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General Corotational Rate Tensor and Replacement of Material-time
Derivative to Corotational Derivative of Yield Function

K. Hashiguchi1

Abstract: Constitutive equation describing the
mechanical properties of material has to be for-
mulated in an identical form independent of co-
ordinate systems by which it is described even if
there exist any mutual configuration and/or mu-
tual rotation between the material and coordinate
systems. This mechanical requirement is attained
by describing rate variables as corotational rate
tensors with objectivity in constitutive equations
in rate form. Besides, in order to use the material-
time derivative of yield condition as a consistency
condition it has to be replaced to the corotational
derivative. In this note a general corotational rate
for tensors in arbitrary order having the objectiv-
ity is shown first, and further it is verified that the
material-derivative of yield condition can be re-
placed generally to the corotational derivative, i.e.
the consistency condition.

Keyword: constitutive equation, corotational
rate, elastoplasticity, objectivity.

1 Introduction

Mechanical property of material is observed to
be identical independent of states of observers.
Then, it should be described by a unique equa-
tion independent of mutual configuration and/or
rotation between material and observers. This fact
is advocated and called the principle of material-
frame indifference by Oldroyd (1950). On ac-
count of this principle, all of physical quanti-
ties used in constitutive equations have to be de-
scribed by the tensor quantities obeying the com-
mon translation rule, called the objective trans-
formation, between coordinate systems. In par-
ticular, constitutive equation of inelastic deforma-
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tion has to be formulated as the relation between
rate variables through the stress and internal vari-
ables since there does not exist one-to-one corre-
spondence between stress and strain. Whilst all
state quantities obey the objective transformation,
pertinent tensors obeying the objective transfor-
mation independent of material rotation have to
be adopted for their rate variables. In addition,
they have to be physical quantities capable of de-
scribing rates of mechanical state appropriately
evaluating a rotation of material. They can be
given by the corotational rate tensors which have
components obtained by the objective inverse-
transformation from the components observed by
the coordinate system rotating with material to the
fixed coordinate system describing the constitu-
tive relation.

In the formulation of plastic constitutive equa-
tion the consistency condition is obtained first by
material-time differentiation of yield condition.
In order to use it as a constitutive relation one
has to translate the stress rate and rates of inter-
nal variables to their corotational rate. The fact
that a rate variable involved in the material-time
derivative of yield function can be directly re-
placed with the corotational rate has been veri-
fied for isotropic hardening models by Hashiguchi
et al. (2002), for isotropic-kinematic hardening
models [Edelman and Drucker (1951), Ishlinsky
(1954), Prager (1955)] by Papamichos and Var-
doulakis (1995) and Bruhns et al. (2003) and for
isotropic-rotational hardening models [Sekiguchi
and Ohta (1977), Hashiguchi (1977, 1994, 2001),
Hashiguchi and Chen (1998)] by Asaoka et al.
(2002). It was also verified for a general yield
function of a single tensor by Dafalias (1985,
1998) without a detailed discussion.

Material elements are often subjected to rotation
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independent of the occurrence of deformation as
seen in gears, wheels, etc. Therefore, the adop-
tion of corotational rate and the replacement of
consistency condition to the corotational deriva-
tive are of importance for the mechanical design
in the field of engineering. Needless to say, these
would be inevitable step for the steady develop-
ment of mechanics without a logical jump.

In this note a general corotational rate for ten-
sors in arbitrary order having the objectivity is
shown first. Further, it is verified that the material-
derivative of yield condition involving arbitrary
tensors can be replaced to the corotational deriva-
tive, i.e. the consistency condition which can be
used as a constitutive relation.

2 Preliminary: Objective transformation

Consider the normalized-orthogonal coordinate
systems {O− xi} (i=1, 2, 3) with the base {ei}
and {O∗ − x∗i (t)} (t: time) with the arbitrary base
{e∗i (t)}. Here, let {ei} be the fixed standard base
and {e∗i (t)} the movable base, provided that the
latter has coincided with the former in the initial
state (t = 0). Let it be assumed that the mate-
rial particle P which had the position vector X at
t = 0 has the components xi(X, t) and x∗i (X, t) in
the coordinate systems {O−xi} and {O∗−x∗i (t)},
respectively. Further, let the position vector of
the origin O∗ of the coordinate system {O− x′i}
have the components ci(t) in the coordinate sys-
tem {O−xi}. Then, the following relations holds
between these components.

x∗i (X, t) = Qir(t) (xr(X, t)−cr(t))

xi(X, t) = Qri(t)x∗r(X, t)+ci(t)

}
(1)

where the Einstein’s summation convention is
used throughout this note. Eq. (1) is rewritten
in the symbolic notation as

x∗(X, t) = Q(t)(x(X, t)−c(t))

x(X, t) = QT (t)x∗(X, t)+c(t)

}
(2)

The notation ( )T stands for the transpose, and
hereafter the superscript ∗ is added to the compo-
nents for the movable base {e∗i (t)}. Q(t) is the
orthogonal tensor of the base {e∗i (t)} with respect

to the standard base {ei} and has the components

Qi j(t)≡ e∗i (t)• e j (= cos(e∗i (t),e j)) (3)

where the dot • denotes the scalar product. The
symbol (t) describing the time dependence is
omitted hereafter. Qi j is rewritten from Eq. (1)
as follows:

Qi j =
∂x∗i
∂x j

=
∂x j

∂x∗i
(4)

From Eq. (3) one has the relation

ei(= (ei • e∗r )e∗r ) = Qrie∗r
e∗i (= (e∗i • er)er) = Qirer

}
(5)

between these bases and the equation

QQT = QT Q = I (6)

where I is the second-order identity tensor having
the components of Kronecker’s delta δi j = 1 for
i = j, δi j = 0 for i �= j and thus I≡ ei⊗ei = δi jei⊗
e j (⊗: tensor product).

The tensor Q is described in the following form
with the bases.

Q = Qi jei ⊗e j = Qi je∗i ⊗e∗j (7)

or

Q = er ⊗e∗r (8)

due to Eq. (5). The relation between these bases
is also described from Eq. (8) as follows:

ei(= er ⊗e∗r e∗i ) = Qe∗i
e∗i (= e∗r ⊗erei) = QT ei

}
(9)

Introduce the second-order tensor

ΩΩΩ ≡ •e∗r ⊗e∗r (10)

where ( •) denotes the material-time derivative.
Eq. (10) is rewritten as

ΩΩΩ ≡ •
QriQr jei ⊗e j, ΩΩΩ ≡ •

QT Q (11)

due to Eq. (5). It is known that ΩΩΩ is the skew-
symmetric tensor from Eq. (11) and means the
spin of the base {e∗i } from the equation

•
e∗i = ΩΩΩe∗i (12)
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obtained from Eq. (10).

The following equation for the velocity v of ma-
terial particle P is obtained from Eq. (2).

v∗ = •
x∗ = Qv+

•
Qx−Q

•
c− •

Qc

= Qv+Ω̄ΩΩx∗ −Q•c− •
Qc (13)

where

Ω̄ΩΩ ≡ •
QQT = −QΩΩΩQT (14)
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Figure 1: Description for position of material par-
ticle in the fixed standard coordinate system and
the movable coordinate system

The transformation rule of m-th order tensor T de-
scribing the mechanical state of material is given
by

T ∗
p1 p2···pm

= Qp1q1 Qp2q2 · · ·QpmqmTq1q2···qm

Tp1 p2···pm = Qq1p1 Qq2p2 · · ·Qqm pmT ∗
q1q2···qm

}
(15)

which is called the objective transformation rule.
Eq. (15) is written for a vector and a second-order
tensor by the symbolic notations as follows:

T∗ = QT

T = QT T∗

}
T∗ = QTQT

T = QT T∗Q

}
(16)

by the symbolic notation.

3 General corotational rate tensor

Let the general corotational tensor in an arbitrary
order be considered below.

The material-time derivative of Eq. (15) is given
as
•

T ∗
p1 p2···pm

=
•

Qp1q1Qp2q2 · · ·QpmqmTq1q2···qm

+Qp1q1

•
Qp2q2 · · ·QpmqmTq1q2···qm

+ · · ·
+Qp1q1Qp2q2 · · ·

•
QpmqmTq1q2···qm

+Qp1q1Qp2q2 · · ·Qpmqm

•
Tq1q2···qm (17)

or inversely

•
Tp1 p2···pm =

•
Qq1p1 Qq2p2 · · ·QqmpmT ∗

q1q2···qm

+Qq1p1

•
Qq2p2 · · ·QqmpmT ∗

q1q2···qm

+ · · ·
+Qq1p1 Qq2p2 · · ·

•
QqmpmT ∗

q1q2···qm

+Qq1p1 Qq2p2 · · ·Qqmpm

•
T ∗

q1q2···qm
(18)

which are rewritten as

•
T ∗

p1 p2···pm
=Qp1q1Qp2q2 · · ·Qpmqm

( •
Tq1q2···qm

−Ωq1r1Tr1q2···qm −Ωq2r2Tq1r2···qm

−·· ·
−ΩqmrmTq1q2···rm

)
(19)

or inversely

•
Tp1 p2···pm =Qq1p1 Qq2p2 · · ·Qqmpm

( •
T ∗

q1q2···qm

− Ω̄q1r1T ∗
r1q2···qm

− Ω̄q2r2T ∗
q1r2···qm

−·· ·
− Ω̄qmrmT ∗

q1q2···rm

)
(20)

Eqs. (19) and (20) are written for a vector and a
second-order tensor by the symbolic notations as
follows:

•
T∗ = Q(

•
T−ΩΩΩT)

•
T = QT (

•
T∗−Ω̄ΩΩT∗)

}
•
T∗ = Q(

•
T−ΩΩΩT+TΩΩΩ)QT

•
T = QT (

•
T∗−Ω̄ΩΩT∗ −T∗Ω̄ΩΩ)Q

}
(21)
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The rate of tensor quantity used for constitutive
equations in rate forms has to fulfill the following
conditions.

1. It obeys the objective transformation since
the material properties are independent of
the observers.

2. The components in the standard fixed coordi-
nate system describing constitutive equation
changes only when the components observed
in the coordinate system moving with mate-
rial changes.

As known from Eqs. (17)-(21), the material-time
derivative does not obey the objective transforma-
tion and it changes even if the components ob-
served by the coordinate system rotating with ma-
terial does not change, provided that the coordi-
nate system {e∗i } rotates with material, selecting
the spin ΩΩΩ as the spin of material. In other words,
the material-time derivative violates both condi-
tions 1 and 2.

Then, consider the tensor
∇
T having the compo-

nents in the coordinate system {O − xi}, which
are obtained from the components observed in the
movable coordinate system {O∗ − x∗i (t)} by the
objective inverse transformation rule, i.e.

∇
Tp1 p2···pm = Qq1p1 Qq2p2 · · ·Qqmpm

•
T ∗

q1q2···qm

=
•
Tp1p2···pm −Ωp1r1Tr1p2···pm

−Ωp2r2Tp1r2···pm

−·· ·
−ΩpmrmTp1 p2···rm (22)

In order to verify that the tensor
∇
T obeys the ob-

jective transformation, introduce the other coordi-
nate system {O′ − x′i(t)} with the base {e′i} rotat-
ing with the spin

Ω̃ΩΩ ≡ •
e′r ⊗e′r =

•
Q̃T Q̃ (23)

where

Q̃i j(t)≡ e′i(t)• e j(= cos(e′i(t),e j)) (24)

The objective transformation

ΩΩΩ′ = Q̃(ΩΩΩ−Ω̃ΩΩ)Q̃T (25)

holds between the spin ΩΩΩ′ of the base {e∗i } ob-
served by the base {e′i} and the spin ΩΩΩ−Ω̃ΩΩ of the
base {e∗i } from the base {e′i} observed by the base
{ei}, where the component of the coordinate sys-
tem with {e′i} is denoted by the superscript ( )′. It
holds from Eqs. (19) and (25) that

•
T ′

p1 p2···pm
=Q̃p1q1Q̃p2q2 · · ·Q̃pmqm

( •
Tp1p2···pm

− Ω̃p1r1 Tr1p2···pm − Ω̃p2r2Tp1r2···pm

−·· ·
− Ω̃pmrmTp1p2···rm

)
(26)

Ω ′
prrr

T ′
p1p2···rr···pm

= Q̃prs(Ωst − Ω̃st )Q̃rrt Q̃p1q1Q̃p2q2 · · ·
Q̃pr−1qr−1Q̃rrqr Q̃pr+1qr+1 · · ·Q̃pmqmTq1q2···qr···qm

= Q̃prs(Ωst − Ω̃st )δtqr Q̃p1q1Q̃p2q2 · · ·
Q̃pr−1qr−1Q̃pr+1qr+1 · · ·Q̃pmqmTq1q2···qr···qm

= Q̃prqr(Ωqrrr − Ω̃qrrr)Q̃p1q1Q̃p2q2 · · ·
Q̃pr−1qr−1Q̃pr+1qr+1 · · ·Q̃pmqmTq1q2···rr···qm

= Q̃p1q1Q̃p2q2 · · ·Q̃pmqm(Ωqrrr − Ω̃qrrr )Tq1q2···rr···qm

(27)

and then

∇
T ′

p1 p2···pm
=

•
T ′

p1p2···pm
−Ω ′

p1r1
T ′

r1p2···pm

−Ω ′
p2r2

T ′
p1r2···pm

−·· ·−Ω ′
pmrm

T ′
p1 p2···rm

= Q̃p1q1Q̃p2q2 · · ·Q̃pmqm

{ •
Tq1q2···qm

− Ω̃q1r1Tr1q2···qm − Ω̃q2r2 Tq1r2···qm

−·· ·− Ω̃qmrmTq1q2···rm

− (Ωq1r1 − Ω̃q1r1)Tr1q2···qm

− (Ωq2r2 − Ω̃q2r2)Tq1r2···qm

−·· ·− (Ωqmrm − Ω̃qmrm)Tq1q2···rm

}
= Q̃p1q1Q̃p2q2 · · ·Q̃pmqm

( •
Tq1q2···qm

−Ωq1r1Tr1q2···qm −Ωp2r2Tq1r2···qm

−·· ·−ΩqmrmTq1q2···rm

)
= Q̃p1q1Q̃p2q2 · · ·Q̃pmqm

∇
Tq1q2···qm

(28)
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which means that
∇
T obeys the objective transfor-

mation.

The rate tensor
∇
T is called the corotational rate

and denoted by
◦
T when ΩΩΩ is selected to be the

spin of material, ωωω, i.e.

◦
Tp1 p2···pm =

•
Tp1 p2···pm −ωωωp1r1 Tr1p2···pm

−ωωωp2r2 Tp1r2···pm −·· ·−ωωωpmrmTp1 p2···rm

(29)

The following equations holds for the corotational
rate of a vector and a second-order tensor from
Eqs. (28) and (29) as follows:

◦
T =

•
T−ωωωT,

◦
T =

•
T−ωωωT+Tωωω (30)

◦
T∗ = Q

◦
T

◦
T = QT

◦
T∗

} ◦
T∗ = Q

◦
TQT

◦
T = QT

◦
T∗Q

}
(31)

Introduce the following notation for the coordi-
nate transformation.

(Q [[T]])p1p2···pm ≡ Qp1q1Qp2q2 · · ·QpmqmTq1q2···qm

(QT [[T]])p1 p2···pm ≡ Qq1p1 Qq2p2 · · ·Qqmpm Tq1q2···qm

}

(32)

By use of this notation the following expressions
for an arbitrsry tensor T hold from Eqs. (15), (22)
and (28).

T∗ = Q [[ T ]] , T = QT [[ T∗ ]] (33)

and

◦
T∗ = Q

[[ ◦
T
]]

,
◦
T = QT

[[ ◦
T∗

]]
(

◦
T = QT

[[ •
T∗

]]
)

(34)

4 Explicit corotational rate tensors

While ωωω has been defined merely to be the spin
of material above, the corotational rate tensor will
be formulated below by adopting the well-known
spins of material.

The velocity gradient L, the strain rate D and the
continuum spin W are given by

L ≡ ∂v
∂x

, (35)

D ≡ 1
2
(L+LT ), W ≡ 1

2
(L−LT ) (36)

Regarding the component ( )∗ as ( )′ and noting
∂/∂x′i = ∂/∂xrQir in Eq. (13), the transforma-
tions of L, D and W are given as

L′ = Q̃(L−Ω̃ΩΩ)Q̃T (37)

D′ = Q̃DQ̃T , W′ = Q̃(W−Ω̃ΩΩ)Q̃T (38)

Obviously, the continuum spin W obeys the trans-
lation rule of Eq. (25) for ΩΩΩ.

The following corotational rate with the contin-
uum spin W is regarded as the generalization of
Zaremba-Jaumann rate [Zaremba (1903a,b), Jau-
mann (1911)].

Tp1 p2···pm =
•

Tp1 p2···pm −Wp1r1 Tr1p2···pm

−Wp2r2 Tp1r2···pm −·· ·−WpmrmTp1p2···rm

(39)

Jaumann rate is determined merely geometrically
by an external appearance of body independent of
material properties and deformation history.

While the corotational spin would have to reflect
the rotation of substructure in material, it is not so
large as calculated by the continuum spin W when
a plastic deformation is induced as pointed out
by Mandel (1971) and Kratochvil (1971). Based
on this concept, Dafalias (1983) and Loret (1983)
proposed the relation between the corotational

rate
∗
σσσ of stress σσσ and the elastic strain rate De

∗
σσσ(≡ •σσσ −Weσσσ +σσσWe) = EDe (40)

where We is the elastic spin given by

We ≡ W−Wp (41)

Wp is called the plastic spin and is formulated
pertinently by Zbib and Aifantis (1989) as fol-
lows:

Wp = μ(σσσ ,H,H)(Dpσσσ −σσσDp) (42)

where Dp is the plastic strain rare, and μ is the
material function of stress σσσ and internal vari-
ables of scalar quantity H for isotropic harden-
ing/softening and tensor-valued quantity H for in-
herent and/or induced anisotropy. The elastic spin
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We also obeys the translation rule of Eq. (25) for
ΩΩΩ, i.e.

We′ = Q̃(We −Ω̃ΩΩ)Q̃T (43)

noting Wp′ = Q̃WpQ̃T .

The generalized corotational rate
◦
T based on the

plastic spin is given as follows.

◦
Tp1 p2···pm =

•
Tp1 p2···pm −W e

p1r1
Tr1p2···pm

−W e
p2r2

Tp1r2···pm −·· ·−W e
pmrm

Tp1p2···rm

(44)

The corotational rate has to be adopted for rates of
tensor valued state variables. Thus, it is used for
stress and tensor-valued internal variables for de-
scribing anisotropy including the kinematic hard-
ening variable for metals and rotational harden-
ing variable for soils [Sekiguchi and Ohta (1977),
Hashiguchi and Chen (1988)].

5 Transformation to Corotational Tensor in
Consistency Condition

In order to obtain the consistency condition from
the material-time derivative of yield condition,
which is pertinent as a constitutive relation, one
has to translate the stress rate and rates of internal
variables to their corotational rate.

Yield condition is described generally as

f (A,B, · · ·) = 0 (45)

where A,B, · · · are the arbitrary tensors. The
material-time derivative of Eq. (45) is described
as
•
f (A,B, · · ·)

= tr

(
∂ f (A,B, · · ·)

∂A

•
AT

)
+ tr

(
∂ f (A,B, · · ·)

∂B
•

BT
)

+ · · ·
= 0 (46)

Here, the yield condition is the scalar quantity
independent of the state of observer and then it
holds that

f (A,B, · · ·) = f (A∗,B∗, · · ·)
•
f (A,B, · · ·) =

•
f (A∗,B∗, · · ·)

}
(47)

where

•
f (A∗,B∗, · · ·)

= tr

(
∂ f (A∗,B∗, · · ·)

∂A∗
•
A∗T

)

+ tr

(
∂ f (A∗,B∗, · · ·)

∂B∗
•
B∗T

)
+ · · ·

= tr

(
Q

[[
∂ f (A,B, · · ·)

∂A

]]
•
A∗T

)

+ tr

(
Q

[[
∂ f (A,B, · · ·)

∂B

]]
•
B∗T

)
+ · · ·

= tr

(
∂ f (A,B, · · ·)

∂A

◦
AT

)

+ tr

(
∂ f (A,B, · · ·)

∂B

◦
AT

)
+ · · · (48)

using Eq. (34) and the following relation for two
arbitrary tensors T and S.

tr(Q [[T]]S)
= (Qp1q1Qp2q2 · · ·QpmqmTq1q2···qm)Sp1 p2···pm

= Tq1q2···qm (Qp1q1Qp2q2 · · ·QpmqmSp1 p2···pm)

= tr
(
T

(
QT [[S]]

))
(49)

From Eqs. (46), (47) and (48) we have

tr

(
∂ f (A,B, · · ·)

∂A

◦
AT

)
+ tr

(
∂ f (A,B, · · ·)

∂B

◦
BT

)
+ · · ·= 0 (50)

Then, it is concluded that the material-time
derivative of the yield function can be directly re-
placed to the corotational derivative, while the no-
tation of transpose can be omitted for stress and
anisotropic hardening variables which are sym-
metric tensors. Here, note that only a part of
derivative terms cannot be replaced to the corota-
tional derivative in the case that the yield function
f involves plural non-scalar variables. In the case
of a single non-scalar variable the transformation
to the corotational derivative can also be proved
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by

tr

{
∂ f (A)

∂A
(Aωωω −ωωωA)

}
= tr

{
(a0I−a1A−a2A2)(Aωωω −ωωωA)

}
= 0 (51)

due to the Cayley-Hamilton theorem, noting
tr(AnAωωω) = tr(AnωωωA), etc.

6 Concluding remarks

The general form of corotational rate tensor with
objectivity is shown and it is verified that the rate
variables involved in the material-time derivative
of yield function can be directly replaced to the
objective corotational rate tensors. While various
corotational rate have been proposed, the concept
of plastic spin would be physically most pertinent.
However, it requires the formulation of rotation in
addition to deformation as constitutive equations.
On the other hand, the plastic spin is negligible up
to one hundred and several ten percents of shear
strain even in the simple shear in which the plastic
spin is induced most remarkably [Dafalias (1983,
1985, 1988)]. One could use Zaremba-Jaumann
rate in a usual elastoplastic deformation process
[cf. Han et al. (2005), Himple et al. (2005), Liu
(2006)].
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