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Numerical Simulations of Irregular Particle Transport in Turbulent Flows
Using Coupled LBM-DEM

K. Han, Y. T. Feng and D. R. J. Owen1

Abstract: Numerical procedures are introduced
for simulations of irregular particle transport in
turbulent flows using the coupled lattice Boltz-
mann method (LBM) and the discrete element
method (DEM). The fluid field is solved by the
extended LBM with the incorporation of the
Smagorinsky turbulence approach, while particle
interaction is modeled by the DEM. The hydro-
dynamic interactions between fluid and particles
are realised through an immersed boundary con-
dition, which gives rise to a coupled solution strat-
egy to model the fluid-particle system under con-
sideration. Main computational aspects comprise
the lattice Boltzmann formulation for the solution
of fluid flows; the incorporation of the large eddy
simulation (LES) based turbulence model in the
framework of the LBM for turbulent flows; the
immersed boundary condition for hydrodynamic
interactions between fluid and moving particles;
and the DEM modelling of the interactions be-
tween irregular particles. As a demonstration of
the applicability of the proposed methodology, a
number of test cases are provided for polygonal
and superquadric particle transport in fluid flows
at high Reynolds numbers.

Keyword: Lattice Boltzmann method, Discrete
element method, Fluid-particle interactions, Im-
mersed boundary condition, Smagorinsky turbu-
lence model

1 Introduction

The transport of solid particles within a fluid flow
has a wide range of engineering applications, such
as minerals recovery and food processing. The
understanding of the underlying particle-fluid dy-
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namics in the problem has been limited by the
lack of powerful analysis tools. In a particle-fluid
system, the fluid dynamics of the flow is influ-
enced by the presence of solid particles, and the
motion of the solid particles is, in turn, driven by
fluid-induced forces.

In recent years, the lattice Boltzmann method
(LBM) has emerged as an alternative to the con-
ventional computational fluid dynamics (CFD)
methods employing Navier-Stokes equations. It
offers various advantages over the Navier-Stokes
equations, including high space-time resolution,
full scalability on parallel computers, as well as
efficient and robust implementation in complex
geometries Chen et. al (2003). Another dis-
tinct feature of the LBM over the finite volume
method and finite element method is the use of
an Eulerian grid to represent the flow field. For
these reasons, the LBM is ideal for simulating
fluid flows in complex geometries, such as par-
ticle transport. Since Ladd’s early work Ladd
(1994), the LBM has been widely employed to
model fluid-particle interactions, see for instance
Aidun et.al (1998) Qi and Luo (2003) Nguyen
and Ladd (2005) Feng and Michaellides (2004)
Feng and Michaellides (2005). Further employ-
ing the discrete element method (DEM) to ac-
count for particle-particle interactions gives rise
to a combined LBM-DEM solution procedure.
The explicit time stepping scheme of both LBM
and DEM makes this coupling strategy a compet-
itive numerical tool for the simulation of particle-
fluid systems, having potential to be a powerful
predictive tool for gaining fundamental insights
into many poorly understood physical phenom-
ena in the problem under consideration. Such a
coupled methodology was first proposed by Cook
et.al (2004) in simulating particle-fluid systems
dominated by particle-fluid and particle-particle
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interactions.

While the LBM has been well established for
laminar flows, turbulence modeling within the
framework of the lattice Boltzmann equation
(LBE) remains a challenge. Recently, limited
attempts have been made to incorporate some
existing turbulence models into the LBM. The
conventional large eddy simulation (LES) with
a one-parameter Smagorinsky sub-grid model
Smagorinsky (1963) is the simplest to apply. The
approach assumes that the Reynolds stress tensor
is dependent only on the local strain rate. This
model is extremely convenient in numerical sim-
ulation as it leaves the Navier-Stokes equation in-
variant except for a renormalised turbulent viscos-
ity Latt et. al (2005).

In our previous work Han et. al (2007), the
coupled LBM-DEM strategy has been success-
fully implemented in the simulation of circular
particle transport problems. Nevertheless, non-
circular particles are often used in practice to rep-
resent a more realistic situation. In this paper,
we present numerical procedures for simulating
polygonal and superquadric particle transport in
turbulent flows.

The remainder of the paper is organised as fol-
lows. The next section gives a brief introduc-
tion to the LBM and its incorporation with the
LES based Smagorinsky model. The modeling of
fluid-particle and particle-particle interactions are
discussed in Section 3. Finally a number of exam-
ples are provided in Section 4 for polygonal and
superquadric particle transport in turbulent flows.

2 The Lattice Boltzmann Method

The lattice Boltzmann method (LBM) describes
the fluid in terms of fluid particle density func-
tions at discrete lattice and discrete time. It sim-
ulates fluid flows by tracking the evolution of
fluid particle distributions instead of tracking sin-
gle fluid particles. Once the distribution function
is solved, the macroscopic variables, such as ve-
locity and pressure, of the fluid field can be con-
veniently calculated from its first two moments.

In the LBM, space is divided into regular lattice
nodes. The fluid is modeled as a group of fluid

particles that are allowed to move between lat-
tice nodes or stay at rest. During each discrete
time step of the simulation, fluid particles move
to the nearest lattice node along their directions
of motion, where they ’collide’ with other fluid
particles that arrive at the same node. The out-
come of the collision is determined by solving the
kinetic (Boltzmann) equation for the new distri-
bution function at that node and the fluid particle
distribution function is updated Chen and Doolen
(1998).

2.1 D2Q9 model

The LBE with single-relaxation-time approxima-
tion introduced by Bhatnagar, Gross and Krook
(BGK) for the collision operator is expressed as

fi(x+eiΔt, t +Δt)− fi(x, t)

= −1
τ
[

fi(x, t)− f eq
i (x, t)

]
(1)

where fi is the density distribution function with
discrete velocity ei along the i-th direction; f eq

i
is the equilibrium distribution function; and τ is
the single relaxation time which controls the rate
of approach to equilibrium. The left-hand side of
Eq.(1) denotes a streaming process for fluid par-
ticles while the right-hand side models the colli-
sions through relaxation.

In the widely used D2Q9 model Qian et. al
(1992), the fluid particles at each node move to
their eight immediate neighbouring nodes with
discrete velocities ei, (i = 1, · · · ,8), as shown in
Fig. 1. A proportion of the particles can rest at the
node, which is equivalent to moving with a zero
velocity e0. Referring to the numbering system
shown in Fig. 1b, the nine discrete velocity vec-
tors are given by⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

e0 = (0,0)
e1 = C(1,0); e2 = C(0,1);
e3 = C(−1,0); e4 = C(0,−1)
e5 = C(1,1); e6 = C(−1,1);
e7 = C(−1,−1); e8 = C(1,−1)

(2)

where C is termed the lattice speed and defined as

C = h/Δt
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(b) D2Q9 model
Figure 1: Space discretisation and D2Q9 model

with h the lattice spacing and Δt the discrete time
step.

The equilibrium distribution functions f eq
i depend

only on local density and velocity and are defined
in D2Q9 model as

⎧⎨
⎩

f eq
0 = ρ

(
1− 3

2C2 v ·v)
f eq
i = wi ρ

(
1+ 3

C2 ei ·v+ 9
2C2 (ei ·v)2− 3

2C2 v ·v)
(i = 1, · · · ,8)

(3)

in which wi is the weighting factor defined as:

w0 =
4
9

; w1,2,3,4 =
1
9

; w5,6,7,8 =
1
36

(4)

The computation at each time step comprises two
operations: collision and streaming. The first op-
eration simulates fluid particle collisions, which
cause the fluid particles at each lattice node to
scatter into different directions. The collision
rules are chosen to leave the sum of the density
distribution functions unchanged, or no particle is
lost. The rules are also chosen to conserve the
total energy and momentum at each lattice node
Chen and Doolen (1998). This computation is
completely local. The second operation, stream-
ing, is to advance the particles to the next lat-
tice node along their directions of motion. The
streaming operation takes little computational ef-
fort. These features make the LBM highly effi-
cient, simple to implement and natural to paral-
lelise.

The macroscopic fluid variables, density ρ and
velocity v, can be recovered from the distribution
functions as

ρ =
8

∑
i=0

fi ρv =
8

∑
i=1

fi ei (5)

while the fluid pressure field p is determined by
the following equation of state

p = C2
s ρ (6)

where Cs is termed the fluid speed of sound and is
related to the lattice speed C by

Cs = C/
√

3 (7)

The kinematic viscosity, ν , of the fluid is implic-
itly determined by the model parameters, h,Δt and
τ as

ν =
1
3

(
τ − 1

2

)
h2

Δt
=

1
3

(
τ − 1

2

)
Ch (8)

which indicates that the selection of these three
parameters has to be related to each other to
achieve a correct fluid viscosity.

It can be proved that the LBE (1) recovers the
incompressible Navier-Stokes equations to the
second order in both space and time Chen and
Doolen (1998), which is the theoretical founda-
tion for the success of the LBM for modeling gen-
eral fluid flow problems. However, since it is ob-
tained by the linearised expansion of the original
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kinetic theory based LBE, Eq. (1) is only valid for
small velocities, or small ’computational’ Mach
number, Ma, defined by

Ma =
vmax

C
(9)

where vmax is the maximum simulated velocity in
the flow.

Generally smaller Mach number implies more ac-
curate solution. It is therefore required that

Ma � 1 (10)

i.e., the lattice speed C should be sufficiently
larger than the maximum fluid velocity to ensure
a reasonably accurate solution.

The positivity of the kinematic viscosity (8) re-
quires that

τ > 1/2

τ is also largely responsible for the numerical sta-
bility of the lattice Boltzmann modeling. Gen-
erally speaking, a larger value represents a more
viscous fluid and the simulation is more stable,
whilst a smaller value corresponds a less viscous
fluid and the scheme is more prone to numeri-
cal instability, particularly when τ is approaching
0.5. This can also be understood from the fact that
the limitation to the value of τ is imposed by the
explicit feature of the lattice Boltzmann formula-
tion. It may be of both theoretical and practical
importance if the critical value of τ , up to which a
stable solution can be achieved, is known. Theo-
retically, this value satisfies an equation but it is
highly nonlinear and strongly dependent on the
actual flow pattern. As a result, it is impractical
to attain unless for a very simple flow case Ster-
ling and Chen (1996).

2.2 Incorporating turbulence model in the
LBM

While the LBM has been proven to be an ef-
ficient simulation tool for a variety of complex
flow problems, the modeling of turbulent flows
within the framework of the LBM is not a well
investigated topic and only very limited work has
been reported. However, many engineering appli-
cations are often associated with high Reynolds

numbers which are turbulent in nature. Therefore
the incorporation of a turbulence model into the
LBM is essential for simulating realistic particle
transport problems under consideration.

The popular large eddy simulation (LES) aims at
directly solving large spatial scale turbulent ed-
dies which carry the major portion of the flow’s
energy, while modeling the smaller scale eddies
using a sub-grid model. The separation of these
scales is achieved through the filtering of the
Navier-Stokes equations, from which the solu-
tions to the resolved scales are directly obtained.
Unresolved scales can be modeled by, for in-
stance, the widely used one-parameter Smagorin-
sky sub-grid model Smagorinsky (1963) that as-
sumes that the Reynolds stress tensor is dependent
only on the local strain rate.

To incorporate the LES in the LBM, Eq.(1) has to
be modified to include the eddy viscocity, which
is realised by the approach described in Yu et. al
(2005).

The filtered form of the LBE Yu et. al (2005) is
expressed as

f̃i(x+eiΔt, t +Δt)

= f̃i(x, t)− 1
τ∗
[

f̃i(x, t)− f̃ eq
i (x, t)

]
(11)

where f̃i and f̃ eq
i represent respectively the dis-

tribution function and the equilibrium distribution
function at the resolved scale. The effect of the
unresolved scale motion is modeled through an
effective collision relaxation time scale τt . Thus
in Eq.(11) the total relaxation time should be

τ∗ = τ +τt

where τ and τt are respectively the relaxation
times corresponding to the true fluid (molecular)
viscosity ν and the turbulence viscosity ν∗ defined
by a sub-grid turbulence model. Accordingly ν∗
is given by

ν∗ = ν +νt =
1
3
(τ∗ − 1

2
)C2Δt

=
1
3
(τ +τt − 1

2
)C2Δtνt = 1

3 τtC2Δt

By employing the Smagorinsky model, the turbu-
lence viscosity νt is explicitly calculated from the
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filtered strain rate tensor S̃i j = (∂ jũi +∂iũ j)/2 and
a filter length scale (which is equal to the lattice
spacing h) as

νt = (Sc h)2Ŝ (12)

where Sc is the Smagorinsky constant; and Ŝ the
characteristic value of the filtered strain rate ten-
sor S̃

Ŝ =
√

∑
i, j

S̃i jS̃i j

An attractive feature of the model is that S̃ can be
obtained directly from the second-order moments,
Q̃, of the non-equilibrium distribution function

S̃ =
Q̃

2ρScτ∗
(13)

in which Q̃ can be simply computed by the filtered
density functions at the lattice nodes

Q̃i j =
8

∑
k=1

ekiek j( f̃k − f̃ eq
k ) (14)

where eki is the k-th component of the lattice ve-
locity ei. Consequently

Ŝ =
Q̂

2ρScτ∗
(15)

with Q̂ the filtered mean momentum flux com-
puted from Q̃

Q̂ =
√

2∑
i, j

Q̃i jQ̃i j (16)

The above approach is extremely convenient in
terms of numerical implementations as it leaves
the LBE unchanged except for the use of a
turbulent-related viscosity τ∗. With this extended
LBM for turbulent flows, good results have been
reported for simulations of a well documented
benchmark test at Re = 40000 Rodi et. al (1997);
Krafczyk and Toelke (2003). Yu Yu et. al (2005)
et al indicates that this model can accurately cap-
ture important features of the decaying homoge-
neous isotropic turbulence and is potentially a re-
liable computational tool for turbulence simula-
tions.

3 Modeling of Particle-Fluid and Particle-
Particle Interactions

3.1 Hydrodynamic forces for fluid-particle in-
teractions

For particle transport problems concerned, the
modeling of the interaction between fluid and
solid particle requires a physically correct ’no-
slip’ velocity condition imposed on their inter-
face. In other words, the fluid adjacent to the par-
ticle surface should have identical velocity as that
of the particle surface. For a stationary solid par-
ticle, this ’no-slip’ velocity condition can be eas-
ily achieved at the fluid-particle interface by the
bounce-back scheme. Assume that a solid particle
is mapped onto the lattice by a set of lattice nodes.
The nodes inside and outside the solid region are
respectively termed solid nodes and fluid nodes.
If i is a link (or direction) between a fluid node
and a solid node, the bounce-back rule states that
the incoming fluid particle from the fluid node is
reflected back to the node it comes from, i.e.

f−i(x, t +1) = fi(x, t+) (17)

where fi(x, t+) denotes the post collision distribu-
tion at the boundary node x, and −i is the oppo-
site direction of i. This simple rule ensures that no
tangential velocity exists along the fluid-solid in-
terface, therefore a ’no-slip’ condition is imposed.
Note that the solid particle boundary is assumed
to be situated halfway between the fluid and solid
node so as to achieve a second order accuracy.
Otherwise, the accuracy is of first order.

It is, however, not trivial to model the interaction
between the fluid and a moving particle. Ladd
Ladd (1994) proposes a modification to the orig-
inal bounce-back rule so that the movement of
a solid particle can be accommodated. This ap-
proach provides a relationship of the exchange of
momentum between the fluid and the solid bound-
ary nodes. It also assumes that the fluid fills the
entire volume of the solid particle, or in other
words, the particle is modeled as a ’shell’ filled
with fluid. As a result, both solid and fluid nodes
on either side of the boundary surface are treated
in an identical fashion.

For a given boundary link i, the modified ’no-slip’
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rule is given by

f−i(x, t+1) = fi(x, t+)−αi ei·vb (αi = 6wiρ/C2
s )

(18)

where vb is the velocity of the middle of the
boundary link i and computed by

vb = vc +ω × (x+eiΔt/2−xc)

in which vc and ω are respectively the transla-
tional and angular velocities of the solid particle;
xc and x+eiΔt/2 are respectively the particle cen-
tre and mid-boundary link coordinates. The mod-
ified rule is illustrated in Fig. 2.
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Figure 2: Modified bounce-back rule for moving
particle

The hydrodynamic force and torque exerted on
the solid particle at the boundary node are com-
puted as

Fi = 2 [ fi(x, t+)−αi ei·vb]/Δt (19)

Ti = rc ×Fi (rc = x+eiΔt/2−xc) (20)

Then the total hydrodynamic forces and torque
exerted on the solid particle are computed by sum-
ming up the forces and torques from all the related
boundary links as

F = ∑
i

Fi; T = ∑
i

Ti (21)

It has been observed, however, that the computed
hydrodynamic forces may suffer from severe fluc-
tuations when the particle moves across the grid
with a large velocity. This is mainly caused by
the stepwise representation of the solid particle
boundary and the constant changing boundary
configurations.

To circumvent the fluctuation of the computed
hydrodynamic forces with the modified bounce-
back rule, Noble and Torczynski Noble and Tor-
czynski (1998) put forward to an immersed mov-
ing boundary (IMB) method. In this approach, a
control volume is introduced for each lattice node
that is a h× h square around the node, as illus-
trated by the shadow area in Fig. 3a. Meanwhile,
a local fluid to solid ratio γ is defined, which is
the volume fraction of the nodal cell covered by
the solid particle as shown in Fig. 3b.

The LBE for those lattice nodes (fully or partially)
covered by a solid particle is modified to enforce
the ’no-slip’ velocity condition as

fi(x+eiΔt, t +Δt)

= fi(x, t)− 1
τ
(1−β )

[
fi(x, t)− f eq

i

]
+β f m

i

(22)

where β is a weighting function depending on the
local fluid/solid ratio γ ; and f m

i is an additional
term that accounts for the bounce back of the non-
equilibrium part of the distribution function, com-
puted by the following expressions

{
β = γ(τ−0.5)

(1−γ)+(τ−0.5)
f m
i = f−i(x, t)− fi(x, t)+ f eq

i (ρ ,vb)− f eq
−i(ρ ,v)

(23)

The total hydrodynamic forces and torque exerted
on a solid particle over n particle-covered nodes
are summed up as

F f = Ch

[
∑
n

(
βn ∑

i

f m
i ei

)]
(24)

T f = Ch

[
∑
n

(xn−xc)×
(

βn ∑
i

f m
i ei

)]
(25)

where xn is the coordinate of the lattice node n.
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Figure 3: Immersed boundary scheme of Noble and Torczynski Noble and Torczynski (1998)

With this approach, the computed hydrodynamic
forces are sufficiently smooth, which is also con-
firmed by our numerical tests.

3.2 Contact forces for particle-particle interac-
tions

In many lattice Boltzmann simulations of particle-
fluid problems, the inter-particle interaction is ei-
ther ignored or simply treated. However, many
practical applications requires accurate resolu-
tions of the particle contact. A rational choice is
to employ the discrete element method (DEM) to
account for this interaction.

The DEM, originated in geotechnical and granu-
lar flow applications in the 70’s by Cundall and
Strack Cundall and Strack (1979), has now be-
come a promising numerical tool capable of sim-
ulating problems of a discrete or discontinuous
nature. In its classical form, a discrete system is
considered as an assembly of individual discrete
objects which are treated as rigid and represented
by discrete elements as simple geometric enti-
ties. The dynamic response of discrete elements
is largely determined by the interaction laws spec-
ified for interelement contact and obeys Newton’s
second law. The contact interaction laws are nor-
mally developed within the framework of penalty
methods which only approximately satisfies the
contact displacement constraints, thereby allow-

ing a small amount of overlap to occur. The dy-
namic equations governing the evolution of the
system are solved by the explicit central differ-
ence integration algorithm that is consistent with
the lattice Boltzmann formulation.

Disks and spheres are the most commonly used
discrete objects in the discrete element simula-
tion, mainly due to their geometric simplicity and
computational efficiency. However, they com-
pletely lack angularity, or in other words, they
cannot provide resistance to rolling motion. It
has been increasingly recognised that the angu-
larity of discrete objects plays an important role
in simulating dynamic behaviours of many prac-
tical problems. Consequently some non-circular
discrete objects are introduced, such as poly-
gons (non-smooth boundary) and superquadrics
(smooth boundary).

Polygon is one of the basic geometric entities, but
its application in the DEM has, however, been
limited. The underlying difficulty is the proper
handling of corner-corner contact in which gap
functions and normal directions are not well de-
fined. In the commonly used node-segment con-
tact models the direction of normal force may
exhibit a discontinuity when the contact pair
is evolving. Recently a simple non-ambiguous
corner-corner contact algorithm has been devel-
oped by Feng and Owen Feng and Owen (2004)
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within an energy based theoretical framework, in
which the normal and tangential directions, mag-
nitude and reference contact position of the con-
tact forces are uniquely defined.

Conventionally a superquadric may be preferred
over a polygon since it can represent a wide range
of shapes with less information. In addition,
superquadric-superquadric contact does not ex-
ist corner-corner contact situation, as is the case
in polygon-polygon contact. Nevertheless, su-
perquadric, though mathematically elegant, is not
widely used as substantial computational cost is
involved. For instance, an overlap check between
two superquadrics requires the solution of the in-
tersections of two nonlinear functions, which is a
very expensive operation and may sometimes fail
in finding the solution.

With the corner-corner contact algorithm Feng
and Owen (2004), the contact between two poly-
gons is thus resolved, which also promotes the de-
velopment of a robust and efficient polygon-based
contact resolution for superquadrics. Firstly, a su-
perquadric is approximated with a convex poly-
gon through adaptive sampling. Secondly, by
clipping two polygons, an efficient linear algo-
rithm is performed to search for intersections and
overlap area of the polygons. Finally, the contact
forces and directions are uniquely determined.
The procedure is outlined below. More details can
be found in Han et. al (2006).

3.2.1 Polygonal approximation of a su-
perquadric

A 2D superquadric is defined by the following im-
plicit function

f (x,y) =
(x

a

)m
+
( y

b

)m
−1 = 0 (26)

where parameters a, b, and m (integer) determine
the shape of the superquadric. If m = 2, an ellipse
or disk (with a = b) is recovered. By varying a
and b, the represented object can be stretched in
the x and y directions. A superquadric becomes
more ’blocky’ as m increases from 2 to infinity.

When a superquadric is used as a discrete ele-
ment, a common practice is to approximate it with
a convex polygon, which is equivalent to approxi-

mating the superquadric curve with piecewise lin-
ear segments. An adaptive sampling procedure is
employed in this work in order to achieve a bet-
ter polygonal representation of the superquadric.
Generally a superquadric may be approximated
by either an ’inscribed’ or ’circumscribed’ poly-
gon, but the former is more rational and simpler
to generate. The sampling procedure is omitted
here.

Once all the superquadrics are represented with
polygons, a contact detection algorithm is adopted
to identify the pairs with potential contact. Sub-
sequently the contact resolution is performed, by
searching for intersections of the contacting poly-
gons first, followed by employing the polygon-
polygon contact model.

3.2.2 Intersections of two polygons

Assume that two polygons, P and Q, to be consid-
ered have n and m edges/vertices respectively. A
naive algorithm for resolving the intersections of
the two polygons can be readily formulated by se-
quentially checking the intersection of each edge
of one polygon with each edge of the other poly-
gon, and its order of complexity is thus nm.

A linear algorithm is proposed by O’Rourke et al
Rourke et. al (1982), where two special point-
ers, distinguishing one edge on each polygon, are
maintained. The pointers are advanced around
the polygons such that their edges ’chase’ one an-
other, searching for the intersection points. All the
intersection points can be found within two cy-
cles around the polygons, and thus the algorithm
achieves a linear complexity of 2(n+m).

This work adopts the linear algorithm in a mod-
ified form. In fact, the overlap of two polygons
only occurs in a very small zone in the discrete
element simulation. Hence if the possible overlap
zone can be identified, the searching for intersec-
tions may be performed only for the edges lying
in the zone. This is achieved through the follow-
ing two steps:

1. The possible overlap zone (rectangle) is de-
termined by the overlap area of the bounding
boxes of two polygons under consideration;
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2. By clipping the polygons against this zone
and discarding edges lying outside of the
zone, the linear algorithm described in
Rourke et. al (1982) is employed to search
for intersections of the two polygons.

Polygon clipping against a rectangular window
is a fundamental operation in computer graphics
and a number of effective algorithms have been
proposed. The Sutherland-Hodgman polygon-
clipping algorithm is employed and slightly mod-
ified in the sense that only those edges with two
ends lying outside of the clipping zone are ex-
cluded. Due to the small clipping (overlap) zone,
the two polygons are likely to be clipped into two
polylines with very few edges.

Note that with the above modification two poly-
gons without overlap may be detected prior to the
intersection solution procedure, if the bounding
boxes of polygons do not overlap; or if one of the
polygons lies completely outside of the clipping
zone.

3.2.3 Contact forces and directions

Polygon-polygon contact is a typical corner-
corner contact problem, or its special case, such
as corner-edge contact, or its extensions for more
complex contact situations. The corresponding
contact forces and directions are computed by
utilising the corner-corner contact model devel-
oped by Feng and Owen Feng and Owen (2004).
It is assumed that the contact of two polygons is
associated with a contact energy function. The
contact line that connects the two intersections
of the polygons plays a crucial role. The direc-
tion of the line defines the tangential direction
and the normal direction is perpendicular to it.
The middle point of the line is identified as the
reference contact point where the normal force
should be applied. The commonly used overlap
distance/gap is not explicitly present in the model.
Instead, its usual role is replaced by the length of
the contact width, which is a well defined char-
acteristic contact length. The model in its final
form is simple and elegant with a clear geomet-
ric perspective, and also possesses some advanced
features. The algorithmic aspects can be found in

Feng and Owen (2004).

3.3 LBM and DEM Coupling

Fluid and solid particle coupling at each time step
is realised by first computing the fluid solution,
and then updating the particle positions through
the integration of the equations of motion given
by{

ma+cv = Fc +F f +mg
Jθ̈ = Tc +T f

(27)

where m and J are respectively the mass and the
moment of inertia of the solid particle; θ̈ the an-
gular acceleration; g the gravitational acceleration
if considered; F f and T f are respectively the hy-
drodynamic force and torque; Fc and Tc denote
the contact force and torque from other particles
and/or boundary walls; c is a damping coefficient;
and the term cv represents a viscous force that
accounts for the effect of all possible dissipation
forces in the system. The static buoyancy force
of the fluid is taken into account by reducing the
gravitational acceleration to (1− ρ/ρs)g, where
ρs is the density of a particle.

This dynamic equation governing the evolution of
the system can be solved by the central difference
scheme. Some important computational issues re-
garding the solution are briefly discussed as fol-
lows.

(1). Subcycling time integration. There are two
time steps used in the coupled LBM-DEM proce-
dure, Δt for the fluid flow and ΔtD for the particles.
Since ΔtD is generally smaller than Δt, it has to be
reduced to Δts so that the ratio between Δt and Δts
is an integer ns:

Δts =
Δt
ns

(ns = �Δt/ΔtD�+1) (28)

where �·� denotes an integer round-off operator.
This basically gives rise to a so-called subcycling
time integration for the DEM part; in one step of
the fluid computation, ns sub-steps of integration
are performed for Eq. (27) using the time step
Δts; whilst the hydrodynamic forces F f and T f

are kept unchanged during the subcycling.

(2). The dynamic equation in the lattice coor-
dinate system. Since the LBE is implemented in
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Figure 4: Problem description

the lattice coordinate system in this work, the dy-
namic equation Eq. (27) should be implemented
in the same way. It can be derived that in the lat-
tice coordinate system Eq. (27) takes the form of

ma+cd v = Fc +F f +mg (29)

where⎧⎨
⎩

m = m/ρsh2 v = v/C
a = aΔt/C; g = gΔt/C
cd = Chcd ; Ft = Ft/(ρ0C

2h)

4 Numerical Illustrations

To illustrate the performance of the coupled
LBM-DEM approach, test cases are provided for
the simulations of polygonal and superquadric
particle transport along a pipe under the suction
action generated by the pressure difference at the
inlet and outlet of the fluid domain.

The initial conditions are illustrated in Fig. 4,
where the two inclined lines represent the pipe
boundaries. The fluid domain is divided into a
800×800 square lattice with spacing h = 2.5mm.
Though the fluid domain should be rectangular

in the LBM, a polygonal fluid domain is taken
as the actual computational domain to reduce the
computational costs, since both left-top and right-
bottom sub-domains can be excluded from the
simulation. To accommodate this irregularity, the
actual domain profile is identified first, and the
LBE (1) is applied only to the nodes within the
profile. This is a generic approach which can be
extended to any problem with an irregular exterior
domain boundary. The material properties of the
fluid are chosen as: density ρ = 1000kg/m3 and
kinematic viscosity ν = 5×10−5m2/s.

A constant pressure boundary condition with
ρin = ρ is imposed to the two (inlet) boundaries
as shown in the figure. A smaller pressure with
ρout = 0.97ρ is applied to the outlet of the pipe.
The remaining boundaries are assumed stationary
walls and thus the ’no-slip’ velocity condition is
imposed.

The three examples comprise respectively 173 5-
sided pologons, 158 ellipses (superquadrics of
m = 2) and 70 superquadrics of m = 5, of differ-
ent sizes positioned at the bottom of the domain,
using the packing algorithms developed in Feng
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(a) (b)

(c) (d)
Figure 5: Total velocity contours for polygonal particle transport at four time instances

et.al (2003, 2002). Full gravity (g = 9.81m/s2)
is considered. The immersed boundary method
of Noble and Torczynski Noble and Torczynski
(1998) is employed to compute the fluid-particle
interaction forces. The following parameters are
chosen: particle density ρs = 5000kg/m3, normal
contact stiffness kn = 5×108N/m, contact damp-
ing ratio ξ = 0.5 and time step factor λ = 0.1,
which gives a time step of ΔtD = 3.37×10−5 for
the DEM simulation of the particles.

The LES based one-parameter Smagorinsky tur-
bulence model, as described in Section 3, is
adopted with the Smagorinsky constant Sc = 0.1.

A complete simulation is achieved with τ =
0.501. This gives a time step Δt = 4.17×10−5s
and thus the corresponding lattice speed C =
60m/s. The simulated maximum fluid veloci-
ties are respectively vmax = 7.0m/s for polygons,
6.8m/s for ellipses and 5.9m/s for superquadrics
at the pipe outlet (with the characteristic length
L = 0.5m). The maximum Mach number and
Reynolds number, for superquadric transport for
example, are therefore estimated as

Ma =
vmax

C
= 0.0983; Re =

vmax ∗L
v

= 59000

The Mach number indicates that the results ob-
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(a) (b)

(c) (d)
Figure 6: Total velocity contours for superquadric particle (m = 2) transport at four time instances

tained are reasonably accurate. The flow field
in terms of the total velocity contour and the
evolution of the particles at four time instances
are depicted in Figs.5-7(a)-(d), from which the
complexity of the fluid field due to the particle-
fluid and particle-particle interactions are clearly
shown.

5 Conclusions

This paper introduces a coupled LBM-DEM so-
lution strategy for numerical simulations of ir-
regular particle transport in turbulent flows. The

test cases demonstrate that the proposed approach
is a promising solution tool for the solution of
particle-fluid interaction problems dominated by
the presence of a large number of densely packed
irregular particles and the occurrence of turbu-
lence. The coupled approach appears to be ro-
bust (up to a certain Reynolds number) and the
implementation is simple. Further tests indicate
that the number of particles and their size distri-
bution can be arbitrarily specified without causing
any numerical problem. In addition, the proposed
methodology can also be extended to 3D cases.
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(a) (b)

(c) (d)
Figure 7: Total velocity contours for superquadric particle (m = 5) transport at four time instances
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