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A Geometrical Comparison between Cell Method and Finite Element
Method in Electrostatics
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Abstract: Cell Method, a Finite Formulation
technique, is compared in detail with the Finite
Element Method (FEM), a differential-based nu-
merical technique. In the finite formulation tech-
nique, Poisson’s equation is described starting
from a topological foundation. The final set of
algebraic equations resulting from the two ap-
proaches are compared in matrix form. The
equivalence of the coefficient matrices is proven
for a Voronoi dual mesh and linear shape func-
tions in the FEM. The difference between the
source (charge) vectors in the two approaches is
described. It is shown that the use of linear shape
functions in the FEM is equivalent to the use of a
barycentric dual mesh for charge vectors. Also, it
is shown that the coefficient matrix derived from
a variational technique, FEM, can be interpreted
using the simple geometrical concept of a parallel
plate capacitor. As an example, a Schottky barrier
diode with a non-uniform doping profile is con-
sidered. The results demonstrate the differences
between the two approaches in the case of a non-
zero electric charge density.

Keyword: Cell Method, Electrostatics, Finite
Element Method, Numerical techniques, Pois-
son’s Equation.

1 Introduction

In the field of computational electromagnetics,
many different numerical techniques have been
developed. The aim of most numerical techniques
is to accurately estimate the solution of Maxwell’s
equations in a discretized space and time domain.
“The basic idea is to approximate quantities of in-
terest in terms of sampling functions, often poly-
nomials that are then substituted for these quanti-
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ties in various analytical operations. Thus integral
operators are replaced by finite sums and differen-
tial operators are similarly replaced by finite dif-
ferences”, [Miller (1998)].

Maxwell’s equations describe fundamental laws
(Gauss’s law, Faraday’s law and Maxwell-
Ampère’s law) based on experimental observa-
tion which are naturally stated in terms of phys-
ical variables defined on volumes, surfaces and
lines. These laws govern the behavior of the mag-
netic and electric fields in a specific physical me-
dia and can be expressed, although not necessar-
ily, in differential form which is the most com-
mon presentation for them. In this case, a limit-
ing process is performed on the finite geometrical
objects (lines, surfaces or volumes) and differen-
tial equations are thus obtained as a mathematical
model for the physical laws. If these differential
equations can be solved, the field variables (such
as electric and magnetic fields, current density,
charge density) will be specified at every point of
the space (and/or time) domain. Unfortunately, in
almost all cases, the differential equations do not
have an analytical solution and have to be solved
numerically.

Using a numerical technique, we replace the dif-
ferential (or integral) equations by finite differ-
ences (or finite sums) departing from the limiting
process that we had performed to obtain the dif-
ferential (or integral) equation. If you question
why the limiting process is performed in the first
place, then Finite Integration Techniques can be
considered a more reasonable approach.

Starting from Maxwell’s equations in their dif-
ferential form is the basis for differential-based
numerical methods such as Finite Difference
Time Domain (FDTD, [Taflove (1995)]), Finite
Element Method (FEM, [Silvester and Ferrari
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(1990)]) and Transmission Line Matrix (TLM,
[Christopoulos (1995)]). On the other hand, start-
ing from the integral form of Maxwell’s equations
is the basis for Finite Integration Techniques (FIT,
[Clemens and Weiland (2001)]).

Cell Method is a numerical technique based on
exact discretization of physical laws and on us-
ing global (integral) variables. While field vari-
ables are a result of performing a limiting process
and are defined at every point of the spatial do-
main, global variables are defined and measurable
on their corresponding geometrical elements. For
example, when describing “current”, it is natural
to relate this concept to a “surface” through which
the current passes. In performing a limiting pro-
cess, we eliminate the geometrical element (sur-
face in this case) and the physical concept of cur-
rent and instead we obtain a field variable (current
density) which is now a mathematical concept.

Cell Method is a finite integration technique with
respect to its use of global variables. The tech-
nique utilizes a two-oriented-grid framework and
enables one to formulate physical laws directly
as a set of algebraic equations. The original
concept of Cell Method was first developed by
Tonti [Tonti (2001)]. Since then, Cell Method has
been developed, modified and applied to differ-
ent problems in science and engineering such as:
electrostatics [Bettini and Trevisan (2003)], mag-
netostatics [Repetto and Trevisan (2003), Tre-
visan and Kettunen (2004)], Eddy currents [Bel-
lina; Bettini; Tonti and Trevisan (2002), Specogna
and Trevisan (2005)], and electromagnetics in the
time-domain [Marrone and Mitra (2004 ), Ara-
neo (2002)] and the frequency-domain [Marrone
(2002), [Marrone; Frasson and Figueroa (2002),
Marrone; Grassi and Mitra (2004)]. Cell Method
has also been used in other engineering fields e.g.
elastodynamics [Cosmi (2005)], and fluid dynam-
ics, [Straface; Troisi and Gagliardi (2006)]. The-
oretical investigations and comparisons between
the Cell Method and other numerical techniques
[Mattiussi (2000), Bossavit (1998), Bossavit and
Kettunen (2000), Marrone (2001)], reveal its nat-
ural and rather simple essence.

In the following sections we briefly study physi-
cal laws under two main categories: topological

relations and constitutive relations. Electrostatic
laws are then formulated in both the differential
and the finite frameworks. Cell Method is com-
pared with a variational technique (FEM) in terms
of the final coefficient matrix and source vectors.
It is shown that even though FEM doesn’t explic-
itly use a dual mesh, the resulting coefficient and
source matrices represent Voronoi and barycentric
dual meshes, respectively.

2 Physical Laws as Topological Relations

Physical laws are the result of consistent observa-
tions and experiments. The great similarity be-
tween physical laws in different physical fields
(which seems amazing!) is an important fact sup-
porting the idea: discovering a physical law re-
quires finding, defining and fitting proper phys-
ical variables to a topological relation which by
itself doesn’t involve any specific physical quan-
tity. Due to the historical evolution of physics and
mathematics, topological relations have been ex-
pressed in a differential-integral form (e.g. Stokes
and Divergence theorems), however, they can be
expressed directly and exactly in a finite frame-
work, [Mattiussi (2000)]. For a brief description
of finite topological relations consider Fig.1 and
the following notation and definitions for directed
three dimensional geometrical objects:

1. Vγ is an arbitrary volume in the spatial do-
main and its boundary is a closed surface, S :
∂(Vγ) = S , ∂(S ) = 0. We can define a direc-
tion for Vγ arbitrarily as being either a source
(outward to its closed surface) or a sink.

2. S β is an arbitrary surface in the spatial do-
main and its boundary is a closed line, L:
∂(S β) = L, ∂(L) = 0. We can define a direc-
tion for S β arbitrarily along its closed bound-
ary.

3. Lα is an arbitrary line in the spatial domain
and its boundary is a set of two directed
points, P: ∂(Lα) = P, ∂(P) = 0. We can de-
fine a direction for Lα arbitrarily from one
boundary point to the other.

4. Pi is an arbitrary point in the spatial domain
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and we can define a positive direction for Pi

arbitrarily as being either a sink or a source.

S
L

Pi

V

S
L

Pi

V

Figure 1: Geometrical objects and their closed
boundaries.

Now we define the following generic global vari-
ables as linear functions operating on the geomet-
rical objects:

K(Vγ) on volumes,
Φ(S β) on surfaces,
V(Lα) on lines,
φ(Pi) on points.

The linearity property,

F(aXi +bX j) = aF(Xi)+bF(X j),

where F is a global variable defined on the geo-
metrical object X, and a and b are scalars, allows
us to add global variables on the corresponding
geometrical objects and define topological rela-
tions.

2.1 Topological relations

Topological relations linearly (e.g. up to a scaling
factor) relate the global variable on any geomet-
rical object (except points) to the global variable
defined on its boundary as

V(Lα) = aGφ(∂Lα), (1.a)

Φ(S β) = aCV(∂S β), (1.b)

K(Vγ) = aDΦ(∂Vγ), (1.c)

where aG, aC, and aD are scaling factors. To il-
lustrate the three relations in (1), consider the fol-
lowing examples.

2.1.1 Gradient relation

Given the global variable on points as shown in
Fig. 2, we can define the global variable on lines
as in 1.a (aG = −1):

V(L1) = − (−φ(P1)+φ(P3)
)

V(L2) = − (−φ(P1)+φ(P2)
)

V(L3) = − (
φ(P2)−φ(P3)

)

or V = −G ·φ (2.a)

where ‘·’ denotes matrix multiplication and V and
φ are column vectors. Matrix G is the finite equiv-
alent of the gradient operator and represents the
topological relation between directed points and
lines as

Gαi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0; if point i is not a face of line α.

1; if point i is a face of line α with the
same direction.

−1; if point i is a face of line α with the
opposite direction.

where a “face” for a line is any of its boundary
points.

(P1)

V(L1)

V(L2)

V(L3)

(P2)

(P3)(

Figure 2: Topological relation between lines and
points.

2.1.2 Curl relation

Given the global variable on lines as shown in
Fig. 3, we can define the global variable on sur-
faces as in 1.b (aC = 1):

Φ(S 1) = V(L2)−V(L3)+V(L5)

Φ(S 2) = −V(L1)−V(L4)−V(L5)

or Φ = C ·V, (2.b)



48 Copyright c© 2007 Tech Science Press CMES, vol.18, no.1, pp.45-58, 2007

where Φ is a column vector. Matrix C is the finite
equivalent of the curl operator and represents the
topological relation between directed surfaces and
lines as

Cβα =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0; if line α is not a face of surface β.

1; if line α is a face of surface β with
the same direction.

−1; if line α is a face of surface β with
the opposite direction.

where a “face" for a surface is any of its boundary
lines.

As an exercise, we can start from the values on the
points in Fig. 2 and obtain the finite equivalent of
the vector analysis identity (∇×∇φ ≡ 0) as

V = −G ·φ, Φ = C ·V⇒ Φ = −C · (G ·φ) = 0,

C ·G ≡ 0.

V(L2)

V(L1) V(L3)

V(L4)

V(L5)

(S1)

(S2)

Figure 3: Topological relation between surfaces
and lines.

2.1.3 Divergence relation

Given the global variable on surfaces as shown
in Fig. 4, we can define the global variable on
volumes as in 1.c (aD=1):

K(V1) = Φ(S 1)+Φ(S 2)−Φ(S 3)+Φ(S 4)

or K = D ·Φ, (2.c)

where K is a column vector. Matrix D is the fi-
nite equivalent of the divergence operator and rep-
resents the topological relation between directed

volumes and surfaces as

Dγβ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0; if surface β is not a face of volume γ.

1; if surface β is a face of volume γ with
the same direction.

−1; if surface β is a face of volume γ with
the opposite direction.

where a “face” for a volume is any of its boundary
surfaces.

2

S3)

S4)

S1)

S2)

1
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Figure 4: Topological relation for volumes and
surfaces. The surfaces are directed as: S 1(1,2,4),
S 2(2,3,4), S 3(1,3,4), S 4(1,3,2). The volume is
directed as a source.

As an exercise, we can start from some values on
the lines in Fig. 4 and obtain the finite equivalent
of the vector analysis identity (∇· (∇×A) ≡ 0) as

Φ = C ·V, K = D ·Φ⇒ K = D · (C · V) = 0,

D ·C ≡ 0.

Relations 1.a, 1.b, 1.c, are the finite equivalence of
the “Fundamental Integration Theorem”, “Stokes
Theorem”, and “Divergence Theorem”, specified
by the incidence matrices, G, C, D, respectively.
They do not contain any material and metric infor-
mation. To solve a physical problem, in addition
to topological relations, we also need “physical
links” between variables which contain medium
and metric information. These links are usually
called “constitutive relations” [Mattiussi (2000)].

2.2 Constitutive relations

Having the spatial domain divided into a (primal)
mesh consisting of geometrical objects, proper
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global variables can be defined and topological re-
lations stated. To use global primal variables to
describe a real physical system requires defining
a set of “dual” variables and forming a physical-
based relation between primal and dual variables.
For example, the variables defined on primal sur-
faces (fluxes) are related to the variables defined
on dual lines (voltages). This relation is where
all material and metric-dependent information ap-
pear. To formulate constitutive relations, we need
to define a dual mesh. The minimal requirement
to construct a dual mesh is:

For any primal (dual) volume, Vγ(Ṽi), there is one
and only one dual (primal) point, P̃γ(Pi). For any
primal (dual) surface, S β(S̃ α), there is one and
only one dual (primal) line, L̃β(Lα).

The correspondence between primal and dual
variables can be described as

P̃γ↔ Vγ, L̃β↔ S β, S̃ α↔ Lα, Ṽi↔ Pi

The dual geometrical objects for the primal mesh
in Fig. 1 are shown in Fig. 5.

L

S

L

Pi

V
S

P

Figure 5: Dual geometrical objects for primal ge-
ometrical objects in Fig. 1. The dual volume for
the primal point (Pi) is not shown.

With the given definition for duality, it is easy
to show [Tonti (2001)] the following relations
between incidence matrices for primal and dual
meshes:

G̃ = −Dt, C̃ = Ct, D̃ = −Gt,

where superscript t denotes transpose operator
and G, C and D are Gradient, Curl and Divergence
incidence matrices for the dual mesh. The same

topological relations as (2) are also valid for the
dual geometrical objects as

F = G̃ ·N, (3a)

Ψ = C̃ ·F, (3b)

Q = D̃ ·Ψ, (3c)

where N, F, Ψ, Q are the column vectors contain-
ing the global variables defined on the dual points,
lines, surfaces and volumes, respectively.

With definition of eight global variables on primal
and dual geometrical objects and 6 topological re-
lations (2, 3) we still need two more relations to
be able to solve for any global variable.

The link between the variables for the primal lines
and the variables for the dual surfaces (and vice-
versa) embody the physical system they are used
to describe, and are called constitutive relations.

Constitutive equations can be approximately ex-
pressed as a mapping from the space of V to the
space of Ψ, and from the space of Φ to the space
of F as

Ψ(S̃ ) =MεV(L),

Φ(S ) =MμF(L̃),
(4)

where Mε and Mμ are constitutive matrices.

In contrast to the exact and physically indepen-
dent nature of the topological relations, constitu-
tive matrices are dependent on physical proper-
ties of the material, construction of the dual mesh,
metric and direction. In a physical link between
global variables (as scalar numbers) all the above
information are included in the constitutive ma-
trices. The results of experiment and measure-
ment on a defined physical system have to be fit in
the finite matrix forms of (4). In (4), global vari-
ables defined on surfaces (fluxes) are considered
as scalar numbers with an implicit direction given
to them as the normal to the surface. It is based
on the physical concept of “passing through a sur-
face” which automatically includes only the nor-
mal component of a directional flow. The mathe-
matical interpretation of the above concept is ex-
pressed using field variables (e.g. magnetic flux
density) as the inner product of a flow and the nor-
mal to the surface (e.g.

�
B.ds).
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Specific choices for the dual mesh might result in
simple mapping functions from the primal vari-
ables to the dual variables. For example, if the
physical link is a relation between fluxes (which
implicitly means normal flux) through the pri-
mal surfaces and voltages on the dual lines in an
isotropic linear media, an orthogonal dual mesh
(if possible) results in diagonal constitutive ma-
trices. For a non-orthogonal dual mesh, knowing
the value of the flux through a primal surface is
not enough to obtain the voltage on the dual line
and an averaging procedure is needed using the
neighbor fluxes. The resulting constitutive matrix
is therefore non-diagonal.

To understand how we can apply the discussed fi-
nite framework to solve a real physical problem,
we study the electrostatic case as an example in
the following section.

3 Electrostatic laws

Electrostatic laws are the statement of relations
between global electromagnetic quantities when
d/dt → 0 and are known as: Faraday’s law,
Gauss’s law and the electric constitutive relation.
We now study these laws in both the finite and the
differential frameworks.

3.1 Faraday’s law

In its general time dependent form, Faraday’s law
is a curl relation (1.b) and relates the value of
changes (in time) in magnetic flux, Φ, for a sur-
face, S , to the value of the electric voltage, V, on
the boundary of the surface, ∂S . Since the time
variation of magnetic flux is zero in electrostatics;
the electrostatic Faraday’s law states:

“The electric voltage for any closed line
is zero.”

3.1.1 Finite formulation

Using global variables on the primal geometrical
objects, Faraday’s law in electrostatic is

Φ(S β) = V(L) = 0; L = ∂S β. (5)

Definition of a global variable on primal points
(electric potential, φ) guarantees that the value of

Φ is zero for all surfaces. This yields the equiva-
lent gradient form of Faraday’s law as

V = −G ·φ (2.a)

The minus sign is the scaling factor in (1.a) due to
experimental convention. Fig. 6 illustrates Fara-
day’s law.

S
V (L P1)- P2))

P1

P2

V S

Figure 6: Faraday’s law for the surface, S β, en-
closed by the line, ∂S β.

3.1.2 Differential formulation

Differential equations are the result of performing
a limiting process on global variables and using
field variables. Based on the defined global vari-
ables in (1), we can obtain electric field intensity
as

E
Δ
= lim

Lα→0

V
Lα

(6)

and results in a differential expression of Fara-
day’s law :

E = −∇φ⇔
∮

E ·dl = 0, (7)

where ∇ is the gradient operator.

3.2 Gauss’s law

Gauss’s law is a balance or divergence relation
(1.c) and relates the value of the charge, Q, in
a volume, Ṽi, to the value of the electric flux, Ψ̃
passing through the boundary of the volume, ∂Ṽi.
The electrostatic Gauss’s law states:

“The electric flux leaving a closed sur-
face is equal to the electric charge in the
volume enclosed by the surface.”
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3.2.1 Finite formulation

Using global variables on the dual geometrical
objects, Gauss’s law is written as:

Q(Ṽi) = Ψ(S̃ ); S̃ = ∂Ṽi, (8)

or in its equivalent matrix form

Q = D̃ ·Ψ. (9)

The scaling factor is equal to one in (1.c) due
to experimental convention. Fig. 7 illustrates
Gauss’s law.

Q(VS

Q(V

Figure 7: Gauss’s law for a volume, Ṽi, enclosed
by the surface, ∂Ṽi.

3.2.2 Differential formulation

Performing a limiting process on the defined
global variables, (3), we obtain electric charge
density and electric flux density, respectively, as

ρ = lim
Ṽi→0

Q

Ṽi
, D = lim

S̃ α→0

Ψ

S̃ α
, (10)

which results in the differential form of Gauss’s
law:

ρ = ∇·D⇔
�

∂Ṽ

D ·ds =
�

ṽ

ρdv, (11)

where ∇· is the divergence operator.

3.3 Constitutive relation

The electrostatic constitutive relation is a relation
between the electric voltage and the electric flux
in a specific physical media. For simple isotropic
linear media, as defined in Harrington (1961), this
relation reduces to a number relating the electric
flux through a surface to the electric voltage on

the line normal to the surface. Since this rela-
tion is found experimentally and involves global
variables, it can be approximated directly (not
uniquely) in a finite form as

Ψ(S̃ α)∣∣∣S̃ α∣∣∣ = ε
V(Lα)
|Lα| ⇒Mε(α,α) = ε

∣∣∣S̃ α∣∣∣
|Lα| , (12)

where ε is the permittivity of the homogeneous
media around the line, Lα ,and its orthogonal dual
surface, S̃ α, as shown in Fig. 8. |A| refers to the
length, area or volume of the geometrical object,
A.

S

L

P(x,y,z)

homogeneous

region ( )

Figure 8: Electric constitutive relation for a ho-
mogeneous region and orthogonal primal-dual
line-surface configuration.

Performing a limiting process on (12), we elimi-
nate the physical concept of the geometrical ob-
jects and obtain field variables, electric field in-
tensity, E, and electric flux density, D, which are
defined at all points in the spatial domain. The
differential form of the electrostatic constitutive
relation then becomes:

D = lim
S̃ α→0

Ψ(S̃ α)

S̃ α
, E = lim

Lα→0

V(Lα)
Lα
, (13)

D(x,y,z) = εE(x,y,z). (14)

Here ε is the permittivity of the infinitesimal vol-
ume around the point P(x,y,z).

3.4 Poisson’s equation

Using global variables and finite formulation,
(2.a, 4, 9), we obtain the finite from of Poisson’s
equation as

Gt ·Mε ·G ·φ = Q. (15)
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The differential expression of electrostatic laws
(7, 11, 14) results in the familiar form of Pois-
son’s equation as

∇·ε∇φ = −ρ. (16)

4 Numerical approach

The finite form of Poisson’s equation, (15), is ap-
plicable to a discretized spatial domain directly
and results in a set of algebraic equations. In
cases with no exact analytic solution (almost all
cases), however, numerical techniques are needed
to solve the differential form (16) which, after the
appropriate discretization, also lead to a set of al-
gebraic equations. In the next section, we com-
pare a finite formulation (Cell Method) with a
differential-based formulation (FEM) for solving
Poisson’s equation on a 2-D geometry. In the 2-
D case an extruded mesh of triangles (elements)
is used as shown in Fig. 9. The resulting duality
relations in this case are reduced to

Pi↔ S̃ i, Lα↔ L̃α, S β↔ P̃β. (17)

Note that the 2D triangular surface, S β, is also re-
ferred to as element e, which is the common nota-
tion for the Finite Element Method.

z2-D arbitrary triangulation

Truncation boundary z
x

y

primal surface, S  ,

  or element e.

Figure 9: Extruded 2-D geometry withΔz= 1 unit
length.

4.1 Permittivity and charge functions

The differential expression of physical laws has
automatically led us to convert global variables

and measurement results into a differential frame-
work. Although material properties (e.g. ε,
μ, σ) and charge density (ρ) are found exper-
imentally in real problems, the results are ex-
pressed as continuous functions in the spatial do-
main. Differential-based numerical techniques
have adapted many different schemes to average
or interpolate the given continuous functions and
discretize them for the given spatial mesh. Even
when working in a finite framework, we are usu-
ally forced to use the given continuous functions
which are strongly dependent on the resolution of
measurements and experiments. If the resolution
of the measurements is high enough with respect
to our discrete domain, we can accept the data
as a continuous function. However, even in this
case, a weighted integral of the continuous func-
tions on the proper geometrical object is all that is
required. If the resolution of measurements is the
same as the discrete domain, we can define dis-
continuous functions which are constant on pri-
mal or dual elements. This suggests, as shown in
Fig. 10, that material properties or charge den-
sity can be defined as constant numbers (averaged
quantities) for geometrical elements in the com-
putational mesh.

High resolution measurement Coarse computational mesh

(
S Si

dsyxdsyx
~

),(,),(x,y) , (x,y)

S
pi

Figure 10: Continuous functions used for defining
averaged quantities in the discrete domain.

4.2 Finite formulation

To solve the finite form of Poisson’s equation,
(15), we consider the 2-D triangular mesh, as
shown in Fig. 9, as the primal mesh. The gradient
matrix (the incidence matrix between primal lines
and points) can then be constructed and is ma-
terial and metric-free. To obtain the constitutive
matrix, Mε we need to first define the dual mesh.
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An orthogonal dual mesh (Delaunay-Voronoi) is
considered here as shown in Fig. 11. The dual
points are the circumcenter of the triangles and
we assume there is no obtuse triangle in our pri-
mal mesh. A diagonal constitutive matrix, Mε is
then constructed as in (12).

P
PiS S i

Primal lines

Dual lines

Si

Figure 11: A Delaunay-Voronoi dual mesh where
the dual points are the circumcenter of the primal
surfaces.

The final finite form of (15) can be rewritten as

CFFφ = QFF, (18)

where CFF = GtMεG. QFF is the column vec-
tor containing the total charges enclosed in the
dual volumes (extruded surfaces around primal
points). This column vector can be found by sam-
pling the given charge density function at primal
points (or measuring the total charge in dual sur-
faces). To have a consistent comparison with the
FEM approach, we assume a constant charge den-
sity, ρβ, for each primal element (S β or e). The
column vector for electric charge in this case is
found as

QFF(i) =
∑
β

ρβS βi, (19)

where S βi is as indicated in Fig. 11, and the sum
is taken over all primal triangles, S β sharing the
primal point Pi.

It should be noted that multiplying the constitutive
matrix, Mε, in the form of GtMεG, results in as-
sembling the n by n coefficient matrix, CFF, which

can be constructed directly as

CFF(i, j)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0; if Pi and P j are
not connected.

−εα |S̃ α||Lα | = −εα
|L̃α|
|Lα | ; if i � j and Pi &

P j are connected.∑
k

CFF(i,k); i = j and

k = 1 . . .n, k � i.

(20)

where n is the total number of primal points. The
assumption of having a constant permittivity for
each primal element is made here. Note that the
matrix elements are equivalent to that of a parallel
plate capacitor between two primal points Pi and
P j as shown in Fig. 12. The average permittivity
(εα related to the line Lα (connecting the points Pi

and P j) is calculated in the following section.

4.2.1 Average permittivity

An averaging scheme is used to define the permit-
tivity related to primal lines at the interface be-
tween two different materials as shown in Fig. 12.

Pi

L
S2 2

S1 1

Pj

1

~L 2

~L

Figure 12: A primal line Lα on the interface of
two different materials.

Calculation of the average permittivity is based on
the continuity of the global variables (electric flux
for dual extruded surfaces and electric voltage for
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primal lines) as follows:

Ψ(S̃ α)∣∣∣S̃ α∣∣∣ = εα
V(Lα)
|Lα| ⇒Mε(α,α) = εα

∣∣∣S̃ α∣∣∣
|Lα|

Ψ(S̃ α) = Ψ(S̃ 1α)+Ψ(S̃ 2α)

= ε1
∣∣∣S̃ 1α

∣∣∣ V(Lα)
|Lα| + ε2

∣∣∣S̃ 2α

∣∣∣ V(Lα)
|Lα|

Ψ(S̃ α)∣∣∣S̃ α∣∣∣ =
ε1

∣∣∣S̃ 1α

∣∣∣+ ε2 ∣∣∣S̃ 2α

∣∣∣∣∣∣S̃ α∣∣∣
V(Lα)
|Lα |

⇒ εα =
ε1

∣∣∣L̃1α

∣∣∣+ ε2 ∣∣∣L̃2α

∣∣∣∣∣∣L̃α∣∣∣ .

(21)

4.3 Finite element approach

The Finite Element Method is a variational tech-
nique that finds the stationary point of a func-
tional in order to solve a differential equation,
£φ = q, where £ is a positive-definite and self-
adjoint differential operator [Silvester and Ferrari
(1990)]. The functional for the homogenous Pois-
son’s equation, which is related to the total energy
in the system (W), is minimized at the solution
of the differential equation [Sadiku; Makki and
Agba (1991)]

∇2φ = −ρ
ε
⇔

Wmin =W(f = φ) =
1
2

�

V

[
ε
∣∣∣∇φ∣∣∣2−2ρφ

]
dv,

(22)

where f is the generic variable for the energy func-
tional, W. With the assumption of a 2-D extruded
mesh as the solution region, V, the volume inte-
gral reduces to the sum of surface integrals over
the area of each triangular element, e, as was
shown in Fig. 9.

In the numerical procedure for minimizing W,
the unknown potential distribution, φ(x,y), is ap-
proximated in the discretized spatial domain. The
known functions, ε(x,y) and ρ(x,y), may be also
approximated to maintain a reasonable computa-
tional expense. Here we have used a uniform
charge density, ρe, and permittivity, εe, for each
element and a linear interpolation function for the

unknown potential over each element as

φe =

3∑
i=1

φeiαi(x,y), (23)

where αi = Ai/Ae is the shape function associated
with vertex Pi , and Ai and Ae are as in Fig. 13.

 Pk (xk,yk)

AiAj

Ak

(x,y)

 Pi (xi,yi)  Pj (xj,yj)

Ae=the area 

 of element e

Figure 13: A typical triangular element, e, and
associated linear shape functions.

Using (23), the total energy for element e can be
written in a matrix form as

We =
1
2
φ

t
eCeφe−Teφe, (24)

where φe is the column vector containing the un-
known potentials at the vertices of element e, and
Ce is the square element stiffness matrix defined
as [Sadiku; Makki and Agba (1991)]

Ce(i, j) =
∫
Ae

εe∇αi·∇αjdA =
εe

4Ae

(
XiXj+YiYj

)
,

(25)

where

X1 = x3−x2, X2 = x1−x3, X3 = x2−x1, (26)

Y1 = y3−y2, Y2 = y1−y3, Y3 = y2−y1.

In (24) Te is a row vector representing the weight-
ing of each vertex in summing the total charge in
element e as

Te(i) = ρe

�

Ae

αids = ρeAe/3. (27)

By applying (24) to all elements in the solution
region, we obtain the total energy per unit length
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for the whole region with N elements and n nodes
as:

W =
N∑

e=1

We =
1
2
φ

t
CFEMφ−TFEMφ, (28)

where CFEM and TFEM are the final assembled ma-
trices.

Minimizing (28) with respect to the n unknowns,
φi, results in the following final matrix equation:

CFEMφ = QFEM. (29)

Here QFEM is the n by one charge vector and is
defined as

QFEM(i) =
∑
β

ρβS β/3 =
∑
β

ρβS βi, (30)

where the sum is taken over all elements, S β, shar-
ing the node Pi as in Fig. 14. This is equivalent to
the use of a barycentric dual mesh.

P
Pi

S
i

P
i

Figure 14: Calculation of QFEM based on a con-
stant charge density in each triangle which repre-
sents a barycentric dual mesh. The dotted lines
are the medians of the element S β and P̃β is its
barycenter (centroid).

4.4 Comparison of Cell Method and FEM

Two systems of algebraic equations (18, 29) were
obtained from the Finite Formulation and Finite
Element Method approaches, respectively. To in-
vestigate the differences and similarities between
the two methods, we study coefficient matrices,
CFEM and CFF, and charge vectors, QFEM and QFF,
separately.

4.4.1 Coefficient matrices

Considering Fig. 15 and the element stiffness ma-
trix in FEM (25) it can be seen that

Ce(i, j) =
εe

4Ae
(XiXj+YiYj) = εe

−−−→AC ·−−→CB

2
∣∣∣∣−−→AC×−−→CB

∣∣∣∣
(31)

Assuming angle C ≤ 90o and i � j

Ce(i, j) = εe
−|AC| · |BC|cosĈ

2 |AC| · |BC|sinĈ
= εe
−cot Ĉ

2
. (32)

For i = j

Ce(i, i) =
εe

4Ae
(XiXi+YiYj) = εe

−−−→BC ·−−→CB
2 |BC| · |AH|

= εe
|BC|

2 |AH| = εe
|BH|+ |HC|

2 |AH|
= −εe

(
CotB̂

2
+

CotĈ
2

)

= −(Ce(i,k)+Ce(i, j)
)
.

(33)

To compare the element matrix Ce with the ele-
ment matrix CFF, consider the circumcircle of the
element e as shown in Fig. 15. It is seen that

Ĉ = Ô⇒ Ce(i, j) = −εe CotĈ
2
= −εe CotÔ1

2

= −εe
∣∣∣L̃1α

∣∣∣
|Lα| . (34)

In assembling all elements together, the resulting
element coefficients for the two adjacent triangles,
1 and 2, sharing the line Lα are added together
such that

CFEM(i, j) = −
⎛⎜⎜⎜⎜⎜⎝ε1

∣∣∣L̃1α

∣∣∣
|Lα| + ε2

∣∣∣L̃2α

∣∣∣
|Lα|

⎞⎟⎟⎟⎟⎟⎠ . (35)

Equation (35) is equivalent to (20) with the aver-
age permittivity defined as in (21). We can con-
clude:

The coefficient matrix resulting from a
finite formulation with a Voronoi dual
mesh is equal to the coefficient matrix
resulting from a FEM formulation with
linear shape functions for the same tri-
angular mesh.
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4.4.2 Charge vectors

With the choice of a uniform charge density in
each primal element, it was shown that the charge
vector for the FEM approach (30) is equal to the
charge vector for a barycentric dual mesh as was
shown in Fig. 14. The charge vector for Fi-
nite Formulation (19) is equal to the charge vec-
tor for a Voronoi dual mesh as was shown in Fig.
11. Coefficient matrices for both methods (20,
35) can be derived from a Voronoi dual mesh
and, as shown previously, are the same. If the
charge density is zero (Laplace’s equation), the
two methods are exactly equivalent. However,
for a non-zero charge density Cell Method pro-
duces locally more accurate results, especially for
coarse meshes. The difference between the charge
matrices in the two methods is indicated in Fig. 16
and vanishes for finer meshes. For a coarse mesh
and for abrupt changes in charge density, The Cell
Method solution should be more accurate.

C

A

B

O

L
L

H

element 1 

Lelement 2 

C   Pk

Figure 15: Circumcircle of element 1. O is the cir-
cumcenter of triangle ABC and AH is the altitude
from vertex A.

In the case of a continuous charge density func-
tion, Cell Method can easily use the charge den-
sity at each primal point for the dual area sur-
rounding that point. In the FEM we still need to
assume a constant charge density or employ inter-
polation (linear or higher order) to approximate
the charge density inside primal elements.

O

M

s

(s1)
(s2)

(s3)

Figure 16: The difference between the charge vec-
tors in the FEM and Finite Formulation. M is
the barycenter (FEM) and O is the circumcen-
ter (FF) of the triangle. The electric flux enter-
ing the (extruded) surface, Ψ(s1), will be equal
to the fluxes leaving, Ψ(s2) and Ψ(s3), if there
is no charge in the enclosed surface. In general
Ψ(s3)−Ψ(s2) = Q(Δs).

5 Example

A GaAs Schottky Barrier Diode with a non-
uniform dopping profile has been chosen as an ex-
ample for comparing Cell Method and Finite Ele-
ment Method. The simplified geometry is shown
in Fig. 17. The computational mesh consists of
10 by 5 (or 6 by 3) squares in x and y directions,
respectively. Each of the squares is diagonally di-
vided into two triangles over the half geometry
in order to make use of symmetry. The contin-
uous and discretized charge density profiles are
shown in Fig. 18 for the mesh with five elements
in the y direction. The resulting potential on the
middle cross-section shown in Fig. 17 is given in
Fig. 19. Figure 19 indicates a small difference be-
tween the solution resulting from FF and FEM in
the case of the coarse mesh. For the finer mesh the
difference almost vanishes. FEMLAB 3.1, COM-
SOLAB www.comsol.com, uses a fine mesh and
higher order elements and the difference between
two FEMLAB solutions is a result of discretizing
the charge density profile.

6 Conclusion

The Cell Method, a finite formulation technique
was compared in detail with the Finite Element
Method. Starting from a topological background,
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Figure 17: Simplified geometry of a Schottky
diode on a doped GaAs substrate.
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Figure 18: Non-uniform doping profile and the
discretized charge density function for five ele-
ments in y direction.

electrostatic laws were formulated in both differ-
ential and finite frameworks. A geometrical proof
showing the equivalence of the coefficient matri-
ces in the two methods was given.

It was shown that, even though the finite element
technique does not explicitly use a dual mesh, as-
suming linear shape functions and uniform charge
density in each element, is equivalent to the use of
a barycentric dual mesh for the charge vector and
Voronoi dual mesh for the coefficient matrix. Cell
Method on the other hand, produces a coefficient
matrix and a charge vector that are both based on
the Voronoi dual mesh. As a conclusion, different
shape functions produce different weighted aver-
ages for permittivity and charge density functions
over each element, which is equivalent to the con-
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Figure 19: Electric potential on the cross section
shown in Fig. 17, for using two different mesh
sizes are compared with the solution using FEM-
LAB.

struction of different dual meshes in finite formu-
lation. It should be noted that dividing square ele-
ments diagonally into two triangles is not a proper
way for mesh refinement as the coefficient relat-
ing two nodes on a diagonal line is zero.

The emphasis in this work was to show that a
direct finite formulation technique, which starts
from physical laws as topological relations, re-
sults in the same set of linear algebraic equations
as a variational technique .

Acknowledgement: This work was supported
by the Natural Sciences and Engineering Re-
search Council of Canada (NSERC) and a Man-
itoba Hydro research grant.

References

Araneo, R. (2002): Numerical Solution of Tran-
sient Electromagnetic Scattering Problems Using
the Novel Time-Domain Cell Method. IEEE In-
ternational Symposium on Electromagnetic Com-
patibility.vol.1, pp.291-29.

Bettini, P.; Trevisan, F. (2003): Electrostatic
Analysis for Plane Problems with Finite Formu-
lation. IEEE Trans. on Magnetics, vol. 39, no.3.

Bellina, F.; Bettini, P.; Tonti, E. and Trevisan,
F. (2002): Finite Formulation for the Solution of



58 Copyright c© 2007 Tech Science Press CMES, vol.18, no.1, pp.45-58, 2007

a 2-D Eddy-Current Problem. IEEE Trans. on
Magnetics. vol.38, no.2.

Bossavit, A. (1998): How weak is the weak so-
lution in finite element method? IEEE Trans. on
Magnetics, vol. 34, no. 5.

Bossavit, A.; Kettunen, L. (2000): Yee-Like
Schemes on Staggered Cellular Grids: A Syn-
theiss between FIT and FEM approaches. IEEE
Trans. On Magnetics., vol. 36, no.45.

Christopoulos, C. (1995): The Transmission
Line Modeling Method, TLM. IEEE Press.

Clemens, M.; Weiland, T. (2001): Discrete
electromagnetism with the finite integration tech-
nique. PIER32, pp. 65-87.

COMSOLAB, www.comsol.com.

Cosmi, F. (2005): Elastodynamics with the Cell
Method, CMES: Computer Modeling in Engi-
neering and Sciences, vol. 8, no. 3, pp. 191-200.

Harrington, R. F. (1961): Time-Harmonic Elec-
tromagnetic Fields, McGraw-Hill.

Marrone, M.; Mitra, R. (2004): A Theoreti-
cal Study of the Stability Criteria for Generalized
FDTD Algorithms for Multiscale Analysis. IEEE
Trans. on Antennas and propagation. vol. 52, no.
8.

Marrone, M. (2002): Novel Numerical method
for the analysis of 2D photonic crystals: the cell
method. Optics Express, vol. 10, no. 22.

Marrone, M.; Frasson, A. M. F. and Figueroa,
H.E.H. (2002): A Novel Numerical approach
for electromagnetic Scattering: The Cell Method.
Proceedings, IEEE AP-URSI.

Marrone, M; Grassi, P. and Mitra, R. (2004):
A new technique based on the Cell Method for
calculation the propagation constant of inhomo-
geneous filled waveguide. International Sympo-
sium on Antenna and propagation, IEEE.

Mattiussi, C. (2000): An analysis of finite vol-
ume, finite element and finite difference meth-
ods using some concepts from algebraic topology.
Advances in Imaging and Electron Physics, vol.
113, pp.1-146.

Miller, E.K. (1998): A Selective Survey of Com-
putational Electromagnetics. IEEE Trans. on An-
tenna and Propagation, vol. 36, no. 9. pp.1281-

1305

Marrone, M. (2001): Computational Aspects of
the Cell method in Electrodynamics. PIER 32, pp.
317-356.

Repetto, M.; Trevisan, F. (2003): 3-D Magneto-
statics with Finite Formulation. For the Solution
of 3D nonlinear Magnetostatic. IEEE Trans. on
Magnetics. vol. 39, no.3.

Sadiku, M. N. O.; Makki, A. Z. and Agba, L.
C. (1991): A further introduction to finite ele-
ment analysis of electromagnetic problems. IEEE
Transion Education, vol. 34, no. 4.

Silvester, P. P.; Ferrari, R. L. (1990): Finite El-
ement for Electrical Engineers. Cambridge Uni-
versity Press.

Specogna, R.; Trevisan, F. (2005): Discrete
Constitutive Equations in A-χ Geometric Eddy-
Current Formulation. IEEE Trans. on Magnetics.
vol. 41, no.4.

Straface, S.; Troisi, S. and Gagliardi, V. (2006):
Application of the Cell Method to the Simulation
of Unsaturated Flow, CMC: Computers, Materi-
als and Continua, vol. 3, no. 3, pp. 155-166.

Taflove, A. (1995): Computational Electrody-
namics. Artech House.

Tonti, E. (2001): A direct discrete formulation of
field laws: the Cell Method. CMES: Computer
Modeling in Engineering and Sciences, vol.2,
no.2, pp. 237-258.

Trevisan, F.; Kettunen, L. (2004): Geometric
Interpretation of Discrete Approaches to Solving
Magnetostatics. IEEE Trans. on Magnetics. vol.
40, no.2.


