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Five Different Formulations of the Finite Strain Perfectly Plastic Equations

Chein-Shan Liu1 2

Abstract: The primary objectives of the present
exposition focus on five different types of repre-
sentations of the plastic equations obtained from
an elastic-perfectly plastic model by employing
different corotational stress rates. They are (a) an
affine nonlinear system with a finite-dimensional
Lie algebra, (b) a canonical linear system in the
Minkowski space, (c) a non-canonical linear sys-
tem in the Minkowski space, (d) the Lie-Poisson
bracket formulation, and (e) a two-generator and
two-bracket formulation. For the affine nonlin-
ear system we prove that the Lie algebra of the
vector fields is so(5,1), which has dimensions fif-
teen, and by the Lie theory the superposition prin-
ciple is available for this system. Although the
plastic equations are nonlinear in stress space, we
can develop some methods to transform them into
the linear systems in the augmented stress spaces
with a canonical form and a non-canonical form
in the Minkowski space. On the cotangent bundle
of yielding manifold, we can introduce the Lie-
Poisson bracket to construct an evolutional dif-
ferential system of plastic equations. The stress
trajectory traces a coadjoint orbit in the Poisson
manifold under a coadjoint action of the Lie group
SO(5). Then, we prove that the plastic equations
admit two generators: one conservative and one
dissipative, as well as two brackets: the Poisson
bracket and dissipative bracket. From a dissipa-
tion point of view the yield function is a Casimir
function of the dissipative bracket system.
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1 Introduction

In this paper we present five types of representa-
tions of the plastic equations with large deforma-
tion by considering the corotational stress rates in
the constitutive models. Prager (1960) has pro-
posed a yielding-stationarity criterion, which as-
serts that for a consistent flow model the vanish-
ing of the stress rate implies the stationarity of
yield function. The stationarity of stress invari-
ants for a material undergoing a pure rotation is
crucial, since the yield function for isotropic ma-
terial is defined in terms of these invariants. For
any corotational stress rate we have

◦
τ := τ̇−ωτ +τω = Pτ̇LPT, (1)

where ω is a certain spin tensor, P is a corre-
sponding rotation tensor satisfying ṖP−1 = ω ,
and τL = PTτP is the unrotated Kirchhoff stress.
While a superimposed dot denotes the material
time derivative, a surmounted circle over the ten-
sor denotes a certain corotational rate under ω .
From the last equation it is obvious that the invari-
ants of the unrotated Kirchhoff stress are the same
as those of the Kirchhoff stress. Thus, the van-
ishing of all the corotational stress rates implies
the stationary behavior of the stress invariants by
Prager’s argument [Prager (1960)]. The above
discussions indicate that the stress rate must be a
corotational type. A further explanation has been
made by Lee (1983) for the Jaumann rate, and
by Xiao, Bruhns and Meyers (2000) and Bruhns,
Xiao and Meyers (2005) for the logarithmic rate.

Through the study by Liu (2004a) it is clear
that the employment of the non-corotational stress
rates in the constitutive equations leads to the cou-
pling of deviatoric and volumetric parts of the
constitutive equations as well as the loss of lin-
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earity in an augmented stress space. Conversely,
these two-fold advantages of uncoupling and lin-
earity strongly support the use of corotational
stress rates in the constitutive equations. Liu
(2004a) has proved that

◦
s= ṡ−ωs+ sω , (2)

where s := τ − I3(trτ)/3 is the deviatoric part of
τ , in which tr denotes the trace of the tensor and
I3 is the third-order identity tensor.

Our recent papers demonstrate how powerful of
the modern algebraic tools like as the Lie groups
can be used to gain a deep insight into the in-
trinsic structure of the elastoplastic constitutive
equations. This paper is originated from a series
study of the plastic behavior by viewing plastic-
ity as a dissipatively dynamical system endowed
with an on-off switch. As remarked by Liu (2003)
the invariant yield condition in stress space ren-
ders a natural mathematical frame of plasticity
theory from the viewpoints of differentiable man-
ifold and its Lie group transformation, and several
results along this way have been published for the
Lie symmetry of material models, e.g., Hong and
Liu (1999a, 1999b, 2000), Liu and Chang (2004,
2005), Liu and Hong (2001), Liu (2001a, 2003,
2004a, 2004b, 2004c), and Mukherjee and Liu
(2003). It is indeed gratifying to notice that a
consistent numerical procedure can be established
based on the study of Lie symmetry, which can
automatically satisfy the consistent condition for
the plastic flow models [Liu and Li (2005), Liu
(2005, 2006a)].

In addition of the constitutive equations which be-
yond the small deformations attract much atten-
tion as described by Rubinstein and Atluri (1983)
and Xiao, Bruhns and Meyers (2006), the spe-
cial attention has also been paid on the finite rota-
tion effect in the structural mechanics of flexible
bodies, including beam, plate, shell, etc. Atluri
(1984) has considered finite rotations as direct
independent variables in the variational formu-
lations of finitely deformed continua and shells.
Han, Rajendran and Atluri (2005) have formu-
lated an effective MLPG approach for solving the
nonlinear structural problems of beam with large
deformation and rotation. They have shown that

the MLPG is more effective than the FEM.

A recent progress to dealing with the finite rota-
tions in beams, plates and shells was also sum-
marized in a special issue of CMES. Lin and
Hsiao (2003) have solved the buckling problems
of 3-D beams by using the co-rotational formula-
tion. Gotou, Kuwataka, Nishihara and Iwakuma
(2003) have introduced the rotational angles as-
sociated with the Cartesian coordinates as addi-
tional degrees of freedom, where the Euler’s an-
gles are used to describe finite rotations. The
accuracy of the co-rotational formulation for 3-
D Timoshenko’s beam is discussed from a the-
oretical viewpoint by Iura, Suetake and Atluri
(2003). Beda (2003) introduced three rotation an-
gles and solved the elastica problem of spatial
Euler-Bernoulli beam. Suetake, Iura and Atluri
(2003) have derived a symmetric tangent stiffness
operator for thick shells undergoing finite rota-
tion. Basar and Kintzel (2003) have developed a
finite element model for finite rotation and large
strain thin-walled shells. From those papers one
can understand that the finite rotations are impor-
tant in the mechanical analysis of flexible body.
Similarly, for the rigid multibody dynamics the
finite rotations are also important as shown by
Rochinha and Sampaio (2000) and Huston and
Liu (2005).

The dissipation of plasticity and the consistency
of yielding condition are two main characters of
the plastic models during a plastic loading state.
How to put these two ingredients, the conserva-
tive property of yielding condition and the dissi-
pative nature of plastic deformation, together into
a unified framework is still pending in the devel-
opment of plasticity theory. Even, it is usually
asserted that the Hamiltonian formalism can treat
only the conservative problem, we are attempting
to develop a generalized Hamiltonian formulation
of the plastic models to take the dissipative ef-
fects into account. In addition a recent paper by
Liu (2004d), it seems that there has no attempt in
the open literature to study the generalized Hamil-
tonian structure and the Lie-Poisson bracket for-
malism of the constitutive models of plasticity. In
Section 2 we will give a brief sketch of the gener-
alized Hamiltonian systems for the later require-
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ments.

In this exposition we analyze the constitutive
model of perfect elastoplasticity from several dif-
ferent points of view and attempt to achieve a
deeper understanding of its underlying structures
of Lie algebra properties, Lie group symmetries
and dissipative behaviors in different representa-
tions.

Although the models of plasticity are nonlinear
in stress space, the perfectly elastoplastic model
with finite deformation postulated in Section 3
will be proved to admit a superposition princi-
ple in Section 4 based on the Lie theory, and
to be transformed in Section 5 into the linear
systems in the augmented stress spaces with a
canonical form in Section 5.1 and a non-canonical
form in Section 5.2. In Section 6 we will prove
that the plastic equation is a Lie-Poisson system
equipped with a structure tensor of the Poisson
type and the stress trajectory is a coadjoint orbit
under the action of the Lie group SO(5). Accord-
ing to a thermodynamic framework of the gen-
eral equation for the nonequilibrium reversible-
irreversible coupling (GENERIC) we can develop
a two-generator formulation of the plastic equa-
tion in Section 7, where the dissipation and yield-
ing behaviors are well organized into a single for-
mat. Finally, as the conclusions of the present pa-
per we compare the different formulations and ad-
dress their computational applications in Section
8.

2 Generalized Hamiltonian systems

The classical Hamiltonian mechanics is endowed
with an even-dimensional phase space. In prac-
tice, there are many mechanical systems whose
phase spaces are not canonical. That is, the
phase manifold does not admit a cotangent bun-
dle structure on it, but it still has a Poisson bracket
equipped with the properties of skew-symmetry,
bilinearity, the Leibniz identity and the Jacobi
identity. The most famous example is the Euler
equations governing the motion of rigid body.

Suppose that P is a manifold. If there is a bracket
{•,•} defined on the function space C(P), satis-

fying the following properties:

Skew-symmetry : {F,G}= −{G,F}, (3)

Bilinearity : {λ F + μG,H}= λ{F,H}
+ μ{G,H}, λ ,μ ∈ R, (4)

Jacobi identity : {F,{G,H}}+{G,{H,F}}
+{H,{F,G}}= 0, (5)

Leibniz identity : {FG,H}= F{G,H}
+{F,H}G, (6)

then (P,{•,•}) is a Poisson manifold [Marsden
and Ratiu (1994)]. If an observable function F :
P �→R of a dynamical system can be governed by
a generalized Hamiltonian function H through

Ḟ = {F,H}, (7)

then (P,{•,•},H) is called a generalized Hamil-
tonian system.

Let H : P �→ R be a smooth function on P. The
generalized Hamiltonian vector field XH associ-
ated with H is a unique smooth vector field on P,
which for every smooth function F : P �→R satis-
fies

XH(F) = {F,H}. (8)

Instead of the non-degeneracy of the classical
Poisson bracket, the bracket defined on the non-
canonical Poisson manifold is permitted degener-
ate.

When P is a finite-dimensional manifold with di-
mensions n, the local coordinates of P can be as-
signed as x = (x1, . . . ,xn), and the Poisson bracket
on P can be written as

{F,G} := Ji j
∂F
∂xi

∂G
∂x j

, (9)

where Ji j(x) is a Poisson tensor. Throughout
this paper the Einstein summation convention is
adopted for the repeated indices.
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Given an n×n matrix function Ji j(x) defined on
the open set P⊂ Rn, the necessary and sufficient
conditions of Ji j(x) to be a Poisson tensor are

Ji j = −Jji, i, j = 1, . . . ,n, (10)

Ji�Jjk,� +Jj�Jki,� +Jk�Ji j,� = 0, i, j,k = 1, . . . ,n,
(11)

where Jjk,� denotes ∂Jjk/∂x�.

For all smooth function H : P �→ R defined on P,
the bundle mapping B : T ∗P �→ T P is denoted by
B(dH(x))= XH |x. T P and T ∗P are, respectively,
the tangent and cotangent bundles on the Poisson
manifold P. The rank of the Poisson bracket at
a point x ∈ P is defined as the rank of the lin-
ear mapping B |x: T ∗x P �→ TxP. A point x on the
Poisson manifold P is called a regular point, if the
ranks for all points in the neighborhood of x ∈ P
are the same; otherwise, x is a singular point. The
rank of B at x ∈ P and the rank of the Poisson
tensor J at point x are the same. Because of the
skew-symmetry of J(x) the rank is always even.

Suppose that C : P �→R is a non-constant smooth
function on P. If {C,F}= 0 for all smooth func-
tion F : P �→ R, then C is a Casimir function on
P. If the rank of the Poisson tensor J at a regular
point x0 is n−m, m > 0, then there are m func-
tionally independent Casimir functions defined in
the neighborhood of the point x0.

When Ji j(x) is a linear function of x, the bracket
(9) is called a Lie-Poisson bracket, and corre-
spondingly, Eq. (7) is a Lie-Poisson system writ-
ten as

ẋ = J(x)∇H(x), (12)

where the gradient operator ∇ denotes the deriva-
tive with respect to x; and we usually write such
Ji j(x) to be

Ji j = Ck
i jxk, (13)

where Ck
i j = −Ck

ji and the Jacobi identity (11) be-
comes

C�
i jC

r
�k +C�

jkC
r
�i +C�

kiC
r
� j = 0. (14)

It is known that for this case the underlying space
can be given a Lie algebra structure with the struc-
ture constants Ck

i j in a suitable basis [Marsden and
Ratiu (1994)].

The Lie-Poisson system is naturally formulated in
a dual space G∗ of the Lie algebra G. The solu-
tions of the system are coadjoint orbits of a certain
Lie group, constrained on a nonlinear submani-
fold of G∗ known as a symplectic foliation. In
recent years, the applications that fit into the Lie-
Poisson formalism and the extensions to dissipa-
tion are numermous, for example, Bloch, Krish-
naprasad, Marsden and Ratiu (1996) and Pelino
and Pasini (2001). Also, for its important ap-
plications in some mechanical systems there are
numerical integrators developed to preserve the
Lie-Poisson structure; see, for example, Ge and
Marsden (1988), Channell and Scovel (1991),
McLachlan (1993), Austin, Krishnaprasad and
Wang (1993), Li and Qin (1995), and Engø and
Faltinsen (2001).

3 Constitutive model and switch

3.1 Constitutive model

The constitutive law of elastoplasticity of solid
materials proposed by Prandtl (1924) and Reuss
(1930) can be re-postulated [Hong and Liu
(1999a)] and enlarged to take the large deforma-
tion effects into account as in the following sys-
tem:1

D = De +Dp, (15)
◦
s= 2GDe, (16)

λ̇ s = 2τyDp, (17)

‖s‖ ≤
√

2τy, (18)

λ̇ ≥ 0, (19)

‖s‖λ̇ =
√

2τyλ̇ , (20)

in which the two material constants, namely the
shear modulus G and the shear yield strength τy,
are determined experimentally and both are as-
sumed to be positive. The bold-faced symbols D,
De, Dp and s stand for the deviatoric parts of the
deformation rate, elastic deformation rate, plastic
deformation rate, and Kirchhoff’s stress, respec-
tively, all being symmetric and traceless tensors,

1 The volumetric part of the Prandtl-Reuss law is linearly
elastic and is thus excluded from the present study in order
to focus on the more interesting elastic-plastic behavior of
the deviatoric part.
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whereas λ is a scalar, called the equivalent shear
plastic strain.

As usual, ‖s‖ :=
√

s · s is the Frobenius norm of a
tensor s and the dot between two tensors denotes
their inner product, and a surmounted circle “◦”
on s represents a corotational rate of s using a cer-
tain spin tensor ω as that shown in Eq. (2). Some
objective corotational rates usually employed in
the constitutive equations are summarized in Ta-
ble 1. Inserting these ω’s into Eq. (2) we thus ob-
tain different corotational stress rates. Simultane-
ously, employing the different corotational stress
rates for the hypoelasticity in Eq. (16) will re-
sult in different large deformation models of the
elastic-perfect plasticity.

Table 1: Some objective corotational rates

Objective corotational rates ω
1. Jaumann (J) W
2. Green-Naghdi (GN) ΩΩΩ
3. Sowerby-Chu (SC) ΩΩΩE

4. Xiao-Bruhns-Meyers (XBM) ΩΩΩlog

The notations used here are defined as follows:
L := ḞF−1 is the velocity gradient tensor, where F
is the deformation gradient tensor; W is the skew-
symmetric part of L; ΩΩΩ := ṘR−1 is the rate of
rotation, where R is the orthogonal tensor in the
polar decomposition of F, i.e.,

F = RU = VR; (21)

ΩΩΩE := ṘERT
E is known as the Eulerian spin tensor,

where RE is the diagonal transformation of V, that
is,

V = REλλλRT
E , (22)

and λλλ is a diagonal tensor containing the eigen-
values of V. The logarithmic spin ΩΩΩlog was in-
troduced by Xiao, Bruhns and Meyers (1997a,
1997b, 2006), which satisfies

◦
(lnV)

log

:= (lnV)·+(lnV)ΩΩΩlog−ΩΩΩlog lnV

=
1
2
[L + LT]. (23)

The hypoelasticity based upon the logarithmic
stress rate has been proposed by Xiao, Bruhns
and Meyers (1997a), which is exactly integrable
[Xiao, Bruhns and Meyers (1999)] and does not
exhibit shear oscillation [Bruhns, Xiao and Mey-
ers (2001), Liu and Hong (1999)]. Recently, Zhou
and Tamma (2003) further demonstrate that the
logarithmic stress rate hypoelasticity model also
satisfies the Clausius-Duhem inequality and the
models by using other corotational stress rates do
not.

3.2 Switching between elastic and plastic
phases

From the constitutive model presented in
Eqs. (15)-(20), through some analyses we have
the following switching criteria:

λ̇ = 0 if ‖s‖<
√

2τy or s ·D≤ 0, (24)

λ̇ =
1
τy

s ·D > 0 if ‖s‖=
√

2τy and s ·D > 0,

(25)

as well as a two-phase nonlinear system:

ṡ−ωs+ sω = 2GD

if ‖s‖<
√

2τy or s ·D ≤ 0, (26)

ṡ−ωs+ sω = 2GD− Gs ·D
τ2

y
s

if ‖s‖=
√

2τy and s ·D > 0, (27)

of which the former is a linearly elastic equation,
and the latter is a nonlinearly plastic equation.
From Eq. (26) it can be seen that the elastic equa-
tion is rather simple, and therefore we concentrate
below on the study of plastic equation (27).

4 Lie algebra of plastic equation

In this section we derive a Lie algebra of the above
plastic equation. For this purpose let us consider
the problem in a suitable vector space by intro-
ducing a five-dimensional stress vector:

Q =

⎡
⎢⎢⎢⎢⎣

a1s11 +a2s22

a3s11 +a4s22

s23

s13

s12

⎤
⎥⎥⎥⎥⎦ , (28)
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where

a1 := sin(θ +
π
3

), a2 := sinθ ,

a3 := cos(θ +
π
3
), a4 := cosθ ,

with θ being any real number,2 and a five-
dimensional deformation rate vector:3

q̇ :=

⎡
⎢⎢⎢⎢⎣

a1D11 +a2D22

a3D11 +a4D22

D23

D13

D12

⎤
⎥⎥⎥⎥⎦ . (29)

As shown by Liu (2003), upon using

‖s‖2 = 2‖Q‖2, s ·D = 2Q · q̇, (30)

we can rewrite Eq. (27) to the following form:

Q̇ = As
sQ−

ke

Q2
0

Q · q̇Q+ke q̇, (31)

where

As
s :=⎡

⎢⎢⎢⎣

0 0 2a2ω23 2a1ω13 2(a1−a2)ω12

0 0 2a4ω23 2a3ω13 2(a3−a4)ω12

−2a2ω23 −2a4ω23 0 −ω12 −ω13

−2a1ω13 −2a3ω13 ω12 0 −ω23

2(a2−a1)ω12 2(a4−a3)ω12 ω13 ω23 0

⎤
⎥⎥⎥⎦
(32)

is a skew-symmetric matrix and

ke = 2G, Q0 = τy. (33)

In order to give a Lie algebra formulation of the
plastic equation (31), we write it with the follow-
ing componential form:

Q̇i = (As
s)i jQ j +ke

[
δi j− QiQ j

Q2
0

]
q̇ j, (34)

where δi j is the Kronecker delta symbol. This
equation can be viewed as an affine nonlinear sys-
tem with q̇ j and ωi j as inputs and Q j as outputs,

2 See Hong and Liu (1997).
3 Recall that both s and D are deviatoric tensors and thus

the plastic equation (27) has only five independent com-
ponents.

which means that the above equation is linear in
both q̇ j and ωi j but nonlinear in Q j.

For the nonlinear dynamical system:

dxμ(t)
dt

= ημ(x1, . . . ,xn, t), 1≤ μ ≤ n, (35)

if the general solution x(t) = (x1(t), . . .,xn(t))T

can be expressed as a function of m particular so-
lutions x1(t), . . .,xm(t) and n integration constants
c1, . . .,cn such that

x(t) = F(x1, . . .,xm,c1, . . .,cn), (36)

then Eq. (35) is said to admit a superposition
principle; see, e.g. Hong and Liu (1997) and
Cariñena, Grabowski and Ramos (2001).

Lie has proved that Eq. (35) admits a superposi-
tion principle iff it can be written as

dx
dt

= Zi(t)ξξξ i(x), (37)

and its vector fields

Yi = ξ μ
i (x)

∂
∂xμ , i = 1, . . ., s, (38)

constitute a finite-dimensional Lie algebra, the
dimension r of which satisfies s≤ r ≤mn.

Theorem 1. The plastic equation (31) admits a
superposition principle.

Proof. The five vector fields of Eq. (34) corre-
sponding to the five inputs keq̇ j, j = 1, . . .,5 are

g j = δi jei− QiQ j

Q2
0

ei, 1≤ j≤ 5, (39)

where ei, i = 1, . . .,5 are unit bases. The compo-
nential forms of g j, j = 1, . . . ,5 are

g1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1− Q2
1

Q2
0

−Q1Q2
Q2

0

−Q1Q3
Q2

0

−Q1Q4

Q2
0

−Q1Q5
Q2

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, g2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Q1Q2
Q2

0

1− Q2
2

Q2
0

−Q2Q3
Q2

0

−Q2Q4

Q2
0

−Q2Q5
Q2

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (40)
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g3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Q1Q3

Q2
0

−Q2Q3

Q2
0

1− Q2
3

Q2
0

−Q3Q4
Q2

0

−Q3Q5
Q2

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, g4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Q1Q4
Q2

0

−Q2Q4

Q2
0

−Q3Q4

Q2
0

1− Q2
4

Q2
0

−Q4Q5
Q2

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (41)

g5 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Q1Q5
Q2

0

−Q2Q5
Q2

0

−Q3Q5
Q2

0

−Q4Q5
Q2

0

1− Q2
5

Q2
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (42)

Similarly, the three vector fields generated from
ω12, ω13 and ω23 are, respectively,

ω1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2(a1−a2)Q5

2(a3−a4)Q5

−Q4

Q3

2(a2−a1)Q1 +2(a4−a3)Q2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (43)

ω2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2a1Q4

2a3Q4

−Q5

−2a1Q1−2a3Q2

Q3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (44)

ω3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2a2Q3

2a4Q3

−2a2Q1−2a4Q2

−Q5

Q4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (45)

The Lie bracket of gα and gβ is given by

[gα ,gβ ] =
∂gβ

∂Q
gα − ∂gα

∂Q
gβ . (46)

From Eq. (39) it follows that

∂gi
α

∂Q j
= −Qiδα j

Q2
0
− Qα δi j

Q2
0

, (47)

where gi
α is the ith component of gα . By using the

above equation we can prove that

[gα ,gβ ] =
Qα

Q2
0

gβ −
Qβ

Q2
0

gα . (48)

Inserting Eq. (39) for g, the above right-hand side
can be further reduced to

Qα

Q2
0

gβ −
Qβ

Q2
0

gα =
Q j

Q2
0
(δ jα δiβ −δ jβ δiα )ei. (49)

Let us consider the 5-dimensional permutation
symbol εi1...i5 , which is zero if any two indices of
{i1, . . . , i5} are equal, +1 if {i1, . . . , i5} is an even
permutation, and -1 if {i1, . . ., i5} is an odd per-
mutation. Reminding that

εi1i2i3i jεi1i2i3βα = δ jα δiβ −δ jβ δiα , (50)

from Eqs. (48) and (49) it follows that

[gα ,gβ ] =
−1

Q2
0

εi1i2i3αβ εi1i2i3i jQ jei. (51)

This prompts us to consider the vector fields

wi1i2i3 := εi1i2i3i jQ jei, (52)

and there are totally ten linearly independent vec-
tor fields of w:

w123 = ε12345Q5e4 +ε12354Q4e5 =

⎡
⎢⎢⎢⎢⎣

0
0
0

Q5

−Q4

⎤
⎥⎥⎥⎥⎦ ,

(53)

w124 = ε12435Q5e3 +ε12453Q3e5 =

⎡
⎢⎢⎢⎢⎣

0
0
−Q5

0
Q3

⎤
⎥⎥⎥⎥⎦ ,

(54)

w125 = ε12534Q4e3 +ε12543Q3e4 =

⎡
⎢⎢⎢⎢⎣

0
0

Q4

−Q3

0

⎤
⎥⎥⎥⎥⎦ ,
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(55)

w134 = ε13425Q5e2 +ε13452Q2e5 =

⎡
⎢⎢⎢⎢⎣

0
Q5

0
0
−Q2

⎤
⎥⎥⎥⎥⎦ ,

(56)

w135 = ε13524Q4e2 +ε13542Q2e4 =

⎡
⎢⎢⎢⎢⎣

0
−Q4

0
Q2

0

⎤
⎥⎥⎥⎥⎦ ,

(57)

w145 = ε14523Q3e2 +ε14532Q2e3 =

⎡
⎢⎢⎢⎢⎣

0
Q3

−Q2

0
0

⎤
⎥⎥⎥⎥⎦ ,

(58)

w234 = ε23415Q5e1 +ε23451Q1e5 =

⎡
⎢⎢⎢⎢⎣

−Q5

0
0
0

Q1

⎤
⎥⎥⎥⎥⎦ ,

(59)

w235 = ε23514Q4e1 +ε23541Q1e4 =

⎡
⎢⎢⎢⎢⎣

Q4

0
0
−Q1

0

⎤
⎥⎥⎥⎥⎦ ,

(60)

w245 = ε24513Q3e1 +ε24531Q1e3 =

⎡
⎢⎢⎢⎢⎣

−Q3

0
Q1

0
0

⎤
⎥⎥⎥⎥⎦ ,

(61)

w345 = ε34512Q2e1 +ε34521Q1e2 =

⎡
⎢⎢⎢⎢⎣

Q2

−Q1

0
0
0

⎤
⎥⎥⎥⎥⎦ .

(62)

From Eqs. (51) and (52) it follows that

[gα ,gβ ] =
−1

Q2
0

εi1i2i3αβ wi1i2i3, (63)

and that

∂wi
i1i2i3

∂Q j
= εi1i2i3i j, (64)

where wi
i1i2i3 is the ith component of wi1i2i3 .

Hence, by Eqs. (47), (64), (39) and (52) through
some calculations we find that

[wi1i2i3 ,gα ] = εi1i2i3αβ gβ , (65)

[wi1i2i3 ,w j1 j2 j3 ] = ε j1 j2 j3imwm
i1i2i3 ei

− εi1i2i3imwm
j1 j2 j3 ei. (66)

Therefore, the five vector fields of Eq. (39) and the
ten vector fields w in Eq. (52) constitute a finite-
dimensional Lie algebra, which is indeed the Lie
algebra so(5,1) of the 5 + 1-dimensional proper
orthochronous Lorentz group SOo(5,1) with di-
mensions fifteen. As a consequence, according to
Lie’s theory we have proved that the plastic equa-
tion (31) admits a superposition principle. �
By inspection, the three vector fields defined in
Eqs. (43)-(45) can be expanded in terms of the
bases defined in Eqs. (53)-(62):

ω1 = 2(a2−a1)w234−2(a4−a3)w134−w125,

(67)

ω2 = 2a1w235−2a3w135 +w124, (68)

ω3 = 2a4w145−2a2w245−w123. (69)

Moreover, from Eqs. (67)-(69) and (66) we can
obtain

[ω1,ω2] = [2(a2−a1)w234−2(a4−a3)w134

−w125,2a1w235−2a3w135 +w124]
= [4a1(a2−a1)+4a3(a4−a3)+1]w123

+2a4w145−2a2w245

= ω3,
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(70)

[ω1,ω3] = [2(a2−a1)w234−2(a4−a3)w134

−w125,2a4w145−2a2w245−w123]
= [1−4a2(a2−a1)−4a4(a4−a3)]w124

+2a3w135−2a1w235

= −ω2,

(71)

[ω2,ω3] = [2a1w235−2a3w135

+w124,2a4w145−2a2w245−w123]
= (1−4a1a2−4a3a4)w125

+2(a3−a4)w134 +2(a2−a1)w234

= ω1.

(72)

These show that [ω1,ω2], [ω1,ω3], [ω2,ω3] ∈
so(5,1), and that {ω1,ω2,ω3} forms a closed
subalgebra as a rotation Lie algebra in the three-
dimensional subspace. However, gi, i = 1, . . . ,5
and ω i, i = 1,2,3 do not constitute a Lie algebra,
because the bracket given in Eq. (63) is not an el-
ement in the space spanned by gi, i = 1, . . .,5 and
ω i, i = 1,2,3.

Hong and Liu (1997) have derived the superposi-
tion formula for Eq. (27) without considering the
large deformation. After transforming the plastic
equation into a linear system in the next section
we can derive a similar superposition formula for
s as that shown by Eq. (68) in the paper by Hong
and Liu (1997) for the small deformation perfect
elastoplasticity.

5 Two linear systems

The plastic equation (31) admitting a superposi-
tion principle gives us a clue to linearize it in this
section.

5.1 Canonical form

Let us introduce

X =
[

Xs

X0

]
:=

X0

Q0

[
Q
Q0

]
, (73)

and consider the integrating factor

X0 := exp

(
keq0

Q0

)
, (74)

where

q̇0 :=
1

Q0
Q · q̇. (75)

So, multiplying Eq. (31) by X0/Q0 we obtain

Ẋs = As
sX

s +X0As
0, (76)

and at the same time, from Eqs. (74) and (75) it
follows that

Ẋ0 = As
0 ·Xs, (77)

where

As
0 =

ke

Q0
q̇. (78)

Then, Eqs. (76) and (77) are combined together
into a single linear system:

Ẋ = AX, (79)

where

A =
[

As
s As

0
(As

0)
T 0

]
. (80)

Eq. (79) is a linear 5 + 1-dimensional representa-
tion of the constitutive model (15)-(20), in which
X and A are the augmented state vector and the
control input matrix, respectively. X satisfies the
cone condition:

XTgX = 0 ⇐⇒ ‖Q‖= Q0 ⇐⇒ ‖s‖= τy

(81)

with

g =
[

I5 05×1

01×5 −1

]
(82)

a metric tensor of the Minkowski space M5+1. I5

is the identity tensor of order 5.

A satisfies the Lie algebra condition:

ATg+gA = 0. (83)
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The set of all (5 + 1)× (5 + 1) Lorentzian ma-
trices is denoted by so(5,1). The corresponding
solution matrix G of

Ġ(t) = A(t)G(t), G(0) = I5+1, (84)

satisfying the following group properties [Liu
(2001b)]:

GTgG = g, (85)

det G = 1, (86)

G0
0 ≥ 1, (87)

is a proper orthochronous Lorentz group left act-
ing on the Minkowski space M5+1, and is denoted
by SOo(5,1). Here, det is the shorthand of the de-
terminant, and G0

0 is the 00th component of G.

5.2 Non-canonical form

In this section we provide the following results
about the nilpotentlization of the time-varying
linear system (79).

Theorem 2. Corresponding to the linear system
(79) with A satisfying Eq. (83), there exists a lin-
ear system

Ẏ = BY, (88)

where B is a zero trace nilpotent matrix function
satisfying

trB = 0, B2 = 0. (89)

Proof. The integral of Eq. (76) gives

Xs(t) = R(t)Xs(0)

+
∫ t

0
R(t)RT(ξ )As

0(ξ )X0(ξ )dξ , (90)

where R, satisfying

Ṙ = As
sR, R(0) = I5, (91)

is an element of SO(5), since As
s as shown in

Eq. (32) is skew-symmetric.

Substituting Eq. (90) into Eq. (77) we have

Ẋ0(t) = UT(t)Xs(0)

+
∫ t

0
UT(t)U(ξ )X0(ξ )dξ , (92)

where

U := RTAs
0. (93)

Integrating Eq. (92) we obtain

X0(t) = X0(0)+VT(t)Xs(0)

+
∫ t

0
[VT(t)−VT(ξ )]U(ξ )X0(ξ )dξ , (94)

where

V(t) :=
∫ t

0
U(ξ )dξ . (95)

Left multiplying Eq. (94) by [UT VTU]T we ob-
tain a six-dimensional vector integral equation:
[

U
VTU

]
X0 =

[
U

VTU

]∫ t

0

[
VT(t) −1

][
U(ξ )

VT(ξ )U(ξ )

]
X0(ξ )dξ

+
[

UX0(0)+UVTXs(0)
VTUX0(0)+VTUVTXs(0)

]
.

Then, introducing the following dyadic tensor:

B :=
[

U
VTU

][
VT −1

]
=

[
UVT −U

VTUVT −VTU

]

(96)

and a new variable:

Y(t) =
[

Ys(t)
Y 0(t)

]
:=

∫ t

0

[
U(ξ )

VT(ξ )U(ξ )

]
X0(ξ )dξ

+
[

Xs(0)
−X0(0)

]
, (97)

we obtain a linear differential system as that given
by Eq. (88), where B can be proved to satisfy
Eq. (89) by direct calculations. �
In terms of U defined in Eq. (93), Xs in Eq. (90)
can be written as

Xs(t) = R(t)
[

Xs(0)+
∫ t

0
U(ξ )X0(ξ )dξ

]
, (98)

which upon comparing with Ys defined in
Eq. (97) readily gives

Xs = RYs. (99)
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On the other hand, differentiating Eq. (97) we get,
by taking its last row,

Ẏ 0 = VTUX0. (100)

The term Ẏ 0 as shown in the last row of Eq. (88)
with its B defined by Eq. (96) is equal to

Ẏ 0 = VTUVTYs−VTUY 0. (101)

From the above two equations we obtain

X0 = VTYs−Y 0. (102)

In summary, we have the relation between X and
Y as follows:[

Xs

X0

]
=

[
R 05×1

VT −1

][
Ys

Y0

]
, (103)

or the inverse relation as follows:[
Ys

Y 0

]
=

[
RT 05×1

VTRT −1

][
Xs

X0

]
. (104)

In addition Eq. (89), B possesses the following
interesting properties.

Theorem 3. B defined by Eq. (96) satisfies

BTh+hB =
[

VUT +UVT −U
−UT 0

]
, (105)

where

h :=
[

I5−VVT V
VT −1

]
(106)

is an indefinite matrix function. Moreover, we
have

BTh+hB+ ḣ = 0. (107)

Proof. Substituting Eq. (96) for B and Eq. (106)
for h into the left-hand side of Eq. (105) and
through some calculations we obtain the right-
hand side of Eq. (105). For any nonzero Y =
(Ys,Y 0) ∈ R

6 we have

[
(Ys)T Y0

][
I5−VVT V

VT −1

][
Ys

Y 0

]

= ‖Ys‖2− (VTYs−Y 0)2, (108)

where ‖Ys‖2 := (Ys)TYs denotes the squared
norm of Ys. Since the right-hand side may be
positive, zero or negative, h is indefinite. Taking
the time derivative of Eq. (106) and noting
V̇ = U by Eq. (95), then substituting the resultant
into Eq. (107) which together Eq. (105) lead to
Eq. (107). �

Eqs. (103) and (104) render us easily to prove the
following result.

Theorem 4. The fundamental matrix G for
Eq. (84) with A satisfying Eq. (83) has the fol-
lowing representation:

G =
[

R 05×1

VT −1

]
Hg, (109)

where H is the fundamental matrix of Eq. (88),
satisfying

Ḣ = BH, H(0) = I6, (110)

as well as

HThH = g. (111)

The quantity

YThY = YT(0)h(0)Y(0) (112)

is a first integral of the system (88).

Proof. With H satisfied Eq. (110), the solution of
Eq. (88) can be expressed by

Y(t) = H(t)Y(0). (113)

Substituting it into Eq. (103) and using Y(0) =
gX(0) obtained from Eq. (104) by letting t = 0
and noting R(0) = I5 and V(0) = 0, we get

X(t) =
[

R 05×1

VT −1

]
HgX(0), (114)

which upon comparing with the solution of
Eq. (79), X(t) = G(t)X(0) with G(t) satisfying
Eq. (84), leads to Eq. (109).

Substituting Eq. (109) for G into Eq. (85) and not-
ing that[

RT V
01×n −1

]
g
[

R 05×1

VT −1

]
= h, (115)
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where h is defined by Eq. (106), we can prove
Eq. (111).

It is known that XTgX is an invariant form of
system (79) with its A satisfying Eq. (83). Sub-
stituting Eq. (103) for X into XTgX, we obtain an
invariant form YThY of system (88). Substituting
Eq. (113) for Y into the above quadratic form
and using Eq. (111) and g = h(0) we can prove
that YThY = YT(0)h(0)Y(0) is a first integral of
system (88). �

Corollary 1. In addition the property (111) the
fundamental matrix H solved from Eq. (110) sat-
isfies the following properties:

det H = 1, (116)

H0
0 ≥ 1+VTHs

0. (117)

Proof. Since trB = 0 as shown in Eq. (89), the
property (116) follows from the Abel formula and
det H(0) = 1. It indicates that H ∈ SL(6,R), i.e.,
a six-dimensional real special linear group. We
partition H as

H =
[

Hs
s Hs

0
H0

s H0
0

]
, (118)

where Hs
s, Hs

0 and H0
s are of order 5×5, 5×1 and

1×5, respectively, and the scalar H0
0 is the 00th

component of H. Substituting Eq. (118) for H,
Eq. (106) for h, and Eq. (82) for g into Eq. (111),
and then comparing the 00th components of both
sides, we obtain

(H0
0 −VTHs

0)
2 = 1+‖Hs

0‖2. (119)

The right-hand side is positive, and we may take

H0
0 −VTHs

0 =±
√

1+‖Hs
0‖2.

However, at time t = 0, V = 0, Hs
0 = 0 and H0

0 =
1, and since H is a continuous matrix function of
time t, we should select

H0
0 −VTHs

0 =
√

1+‖Hs
0‖2 ≥ 1, (120)

and thus the property (117) follows directly. �

Corollary 2. The fundamental matrix G rep-
resented by Eq. (109) satisfies the properties
(85)-(87).

Proof. Substituting Eq. (109) for G into Eq. (85)
and using Eq. (111), it follows the property (85).
Taking the determinants on both sides of Eq. (109)
and noting that

det

[
R 05×1

VT −1

]
=−det R =−1,

detH = 1, det g = −1,

we obtain det G = 1, and the property (86) is
proved. Substituting Eq. (118) for H and Eq. (82)
for g into Eq. (109), and comparing the 00th com-
ponents on both sides we get

G0
0 = H0

0 −VTHs
0. (121)

By means of Eq. (117) the property (87) follows.
�
From the above discussions we know that h is a
metric in the underlying space for Y and g is a
metric in the underlying space for X. The two
metrics are related through a similar transforma-
tion as shwon in Eq. (115), which both are indef-
inite. The three properties (111), (116) and (117)
for H correspond to the three properties (85), (86)
and (87) for G. Since g is a constant metric,
Eq. (83) also can be written as

ATg+gA+ ġ = 0, (122)

which corresponds to the form (107) for B. In
Table 2 we compare the Lie groups, Lie algebras
and other properties for these two systems about
X and Y.

In Corollary 2 we have proved that the G in
Eq. (109) is an element of SOo(5,1); however, left
and right multiplying Eq. (109) by g, we also ob-
tain another element of SOo(5,1):

gGg = g
[

R 05×1

VT −1

]
H. (123)

The element

g
[

R 05×1

VT −1

]
=

[
R 05×1

−VT 1

]
(124)
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Table 2: Comparisons of canonical and non-canonical formulations in the Minkowski space

Variable Equation Metric Lie algebra Lie group Invariant form

X Ẋ = AX g
ATg+gA = 0
trA = 0

GTgG = g
det G = 1
G0

0 > 0

XTgX

Y Ẏ = BY h
BTh+hB+ ḣ = 0
trB = 0
B2 = 0

HThH = g
det H = 1
H0

0 ≥ 1+VTHs
0

YThY

forms a SE(5) group right-action in the space R
5

via the map

(R,−V) �→
[

R 05×1

−VT 1

]
. (125)

The right-action of SE(5) on R5 is the rotation R
followed by a translation by the vector −V and
has the expression:

xT(R,−V) = xTR−VT (126)

for any x ∈R
5.

Corresponding to the linear system (79) repre-
sentation of the plastic equation in a canonical
Minkowski space with metric g, the linear system
(88) representation however is a non-canonical
one with a non-canonical metric h(t). The com-
parisons of the non-canonical one with the canon-
ical Minkowski frame of plasticity as shown in
this section are made in Table 2. We should stress
that since B is nilpotent, in the numerical compu-
tation of plasticity problem such formulation may
have higher accuracy than others [Liu and Tseng
(2002), Liu (2006b)].

6 Lie-Poisson bracket formulation

Eq. (31) can be written as

Q̇R = [q̇R(QR)T−QR(q̇R)T]∇H, (127)

where

H =
ke‖QR‖2

2Q2
0

(128)

is a generalized Hamiltonian function, the
yield function ‖QR‖2 dividing by 2Q2

0/ke, and

QR = RTQ and q̇R = RTq̇ with R solved from
Eq. (91).

Theorem 5. The plastic equation (31) is a
Lie-Poisson system. The solutions of Eq. (31)
are the coadjoint orbits of the Lie group SO(5),
constrained in the yielding manifold of G∗ known
as a symplectic foliation with the generalized
Hamiltonian function H constant on it.

Proof. Define the Poisson tensor J to be

J = q̇R(QR)T−QR(q̇R)T. (129)

We can prove that J satisfies Eqs. (10) and (11).
The first condition of skew-symmetry is obvious.
Let us write

Ji j = q̇R
i QR

j −QR
i q̇R

j , (130)

Ji j,� = q̇R
i δ j�−δi�q̇R

j . (131)

By using them we can get

Ji�Jjk,� +Jj�Jki,� +Jk�Ji j,�

= [q̇R
i QR

� −QR
i q̇R

� ][q̇R
j δk�−δ j�q̇R

k ]

+ [q̇R
j QR

� −QR
j q̇R

� ][q̇R
k δi�−δk�q̇R

i ]

+ [q̇R
k QR

� −QR
k q̇R

� ][q̇R
i δ j�−δi� q̇R

j ]

= q̇R
i q̇R

j QR
k − q̇R

i q̇R
k QR

j − q̇R
j q̇R

k QR
i + q̇R

j q̇R
k QR

i

+ q̇R
j q̇R

k QR
i − q̇R

i q̇R
j QR

k − q̇R
i q̇R

k QR
j + q̇R

i q̇R
k QR

j

+ q̇R
i q̇R

k QR
j − q̇R

j q̇R
k QR

i − q̇R
i q̇R

j QR
k + q̇R

i q̇R
j QR

k

= 0. (132)

Thus, J satisfies Eqs. (10) and (11). Moreover, be-
cause J is a linear function of QR, the bracket (9)
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with the above J is a Lie-Poisson bracket. Conse-
quently, the plastic equation (31) is a Lie-Poisson
system (12) with dimensions n = 5.

As that presented in Eq. (13), from Eq. (129) we
can identify the structure constants to be

C1
i j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −q̇R
2 −q̇R

3 −q̇R
4 −q̇R

5

q̇R
2

q̇R
3

q̇R
4 0

q̇R
5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (133)

C2
i j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 q̇R
1 0 0 0

−q̇R
1 0 −q̇R

3 −q̇R
4 −q̇R

5

0 q̇R
3

0 q̇R
4 0

0 q̇R
5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (134)

... =
...

C5
i j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

q̇R
1

0 q̇R
2

q̇R
3

q̇R
4

−q̇R
1 −q̇R

2 −q̇R
3 −q̇R

4 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (135)

Suppose that QR = QR
k ek and that {ek,k =

1, . . .,5} forms a basis of the dual Lie algebra G∗.
The above structure constants can be used to con-
struct a Lie algebra denoted by G:

[fi, f j] = Ck
i jfk, (136)

where {fk,k = 1, . . . ,5} forms a basis of the Lie
algebra G and [•,•] is the Lie commutator; see,
e.g., Varadarajan (1984).

Next, we consider the adjoint representation of the
Lie algebra G. For each f ∈ G the operator ad f
that maps g ∈ G into [f,g] is a linear transforma-
tion of G onto itself, i.e.,

(ad f)g = [f,g]. (137)

As {fk,k = 1, . . .,5} been supposed a basis for the
Lie algebra G, we have

(ad fi)f j = Ck
i jfk. (138)

Therefore the matrix associated with the transfor-
mation ad fi is

(Mi) jk = C j
ik. (139)

Corresponding to the structure constants given in
Eqs. (133)-(135), the following Mi are available:

M1 = Ci
1 j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 −q̇R
2 −q̇R

3 −q̇R
4 −q̇R

5

0 q̇R
1 0 0 0

0 0 q̇R
1 0 0

0 0 0 q̇R
1 0

0 0 0 0 q̇R
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

(140)

M2 = Ci
2 j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

q̇R
2 0 0 0 0

−q̇R
1 0 −q̇R

3 −q̇R
4 −q̇R

5

0 0 q̇R
2 0 0

0 0 0 q̇R
2 0

0 0 0 0 q̇R
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

(141)

... =
...

M5 = Ci
5 j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

q̇R
5 0 0 0 0

0 q̇R
5 0 0 0

0 0 q̇R
5 0 0

0 0 0 q̇R
5 0

−q̇R
1 −q̇R

2 −q̇R
3 −q̇R

4 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

(142)

In order to prove that the above {Mk,k = 1, . . .,5}
indeed forms a matrix basis for the Lie algebra G
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satisfying Eq. (136), let us rewrite them to be

Mi = q̇R
i I5 +

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 ··· 0
...

...
...

...
...

0 0 0 ··· 0
−q̇R

1 −q̇R
2 −q̇R

3 ··· −q̇R
5

0 0 0 ··· 0
...

...
...

...
...

0 0 0 ··· 0

⎤
⎥⎥⎥⎥⎥⎦
← ith row,

(143)

M j = q̇R
j I5 +

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 ··· 0
...

...
...

...
...

0 0 0 ··· 0
−q̇R

1 −q̇R
2 −q̇R

3 ··· −q̇R
5

0 0 0 ··· 0
...

...
...

...
...

0 0 0 ··· 0

⎤
⎥⎥⎥⎥⎥⎦
← jth row.

(144)

From these two equations it follows that

[Mi,M j] = MiM j−M jMi =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0
...

...
...

...
...

0 0 0 · · · 0
q̇R

j q̇R
1 q̇R

j q̇R
2 q̇R

j q̇R
3 · · · q̇R

j q̇R
5

0 0 0 · · · 0
...

...
...

...
...

−q̇R
i q̇R

1 −q̇R
i q̇R

2 −q̇R
i q̇R

3 · · · −q̇R
i q̇R

5
...

...
...

...
...

0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(145)

In above, (q̇R
j q̇R

1 , q̇R
j q̇R

2 , . . . , q̇R
j q̇R

5 ) locates at the
jth row, and (−q̇R

i q̇R
1 ,−q̇R

i q̇R
2 , . . . ,−q̇R

i q̇R
5 ) locates

at the ith row. On the other hand, from Eqs. (133)-
(135) we find that the structure constants Ck

i j are
all zeros except these of k = i or k = j, of which
we have Ci

i j =−q̇R
j and C j

i j = q̇R
i . Thus, we obtain

Ck
i jMk =Ci

i jMi+C j
i jM j =−q̇R

j Mi+ q̇R
i M j. (146)

Inserting Eqs. (143) and (144) for Mi and M j into
the above equation we can get the right-hand side
of Eq. (145), that is,

[Mi,M j] = Ck
i jMk. (147)

This ends the proof of Eq. (136). Consequently,
{Mk,k = 1, . . . ,5} forms a matrix basis for the Lie
algebra G.

Let us consider the Lie group Gi generated from
the matrix Mi:

Ġi = MiGi, Gi(0) = I5, i not summed. (148)

Since the two matrices on the right-hand side of
Eq. (143) commute, we can solve the above Gi as

Gi =
[

MAT MAT
I II

]
, (149)

where

[
MAT

I

]
=

⎡
⎢⎢⎢⎢⎣

eqR
i (t)−qR

i (0) 0 ··· 0

0 eqR
i (t)−qR

i (0) ··· 0

0 0 eqR
i (t)−qR

i (0) ···
vi1 ··· vi,i−1 1
0 0 ··· 0
0 0 ··· 0
0 0 ··· 0

⎤
⎥⎥⎥⎥⎦ ,

[
MAT

II

]
=

⎡
⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 0

vi,i+1 ··· vi5

eqR
i (t)−qR

i (0) 0 0

0 eqR
i (t)−qR

i (0) 0

0 0 eqR
i (t)−qR

i (0)

⎤
⎥⎥⎥⎥⎦ ,

vi j(t)=−
∫ t

0
q̇R

j (ξ )exp[qR
i (ξ )−qR

i (0)]dξ . (150)

The above Gi is a dilational translation in the ith
plane Qi =constant denoted by DTi(4). The right-
action of DTi(4) on R4 is a dilation followed by a
translation by the vector vi and has the expression:

(Q
R
i )T(eqR

i (t)−qR
i (0)I4,vi) = eqR

i (t)−qR
i (0)(Q

R
i )T+vT

i

(151)

for any Q
R
i = (QR

1 , . . . ,QR
i−1,QR

i+1, . . . ,Q
R
5 )T ∈R

4,
where vi = (vi1, . . . ,vi,i−1,vi,i+1, . . .,vi5)T ∈ R4.
Note that DTi(4) embeds into GL(5,R) as that
done in Eq. (149); hence, one can operate with
DTi(4) as one would with matrix Lie groups by
using the embedding.

Corresponding to the Lie algebra G there exists a
Lie group denoted by G which is composed of all
DTi(4), and the adjoint representation of the Lie
group is denoted by Adg, g ∈ G:

Adg : G �→ G. (152)

G∗ is foliated by the coadjoint orbits:

OQ = {Ad∗g−1 Q|g ∈G} ⊂ G∗, (153)
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where the coadjoint action Ad∗g−1 is defined by

< Ad∗g−1w,v >=< w,Adg−1v >, w ∈G∗, v ∈G.

(154)

Here < •,• > denotes a non-degenerate pairing
between G∗ and G. For matrices the adjoint action
and coadjoint action are, respectively,

Adg−1v = g−1vg, (155)

Ad∗g−1v = gv. (156)

Deriving the pair in Eq. (154) with respect to g
then letting g equal to identity, we obtain

< ad∗uw,v >=< w,aduv >, w ∈G∗, v ∈ G,

(157)

where u = (d/dt)g(t)|t=0. ad∗ is the coadjoint
representation of the Lie algebra G. Then we have
[Varadarajan (1984)]

ad∗fi
w =−J(w)fi, w ∈ G∗. (158)

Therefore, the matrix associated with the transfor-
mation ad∗fi

is

(M∗i ) jk = −Ci
jk. (159)

Since Ci
jk is a skew-symmetric matrix for each

i, the corresponding coadjoint action is found to
be a five-dimensional rotation group denoted by
SO(5). Given an initial point QR(ti) on the yield
manifold, a solution of the plastic equation (31)
stays on the same coadjoint orbit OQR(ti) for all
time until unloading happens. Along the coad-
joint orbit the generalized Hamiltonian function
H defined by Eq. (128) is a constant. �

7 Two-generator formulation

The two-generator bracket formalism is the one
that appears first in the original development for
the dynamics of dissipative systems by Kauf-
man (1984), Morrison (1984) and Grmela (1984).
Recent progress of this formalism leads to the
GENERIC (general equation for the nonequilib-
rium reversible-irreversible coupling) framework,
e.g., Grmela and Öttinger (1997), Öttinger and

Grmela (1997), and Beris (2001), in which the
time evolution of any isolated thermodynamic
system can be written in the form

dx
dt

= L(x)
δE(x)

δx
+M(x)

δS(x)
δx

, (160)

where E and S represent, respectively, the total
energy and entropy expressed in terms of the state
variables x, L and M are certain matrices, and
δ • /δx denotes the Frechet derivative when • is
a functional of x; otherwise, it is the usual partial
derivative. The use of two generators, the energy
for the reversible dynamics and the entropy for
the irreversible dynamics, is a characteristic fea-
ture of GENERIC. According to these concepts
we can derive the following result.

Theorem 6. The plastic equation (31), admitting
one conservative generator H = QTQ and one dis-
sipative generator S = QTq̇, can be written as

Q̇ = As
s∇H +η∇S, (161)

where

η := ke

[
I5− QQT

Q2
0

]
(162)

is a non-negative metric tensor. Furthermore,
there holds one degenerate condition:

η∇H = 0. (163)

Proof. We consider a dissipative bracket formu-
lation of the plastic equation (31) by writing it to
be

Q̇ = As
s∇H +ke

[
I5− QQT

Q2
0

]
∇S, (164)

where

S = QTq̇ = QTq̇p (165)

is the dissipation power of plastic material, and
H = QTQ/2 is the yield function.

As following that done in Eq. (9) we may define
the Poisson bracket by

{F,G} := (As
s)i j

∂F
∂Qi

∂G
∂Q j

, (166)
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where F and G are two differentiable scalar func-
tions of Q. In above the Poisson tensor is de-
fined for As

s, which is skew-symmetric as shown
in Eq. (32) and also satisfies Eq. (11) since As

s is
independent on Q. Introducing the metric tensor
(162), and by following that done in Eq. (166) we
can define the dissipative bracket by

{{F,G}} := ηi j
∂F
∂Qi

∂G
∂Q j

, (167)

where ηi j is a structure matrix of the dissipative
bracket system [Liu (2000)]. We can prove that
η is non-negative definite. From Eq. (162) the
symmetry of η is obvious. Then, by

vT
[

I5− QQT

Q2
0

]
v = ‖v‖2−

(
vT Q

Q0

)2

≥ 0 ∀ v∈R
5,

(168)

we prove that I5−QQT/Q2
0≥ 0 and that η is non-

negative definite.

By using the above defined Poisson bracket and
dissipative bracket, Eq. (164) can be represented
as

Q̇i = {Qi,H}+{{Qi,S}}, i = 1, . . .,5. (169)

Obviously, H = QTQ/2 is involutive with all dif-
ferentiable functions:

{{H,F}}= 0, (170)

because of

η∇H = 2ke

[
I5− QQT

Q2
0

]
Q = 2ke[Q−Q] = 0

in the plastic phase, where QTQ = Q2
0 was used.

Thus, the yield function is a Casimir function in
the dissipative bracket formulation. �
The dissipative bracket formulation stresses the
role of the dissipation power as a potential func-
tion. The yielding behavior is guaranteed by pre-
serving the Casimir function invariant. To retain
the invariance may benefit from the Lie algebra
construction as shown in Eq. (39) for this for-
mulation; however, the Lie algebra is nonlinear
in Q and it may need more effort to construct
the corresponding Lie group. Also we find that
Eq. (161) does fully fit the format (160) for the
two-generator formulation.

8 Conclusions

In this paper we have investigated the plastic be-
havior from several theoretical aspects, explored
five types of representations of the large defor-
mation perfectly plastic equation by considering
the corotational stress rates on hypoelasticity. The
five representations are compared in Table 3 by
displaying the underlying space, metric (struc-
ture) tensor, dimension, yielding, linearity, Lie
algebra and Lie group. Each has its philosophy
as being a different aspect of the same material
model of plasticity.

The progress from the flow model in Eqs. (15)-
(20) to Eq. (31) reflects the fact that it is an affine
nonlinear system from the viewpoint of control
theory, which admits the construction of a finite-
dimensional Lie algebra with dimensions fifteen.
Then taking the Lie group structure into account
we may improve its calculation by utilizing the
superposition principle.

Comparing the two representations (31) and (79),
we are observed that Eq. (31) is nonlinear and
of the five orders, but Eq. (79) is linear and of
the six orders; hence, the implicit linearity is un-
folded at the expense of raising one order up. The
representation in the X-space is linear, and more-
over, it is easy to retain the Lie group symmetry
of the model, thus facilitating the fulfillment of
the consistency condition. The representation in
the Y-space is also linear; however, it provides a
non-canonical Minkowski frame of plasticity, and
may be more effective in the numerical computa-
tion since the augmented state matrix function B
is nilpotent with index two.

The generalized Hamiltonian formalism nicely
highlights the stress yielding behavior as a coad-
joint orbit on the symplectic foliation in a dual Lie
algebra space. The yield function plays the role
as a generalized Hamiltonian function in the Lie-
Poisson system. Conversely, in the two-generator
and two-bracket formulation the nonlinear behav-
ior of plastic material is reflected by the dissipa-
tion power as a potential function. The yielding
behavior is guaranteed by preserving the Casimir
function invariant. When compared with Eq. (31),
Eq. (161) marks a further breakthrough of the
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Table 3: Comparisons of five representations of plastic equation (Dim. is Dimension)

Equation(s) Space Metric Dim. Yielding Linearity Lie algebra Lie group
(31) E

5 I5 5 Yield surface Non-linear – –
(79) M

5+1 g 5+1 Cone Linear so(5,1) SOo(5,1)
(88) M

5+1 h 5+1 Cone Linear Nilpotent SL(6)
(127) G∗ J 5 Coadjoint orbit Linear M∗i , i = 1, ...,5 SO(5)
(161) E5 η 5 Casimir function Non-linear in Eq. (39) Yes

concept by protruding the dissipation nature of
plasticity.

The nonlinear problems of plasticity were usu-
ally treated by workers in plasticity with various
numerical schemes, which often encounter the
tremendous difficulties of plastic nonlinearity and
yielding inconsistency. The passage directly from
the flow model in Eqs. (15)-(20) to a numerical
scheme, if no care is taken of, may alter or destroy
the underlying structure of the model, resulting
in unstable, inefficient, and inaccurate calcula-
tions. Conversely, the passage from our represen-
tations of plasticity into numerical schemes may
have the merit of the automatic fulfillment of the
consistency condition. The extensions of the X-
space representation in the canonical Minkowski
space together with the Lorentz group symmetry
to other plasticity models have been carried out
by Liu (2001a, 2003, 2004a, 2004b, 2004c, 2005,
2006a) and Liu and Chang (2004). However,
more study are required to fit the blank in the ex-
tension and numerical realization of these repre-
sentations to other more complex plasticity mod-
els. Fully utilizing the internal symmetries and
internal mathematical structures of the plasticity
models would facilitate us to a further understand-
ing of the real material behavior and the develop-
ment of better numerical integrating methods.
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Öttinger, H. C.; Grmela, M. (1997): Dynamics
and thermodynamics of complex fluids: II. illus-
trations of a general formalism, Phys. Rev. E, vol.
56, pp. 6633-6655.

Pelino, V.; Pasini, A. (2001): Dissipation in Lie-
Poisson systems and the Lorenz-84 model. Phys.
Lett. A, vol. 291, pp. 389-396.

Prager, W. (1960): An elementary discussion of
definition of stress rate. Quart. Appl. Math., vol.
18, pp. 403-407.

Prandtl, L. (1924): Spannungsverteilung in plas-
tischen krpern. Proceedings of the 1st Interna-
tional Congress on Applied Mechanics, pp. 43-
54, Delft, 1924.

Reuss, E. (1930): Beruecksichtigung der elastis-
chen formaenderungen in der plastizitaetstheorie.
Zeits. angew. Math. Mech. (ZAMM), vol. 10, pp.
266-274.

Rochinha, F. A.; Sampaio R. (2000): Non-linear
rigid body dynamics: energy and momentum con-
serving algorithm. CMES: Computer Modeling in
Engineering & Sciences, vol. 1, pp. 7-18.

Rubinstein, R.; Atluri S. N. (1983): Objectiv-
ity of incremental constitutive relations over fi-
nite time steps in computational finite deforma-
tion analyses. Comp. Meth. Appl. Mech. Eng.,
vol. 36, pp. 277-290.

Suetake, Y.; Iura, M.; Atluri, S. N. (2003): Vari-
ational formulation and symmetric tangent oper-
ator for shells with finite rotation field. CMES:
Computer Modeling in Engineering & Sciences,
vol. 4, pp. 329-336.



Five Different Formulations of the Finite Strain Perfectly Plastic Equations 93

Varadarajan, V. S. (1984): Lie Groups, Lie
Algebras, and Their Representations. Springer-
Verlag, New York.

Xiao, H.; Bruhns, O. T.; Meyers, A. (1997a):
Hypo-elasticity model based upon the Logarith-
mic stress rate. J. Elasticity, vol. 47, pp. 51-68.

Xiao, H.; Bruhns, O. T.; Meyers, A. (1997b):
Logarithmic strain, logarithmic spin and logarith-
mic rate. Acta Mech., vol. 124, pp. 89-105.

Xiao, H.; Bruhns, O. T.; Meyers, A. (1999): Ex-
istence and uniqueness of the integrable-exactly

hypoelastic equation
◦ �
τ = λ (trD)I+2μD and its

significance to finite inelasticity. Acta Mech., vol.
138, pp. 31-50.

Xiao, H.; Bruhns, O. T.; Meyers, A. (2000): The
choice of objective rates in finite elastoplasticity:
general results on the uniqueness of the logarith-
mic rate. Proc. Roy. Soc. London Ser. A, vol.
456, pp. 1865-1882.

Xiao, H.; Bruhns, O. T.; Meyers, A. (2006):
Elastoplasticity beyond small deformations. Acta
Mech., vol. 182, pp. 31-111.

Zhou, X.; Tamma, K. K. (2003): On the appli-
cability and stress update formulations for corota-
tional stress rate hypoelasticity constitutive mod-
els. Finite Elem. Anal. Des., vol. 39, pp. 783-
816.




