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Contact Problem for the Flat Elliptical Crack under Normally Incident
Shear Wave

A.N. Guz1, O.V. Menshykov1,2, V.V. Zozulya3 and I.A. Guz 2

Abstract: The contact interaction of opposite
faces of an elliptical crack is studied for the case
of a normal time-harmonic shear wave loading.
The distribution of stress intensity factors (shear
modes II and III) as functions of the wave number
and the friction coefficient is investigated. The
results are compared with those obtained for an
elliptical crack without allowance for the contact
interaction.
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1 Introduction

The rapid development of different areas of engi-
neering, creation of new structures, modern prob-
lems of geophysics and seismology, make the
computational fracture mechanics a topical area.

Among the most topical applied problems there
are structural strength problems, complicated by
the various flaws (cracks, delaminations, etc).
Such flaws appear due to the process of manufac-
ture of materials and structural components, and
their further exploitation under various types of
loading. The sudden development of cracks can
lead to catastrophic aftereffects; therefore a con-
siderable body of work is devoted to the solution
of two- and three-dimensional fracture mechan-
ics problems for cracked solids under dynamic
loading, see Aliabadi and Rooke (1991), Ali-
abadi (2002), Atluri and Nishioka (1986), Balas,
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Sladek and Sladek (1989), Chen and Sih (1977),
Cherepanov (1979), Domingez (1993), Freund
(1990), Graff (1991), Guz and Zozulya (2002),
Zhang and Gross (1998).

However it should be taken into account that dur-
ing deformation of a solid, the opposite faces
of cracks mutually interact with the unilateral
contact forces in the normal direction and the
frictional contact forces in the tangential direc-
tion. The contact zones, and the adhesion and
sliding sub-zones appear on the faces of cracks.
The boundaries between contact and non-contact
zones, and also between adhesion and slipping
sub-zones, are time dependant and unknown be-
forehand. It implies the significant transformation
of the stress-strain state in the vicinity of crack
front and the corresponding modification of the
stress intensity factors distribution. The complex-
ity of the problem is further compounded by the
fact that the contact behaviour is very sensitive to
the material properties of two contacting surfaces
and the type of the external loading. Such de-
pendences make the contact crack problem highly
non-linear [Guz and Zozulya (2002)].

It is only possible to solve these problems using
the advanced numerical methods, since the ana-
lytical solutions are limited to a relatively small
number of idealized model problems correspond-
ing to very special geometrical configurations and
loading conditions. Some approaches and iter-
ative algorithms based on the variational princi-
ples of the dynamic theory of elasticity were con-
sidered by Guz and Zozulya (2002), Mistakidis
and Stavroulakis (1998), Zozulya and Menshykov
(2003)]. Usually such problems are solved nu-
merically using the finite element or bound-
ary integral equations methods [Aliabadi and
Rooke (1991), Aliabadi (2002), Atluri and Nish-
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ioka (1986), Balas, Sladek and Sladek (1989),
Domingez (1993), Zhang and Gross (1998).
The boundary integral equations method is more
preferable in the dynamic 3-D problems with
changing boundary conditions, because this ap-
proach requires a relatively simple discretization
of the surface rather than the volume, and offers
the accuracy that is necessary for the computation
of mechanical quantities such as stress intensity
factors. However, the evaluation of divergent in-
tegrals with different types of singularity consti-
tutes a major problem within the method. These
integrals are often hyper-singular and should be
treated in the sense of the Hadamard finite part
[Guz and Zozulya (2002), Martin, Rizzo and Gon-
zalves (1989), Zozulya and Men’shikov (2000)].

It is important to point out, that in the major-
ity of publications on fracture dynamics (except
for our studies), problems were solved without
taking into account the possibility of the con-
tact interaction, though in dynamical problems
it is almost impossible to find type of load-
ing which do not cause crack faces contact in-
teraction. The reviews of the results obtained
for cracked solids with and without account-
ing for the contact interaction are given by Ali-
abadi and Rooke (1991), Aliabadi (2002), Balas,
Sladek and Sladek (1989), Cherepanov (1979),
Freund (1990), Graff (1991), Guz and Zozulya
(2002), Zhang and Gross (1998), Men’shikov,
Men’shikova and Wendland (2005).

The present paper is devoted to the solution of
the three-dimensional fracture dynamics problem
for a plane elliptical crack under a normally in-
cident shear wave. The problem is solved with
allowance for the contact interaction of the crack
faces. The tangential forces, corresponding dis-
placements of the crack faces and their effect on
the distribution of stress intensity factors for dif-
ferent values of the friction coefficient are inves-
tigated.

2 Statement of the problem

Consider a plane stationary elliptical crack with
a major axis a and a minor axis b located in
the unbounded linear elastic, homogeneous and
isotropic three-dimensional solid. The middle

surface of the crack is defined by the following
Cartesian coordinates:

Ω =

⎧⎨
⎩

0 ≤ x1 ≤ acosβ , 0 ≤ x2 ≤ bsinβ ,

x3 = 0, β = tan−1(a/b tanϕ),
0 ≤ ϕ < 2π , a ≥ b

⎫⎬
⎭ .

(1)

A time-harmonic shear SV-wave with the fre-
quency ω and amplitude Φ0 propagates normally
to the crack surface. The shear axis coincides with
the axis Ox1 (Fig. 1).

Figure 1: Elliptical crack under shear wave

The load vector on the crack faces can be repre-
sented as

ppp(xxx, t) = p∗(xxx, t)+qqq(xxx, t), (2)

where ppp∗(xxx, t) is the load on the crack faces
caused by the incident wave and qqq(xxx, t) is the con-
tact force vector caused by the crack faces contact
interaction. The displacement discontinuity vec-
tor Δuuu(xxx, t) characterizes the mutual displacement
of the opposite crack faces.

According to Guz and Zozulya (2002), Guz,
Zozulya and Men’shikov (2004), the following
unilateral constraints must be fulfilled for the tan-
gential components of the contact force vector
and the displacement discontinuity vector:

|qqqτ (xxx, t)|< kτqn(xxx, t)⇒ ∂tΔuuuτ(xxx, t) = 0;

|qqqτ (xxx, t)|= kτqn(xxx, t)⇒ ∂tΔuuuτ(xxx, t) = −λτqqqτ (xxx, t),
(3)

where λτ = |∂t Δuuuτ (xxx, t)|/|qqqτ |, and kτ > 0 is the
friction coefficient, qn(xxx, t) is the normal compo-
nent of the contact force vector. In order to take
the unilateral constraints (3) into account, we as-
sume that qn(xxx, t) is the unit constant in the con-
sidered model case.
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The constraints (3) mean that the friction is de-
scribed by the Coulomb law. The opposite crack
faces remain immovable to each other in the tan-
gential plane until they are held by the friction
force. However, as soon as the magnitude of the
contact forces reaches a certain limit, depending
on the friction coefficient and exceeds this limit,
the crack faces begin to move: the slipping oc-
curs.

3 Boundary integral equations

Since the area of the contact domain Ωcont is time-
dependent, we can expand the components of the
load and displacement discontinuity vectors into
the Fourier series [Guz and Zozulya (2002), Guz,
Menshykov and Zozulya (2003)]:

p j(xxx, t) = Re

{
+∞

∑
k=−∞

pk
j(xxx)eiωkt

}
, (4)

Δu j(xxx, t) = Re

{
+∞

∑
k=−∞

Δuk
j(xxx)eiωkt

}
, (5)

where ωk = 2πk/T , j = 1,2 and

pk
j(xxx) =

ω
2π

T∫
0

p j(xxx, t)e−iωktdt, (6)

Δuk
j(xxx) =

ω
2π

T∫
0

Δu j(xxx, t)e−iωktdt. (7)

The Fourier coefficients pk
j(xxx) and Δuk

j(xxx) are re-
lated by the following system of boundary integral
equations for k = −∞,+∞

pk
1(xxx) = −

∫
Ω

F11(xxx,yyy,ωk)Δuk
1(yyy)dyyy

−
∫
Ω

F12(xxx,yyy,ωk)Δuk
2(yyy)dyyy, (8)

pk
2(xxx) = −

∫
Ω

F21(xxx,yyy,ωk)Δuk
1(yyy)dyyy

−
∫
Ω

F22(xxx,yyy,ωk)Δuk
2(yyy)dyyy. (9)

Taking into account the Euler formula

ea+ib = ea(cos(b)+ i sin(b)), (10)

we obtain the expressions for the Fourier coeffi-
cients (6), (7):

pk
j(xxx) =

ω
2π

T∫
0

p j(xxx, t)cos(ωkt)dt

− i
ω
2π

T∫
0

p j(xxx, t) sin(ωkt)dt, (11)

Δuk
j(xxx) =

ω
2π

T∫
0

Δu j(xxx, t)cos(ωkt)dt

− i
ω
2π

T∫
0

Δu j(xxx, t) sin(ωkt)dt. (12)

Let us denote

pk
j,cos(xxx) =

ω
π

T∫
0

p j(xxx, t)cos(ωkt)dt, (13)

pk
j,sin(xxx) =

ω
π

T∫
0

p j(xxx, t) sin(ωkt)dt, (14)

Δuk
j,cos(xxx) =

ω
π

T∫
0

Δu j(xxx, t)cos(ωkt)dt, (15)

Δuk
j,sin(xxx) =

ω
π

T∫
0

Δu j(xxx, t) sin(ωkt)dt, (16)

then

p j(xxx, t) =
p0

j,cos(xxx)
2

+
+∞

∑
m=1

(
pk

j,cos(xxx)cos(ωkt)+ pk
j,sin(xxx) sin(ωkt)

)
,

(17)

Δu j(xxx, t) =
Δu0

j,cos(xxx)
2

+
+∞

∑
k=1

(
Δuk

j,cos(xxx)cos(ωkt)+Δuk
j,sin(xxx) sin(ωkt)

)
.

(18)
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The boundary integral system of equations (8), (9)
for k = 0,+∞ takes the form:

pk
1,cos(xxx)− ipk

1,sin(xxx) =

−
2

∑
j=1

∫
Ω

(FRe
1 j (xxx,yyy,ωk)+ iFIm

1 j (xxx,yyy,ωk))

× (Δuk
j,cos(yyy)− iΔuk

j,sin(yyy))dyyy, (19)

pk
2,cos(xxx)− ipk

2,sin(xxx) =

−
2

∑
j=1

∫
Ω

(FRe
2 j (xxx,yyy,ωk)+ iFIm

2 j (xxx,yyy,ωk))

× (Δuk
j,cos(yyy)− iΔuk

j,sin(yyy))dyyy, (20)

where FRe
i j (xxx,yyy,ωk) and FIm

i j (xxx,yyy,ωk) are the real
and imaginary components of the fundamental so-
lution Fi j(xxx,yyy,ωk), which can be determined from
the Green displacement tensor. For a flat crack
we have [Guz, Zozulya and Men’shikov (2004),
Menshykov and Guz (2006, 2007)]:

F11 =
1
r3

μ
4π (λ +2μ)

[
3λ

(y1 −x1)
2

r2 +2μ

]

− 1
r3

μ
4π

{
(y1 −x1)

2

r2

·
+∞

∑
n=3

[
(−l2)

n

n!
(n−1) (n−2)(n−3)

(n+2)

+
(−l1)

n

n!
c2

2

c2
1

4(n−1) (n−2)
(n+2)

]

+2
+∞

∑
n=2

[
(−l2)

n

n!
n(n−1)
(n+2)

+
(−l1)

n

n!
c2

2

c2
1

2(n−1)
(n+2)

]}
,

(21)

F22 =
1
r3

μ
4π (λ +2μ)

[
3λ

(y2 −x2)
2

r2 +2μ

]

− 1
r3

μ
4π

{
(y2 −x2)

2

r2

·
∞

∑
n=3

[
(−l2)

n

n!
(n−1) (n−2)(n−3)

(n+2)

+
(−l1)

n

n!
c2

2

c2
1

4(n−1) (n−2)
(n+2)

]

+2
∞

∑
n=2

[
(−l2)

n

n!
n(n−1)
(n+2)

+
(−l1)

n

n!
c2

2

c2
1

2(n−1)
(n+2)

]}
,

(22)

F12 = F21 =
1
r3

3λ μ
4π (λ +2μ)

(y1 −x1)(y2 −x2)
r2

− 1
r3

μ
4π

(y1 −x1) (y2 −x2)
r2

×
∞

∑
n=3

[
(−l2)

n

n!
(n−1)(n−2) (n−3)

(n+2)

+
(−l1)

n

n!
c2

2

c2
1

4(n−1) (n−2)
(n+2)

]
,

(23)

where l1 = iωkr/c1, l2 = iωkr/c2; r is the distance
between the observation point and the point of
application of the load; c1 =

√
(λ +2μ)/ρ and

c2 =
√

μ/ρ are the velocities of the longitudinal
and the transverse waves; λ > −μ and μ > 0 are
the Lame elastic constants; ρ is the material den-
sity.

Note that the number of retained terms in the se-
ries (21)–(23) required for evaluating of these se-
ries with a fixed accuracy increases with a rise in
the frequency ω . Therefore the speed of conver-
gence decreases. It can result in aggravation of
the accuracy of the numerical solution. In partic-
ular, it is not possible to consider the limit case in
which ω → +∞.

We approximate the surface of the crack by a set
of plane elements Ωh

l ,l = 1,N, and use a piece-
wise constant approximation of the known and
unknown functions. Thus, we obtain from the
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system of boundary integral equations (19), (20)
for k = 0,+∞ the following system of complex-
valued equations:

pk
1,cos(xm)− ipk

1,sin(xm) =

−
2

∑
j=1

N

∑
l=1

∫
Ωh

l

(FRe
1 j (xm,y,ωk)+ iFIm

1 j (xm,y,ωk))dy

× (Δuk
j,cos(yl)− iΔuk

j,sin(yl)), (24)

pk
2,cos(xm)− ipk

2,sin(xm) =

−
2

∑
j=1

N

∑
l=1

∫
Ωh

l

(FRe
2 j (xm,y,ωk)+ iFIm

2 j (xm,y,ωk))dy

× (Δuk
j,cos(yl)− iΔuk

j,sin(yl)), (25)

where points x j and y j are located in the centre
of element Ωh

j . The matrix form of the system of
equations (24), (25) can be found in Appendix A.

Due to the presence of non-integrable singular-
ities in the integral kernels Fi j(xxx,yyy,ωk), whose
rank exceeds the dimension of the integration
region, the integrals included in the system of
boundary integral equations (19), (20) are hyper-
singular. We should treat them only in the sense
of the Hadamard finite parts. Guz and Zozulya
(2002), Zozulya and Men’shikov (2000) give the
relationships enabling us to calculate the diver-
gent integrals. The corresponding regularized ex-
pressions are given in Appendix B.

4 Numerical results

Let the incident shear wave with the unit ampli-
tude propagate in the material with the following
mechanical properties: the Young’s elastic mod-
ulus E = 200 GPa, the Poisson’s ratio ν = 0.25,
the density ρ = 7800 kg/m3.

Here the iterative algorithm [Guz and Zozulya
(2002), Mistakidis and Stavroulakis (1998),
Zozulya and Menshykov (2003)] is used for solv-
ing the problem. It consists of the following steps:

• assigning an initial distribution of the
traction vector ppp(xxx, t) = ppp∗(xxx, t) =
(Re(−μk2

2Φ0e−iωt),0,0)T on the crack
faces;

• solving the problem without taking the con-
tact interaction into account;

• correcting the distribution of the contact
forces vector and the displacement discon-
tinuity vector by using the operators of or-
thogonal projection on the set determined by
constraints (3);

• proceeding to the next iteration until no ad-
ditional correction is needed.

The distribution of the tangential components of
the contact forces and the displacement discon-
tinuity vectors for a penny-shaped crack (a/b =
1.0) is given in Fig. 2.

Figure 2: Tangential contact forces and normal-
ized displacement discontinuity on the surface of
the crack, k2a = 1.0; kτ = 0.3

Note that the constraints (3) are satisfied on the
entire surface of the crack during the period of
oscillations. Also the distribution of the tangen-
tial components has a relatively simple form only
by the virtue of the assumption about the constant
distribution of the normal component of contact
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forces. Otherwise, the distribution of the tangen-
tial components would have a significantly more
complicated form.

The following asymptotic formulas [Cherepanov
(1979), Guz and Zozulya (2002)] were applied to
calculate the stress intensity factors:

KII(x, t) = lim
r→0

μ
4(1−ν)

√
2π
r

Δun
τ(x, t), (26)

KIII(x, t) = lim
r→0

μ
4

√
2π
r

Δuτ
τ(x, t), (27)

where Δun
τ(x, t), Δuτ

τ(x, t) are the normal and
tangential components of vector Δuuuτ(x, t) in the
vicinity of the crack front; r is the distance from
the crack front.

The stress intensity factor KII(xxx, t) attains the
maximum value in the vertex of the major axis
of the ellipse (β = 00), the minimum value - in
the vertex of the minor axis (β = 900). The op-
posite is true for the factor KIII(xxx, t). The val-
ues of the stress intensity factors are shown in
Fig. 3-6, where the dimensionless parameters∣∣∣Kmax

II /Kstat
II

∣∣∣ and
∣∣∣Kmax

III /Kstat
III

∣∣∣ are given for β =

00 and β = 900. Here Kstat
II and Kstat

III are the cor-
responding static values determined for a penny-
shaped crack from the relationships [Cherepanov
(1979), Gross and Zhang (1992)]:

Kstat
II =

4√
π(2−ν)

τ
√

acosβ , (28)

Kstat
III = − 4(1−ν)√

π(2−ν)
τ
√

asinβ , (29)

and for an elliptical crack from the relation-
ships [Chen and Sih (1977), Cherepanov (1979),
Kassier and Sih (1966)]:

Kstat
II = −

√
π

(ab)3/2Π1/4
bBcosβ , (30)

Kstat
III =

√
π(1−ν)

(ab)3/2Π1/4
aBsinβ , (31)

Π = a2 sin2 β +b2 cos2 β , (32)

B = − ab2k2τ
(k2 −ν)E(k)+νk′K(k)

, (33)

k2 = 1−b2/a2, k′ = b/a, b < a, (34)

where τ denotes the stress amplitude of the inci-
dent wave. K(k) and E(k) are the complete nor-
mal Legendre elliptic integrals:

K(k) =

π/2∫
0

dθ√
1−k2 sin2 θ

, (35)

E(k) =

π/2∫
0

√
1−k2 sin2 θdθ . (36)

Figure 3: Dimensionless stress intensity factor
|Kmax

II /Kstat
II | plotted against the wave number k2a;

a/b = 1.0: 1 -without contact; 2 - kτ = 0.02; 3 -
kτ = 0.3

The stress intensity factors diminish with the rise
in the friction coefficient. As kτ tends to zero
the solution tends to the one obtained without
allowance for the contact interaction (Fig. 3–6,
curves 1 and 2). For the larger values of the fric-
tion coefficient the stress intensity factors reach
the maximum values when the wave numbers are
close to zero (Fig. 3–6, curves 3).

The results obtained for the penny-shaped crack
with the neglected effect of contact interaction co-
incide with the results of Gross and Zhang (1992),
Zhang and Gross (1998) in the range 0.0 ≤ k2a ≤
4.0, and only insignificantly differ from them in
the range 4.0 ≤ k2a ≤ 5.0. It can be associated
with the mentioned aggravation of the precision
of the solution with the increasing of frequency.
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Figure 4: Dimensionless stress intensity factor
|Kmax

III /Kstat
III | plotted against the wave number k2a;

a/b = 1.0: 1 -without contact; 2 - kτ = 0.02; 3 -
kτ = 0.3

Figure 5: Dimensionless stress intensity factor
|Kmax

II /Kstat
II | plotted against the wave number k2a;

a/b = 2.0: 1 -without contact; 2 - kτ = 0.02; 3 -
kτ = 0.3

5 Conclusions

In this paper the distribution of stress intensity
factors (shear modes) was investigated for the
case of a flat elliptical crack in the unbounded
linear elastic, homogeneous and isotropic three-
dimensional solid under time-harmonic shear
wave, propagating normally to the crack surface.
The problem was solved by the boundary integral
equations methods using an iterative algorithm.
The effect of the friction was analyzed, where

Figure 6: Dimensionless stress intensity factor
|Kmax

III /Kstat
III | plotted against the wave number k2a;

a/b = 2.0: 1 -without contact; 2 - kτ = 0.02; 3 -
kτ = 0.3

friction was described by the Coulomb law.

The stress intensity factors were given as func-
tions of the wave number and the friction coef-
ficient. The location of the maximum values of
the stress intensity factors was defined. The re-
sults are compared with those obtained without al-
lowance for the contact interaction. It was shown
that in some cases the difference between com-
pared results can reach 50%.

The results presented here confirm the signifi-
cance of taking into account the contact interac-
tion of crack faces. Hence, additional extensive
investigations are necessary to ensure safety of
structures.
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Appendix A: Matrix form of the system of
linear algebraic equations

After separation of the real and imaginary parts,
the system of equations (24), (25) can be written
in the following short matrix form:

FFFk
τUUUk

τ = PPPk
τ , (A1.1)
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where

FFFk
τ =

⎡
⎢⎢⎢⎣
−Fk,Re

11 −Fk,Im
11 −Fk,Re

12 −Fk,Im
12

Fk,Im
11 −Fk,Re

11 Fk,Im
12 −Fk,Re

12

−Fk,Re
21 −Fk,Im

21 −Fk,Re
22 −Fk,Im

22

Fk,Im
21 −Fk,Re

21 Fk,Im
22 −Fk,Re

22

⎤
⎥⎥⎥⎦ ,

UUUk
τ =

⎡
⎢⎢⎣

Uk
1,cos

Uk
1,sin

Uk
2,cos

Uk
2,sin

⎤
⎥⎥⎦ , PPPk

τ =

⎡
⎢⎢⎣

Pk
1,cos

Pk
1,sin

Pk
2,cos

Pk
2,sin

⎤
⎥⎥⎦ ,

(A1.2)

and

Fk,Re
qp =⎡
⎢⎢⎢⎢⎢⎣

∫
Ωh

1

FRe
qp (x1,y,ωk)dy

∫
Ωh

2

FRe
qp (x1,y,ωk)dy ··· ∫

Ωh
N

FRe
qp (x1,y,ωk)dy

∫
Ωh

1

FRe
qp (x2,y,ωk)dy

∫
Ωh

2

FRe
qp (x2,y,ωk)dy ··· ∫

Ωh
N

FRe
qp (x2,y,ωk)dy

...
...

.. .
...∫

Ωh
1

FRe
qp (xN ,y,ωk)dy

∫
Ωh

2

F Re
qp (xN ,y,ωk)dy ··· ∫

Ωh
N

F Re
qp (xN ,y,ωk)dy

⎤
⎥⎥⎥⎥⎥⎦,

(A1.3)

Fk,Im
qp =⎡
⎢⎢⎢⎢⎢⎣

∫
Ωh

1

F Im
qp (x1,y,ωk)dy

∫
Ωh

2

FIm
qp (x1,y,ωk)dy ··· ∫

Ωh
N

FIm
qp (x1,y,ωk)dy

∫
Ωh

1

F Im
qp (x2,y,ωk)dy

∫
Ωh

2

FIm
qp (x2,y,ωk)dy ··· ∫

Ωh
N

FIm
qp (x2,y,ωk)dy

...
...

.. .
...∫

Ωh
1

FIm
qp (xN ,y,ωk)dy

∫
Ωh

2

F Im
qp (xN ,y,ωk)dy ··· ∫

Ωh
N

F Im
qp (xN ,y,ωk)dy

⎤
⎥⎥⎥⎥⎥⎦,

(A1.4)

Uk
q,cos =

⎡
⎢⎢⎣

Δuk
q,cos(y1)

Δuk
q,cos(y2)
· · ·

Δuk
q,cos(yN)

⎤
⎥⎥⎦ , Uk

q,sin =

⎡
⎢⎢⎣

Δuk
q,sin(y1)

Δuk
q,sin(y2)
· · ·

Δuk
q,sin(yN)

⎤
⎥⎥⎦ ,

Pk
q,cos =

⎡
⎢⎢⎣

pk
q,cos(y1)

pk
q,cos(y2)
· · ·

pk
q,cos(yN)

⎤
⎥⎥⎦ , Pk

q,sin =

⎡
⎢⎢⎣

pk
q,sin(y1)

pk
q,sin(y2)
· · ·

pk
q,sin(yN)

⎤
⎥⎥⎦ .

(A1.5)

Appendix B: Regularization of divergent in-
tegrals

It follows from expressions (21)–(23) for the fun-
damental solutions Fi j(xxx,yyy,ωk) that in order to

calculate the coefficients of the system of equa-
tions (24), (25) the divergent integrals

Jα ,β
γ (xxx,Ωh

j) =
∫

Ωh
j

(x1 −y1)α(x2−y2)β

rγ dy (A2.1)

should be regularized and calculated over plane
elements Ωh

j , j = 1,N.

It was shown by Zozulya, Men’shikov (2000) that
for regularization of the divergent integrals the
second Green theorem can be used. Particularly,
we obtain the following regular representations
for weakly singular integrals

J0,0
1 (xxx,Ωh

j) =

−
∫

∂Ωh
j

[
x1 −y1

r
n1(yyy)+

x2 −y2

r
n2(yyy)

]
dyyy,

(A2.2)

J1,1
3 (xxx,Ωh

j) =

1
5

∫
∂Ωh

j

[
x1 −y1

r
n2(yyy)+

x2 −y2

r
n1(yyy)

−3
(x1 −y1)2(x2 −y2)

r3 n1(yyy)

− 3
(x1−y1)(x2−y2)2

r3 n2(yyy)
]

dyyy, (A2.3)

J2,0
3 (xxx,Ωh

j) =

1
5

∫
∂Ωh

j

[
−2

x2 −y2

r
n2(yyy)−3

(x1 −y1)3

r3 n1(yyy)

− 3
(x1−y1)2(x2 −y2)

r3 n2(yyy)
]

dyyy, (A2.4)

J0,2
3 (xxx,Ωh

j) =

1
5

∫
∂Ωh

j

[
−2

x1 −y1

r
n1(yyy)−3

(x2 −y2)3

r3 n2(yyy)

− 3
(x1−y1)(x2−y2)2

r3 n1(yyy)
]

dyyy, (A2.5)
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and for hypersingular integrals

J0,0
3 (xxx,Ωh

j) =∫
∂Ωh

j

[
x1 −y1

r3 n1(yyy)+
x2 −y2

r3 n2(yyy)
]

dyyy, (A2.6)

J1,1
5 (xxx,Ωh

j) =

1
5

∫
∂Ωh

j

[
x1 −y1

r3 n2(yyy)+
x2 −y2

r3 n1(yyy)

− (x1 −y1)2(x2−y2)
r5

n1(yyy)

− (x1 −y1)(x2−y2)2

r5 n2(yyy)
]

dyyy, (A2.7)

J2,0
5 (xxx,Ωh

j) =

1
5

∫
∂Ωh

j

[
4

x1 −y1

r3 n1(yyy) +2
x2 −y2

r3 n2(yyy)

− (x1 −y1)3

r5 n1(yyy)

− (x1 −y1)2(x2 −y2)
r5

n2(yyy)
]

dyyy, (A2.8)

J0,2
5 (xxx,Ωh

j) =

1
5

∫
∂Ωh

j

[
4

x2 −y2

r3 n2(yyy) +2
x1 −y1

r3 n1(yyy)

− (x2 −y2)3

r5 n2(yyy)

− (x1 −y1)(x2−y2)2

r5 n1(yyy)
]

dyyy. (A2.9)


