%) prior to the time of shock formation, beyond
which the percentage error is no longer a well-
defined metric. Our results confirm the observa-
tion in Kagawa et al. (1992); i.e., for certain prob-
lems, the solution of the LWE can be off by as
much as 20%, while that of the IKE remains very
close to the exact (Euler) one.

7 Conclusions

A comparative study of the two most com-
mon weakly-nonlinear approximations for com-
pressible flow — the inviscid Kuznetsov equa-
tion (IKE) and the Lighthill–Westervelt Equation
(LWE) — is presented. A novel reformulation of
the IKE as a conservation law is discussed, ex-
tending the results for the LWE given in Christov
et al. (2006). These reformulations enable us to
employ a Godunov-type finite-difference scheme
for the weakly-nonlinear equations in the same
fashion as for the full Euler equations. By means
of this powerful and extensible numerical tool, the
evolution of the (compressive) waveform is exam-
ined for values of t well beyond t∞, the instant of
blow-up.

Our comparative numerical study reveals that the

IKE approximates the exact (Euler) dynamics
very well, even for relatively large values of t
and ε , while the LWE is “crippled” due to the
effects of the linear-impedance assumption (LIA)
and proves to be an acceptable approximation to
the Euler equations only for very small values of t
and ε . In other words, when the LIA is employed,
a significant degradation of the density profile is
to be expected because the velocity (i.e., φx) term
is being replaced by one proportional to the den-
sity (i.e., −φt ) in Eq. (14).

Additionally, we found that, for both the IKE and
LWE models, the deviations from the full (Euler)
model are considerably larger when the velocity
BC, rather than the density BC, is imposed. The
latter suggests that the effect of the nonlinearity is
more pronounced when a nonuniform gas velocity
is prescribed at the boundary.

Finally, as a follow-on to the present investiga-
tion, it may be worthwhile to compare the IKE
with the approximate equation obtained by drop-
ping the right-hand side of Eq. (12). We hope to
address this and related issues in a future article.
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