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A Geometric Deformation Constrained Level Set Method for Structural
Shape and Topology Optimization
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Abstract: In this paper, a geometric deforma-
tion constrained level set method is presented
as an effective approach for structural shape and
topology optimization. A level set method is
used to capture the motion of the free bound-
ary of a structure. Furthermore, the geomet-
ric deformation of the free boundary is con-
strained to preserve the structural connectivity
and/or topology during the level set evolution.
An image-processing-based structural connectiv-
ity and topology preserving approach is pro-
posed. A connected components labeling tech-
nique based on the 4-neighborhood connectiv-
ity measure and a binary image is used for the
present region identification. The corresponding
binary image after an exploratory move of the
free boundary at each time predicted by an ex-
plicit upwind finite difference scheme is first iden-
tified. Once a violation on structural connec-
tivity and/or topology is encountered, removed
components crucial to preserve the structural con-
nectivity and/or topology are further identified
and recovered to make the actual move properly
connected. The geometric deformation is thus
constrained and the structural connectivity and/or
topology can be well maintained. Structural dis-
connectivity as well as topological changes during
the evolution can be prevented. Shape optimiza-
tion may be allowed for and topology optimiza-
tion may become more robust. A bi-sectioning al-
gorithm is used to handle the volume constraint
and the fluctuations of the total volume can be
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eliminated. The present method may be structural
connectivity and/or topology preserving and vol-
ume conservative to generate monolithic feasible
designs. The effectiveness of the present method
is illustrated with numerical examples in mini-
mum compliance design and compliant mecha-
nism design.
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1 Introduction

The level set method first introduced by Osher
and Sethian [Osher and Sethian (1988)] has be-
come increasingly popular recently. It is a sim-
ple and versatile numerical technique for comput-
ing and analyzing the motion of interfaces in two
or three dimensions. The moving interfaces may
easily develop sharp corners, break apart, merge
together and even disappear to result in signifi-
cant topological changes [Sethian (1999); Osher
and Fedkiw (2002)]. The level set method has got
a wide range of applications over the years [Osher
and Fedkiw (2001); Osher and Paragios (2003);
Tsai and Osher (2003)].

Recently, the level set methods have been applied
to structural shape and topology optimization
problems [Sethian and Wiegmann (2000); Al-
laire, Jouve, and Toader (2002); Wang, Wang, and
Guo (2003); Allaire, Jouve, and Toader (2004)].
Sethian and Wiegmann [Sethian and Wiegmann
(2000)] are among the first researchers to ex-
tended the level set method of Osher and Sethian
[Osher and Sethian (1988)] to capture the free
boundary of a structure on a fixed Eulerian mesh.
The structural rigidity was maximized by using
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an ad hoc criteria based on the Von Mises equiv-
alent stress. However, the classical shape sensi-
tivity analysis [Sokolowski and Zolesio (1992)]
was not introduced, which would be more suitable
for the moving boundary-based optimization us-
ing the level set methods. Osher and Santosa [Os-
her and Santosa (2001)] investigated a two-phase
optimization of a membrane modeled by a lin-
ear scalar partial differential equation (PDE). The
moving free boundary was defined as the inter-
face between two constituents occupying a given
design domain. The level set method was com-
bined with the classical shape sensitivity analysis,
but the linear or nonlinear elasticity analysis of
a structure was not involved. Allaire et al. [Al-
laire, Jouve, and Toader (2002, 2004)] proposed
an implementation of the level set methods for
structural topology optimization. The front ve-
locity was derived from the classical shape sen-
sitivity analysis by using an adjoint problem and
the front propagation was performed by solving
the Hamilton-Jacobi equation. Wang et al. [Wang,
Wang, and Guo (2003, 2004)] established the ve-
locity vector in terms of the shape of the mov-
ing free boundary and the variational sensitivity
as a physically meaningful link between structural
topology optimization and the versatile level set
methods. The level set methods have been fur-
ther developed in [Wang and Wang (2004b)] as
a “color level set" method to address the issue
of structural shape and topology optimization in
a multi-material design domain. In [Wang and
Wang (2005b)], the level set methods were fur-
ther extended to a level set-based variational ap-
proach for the optimal shape and topology de-
sign of heterogeneous objects using a multi-phase
level set model for digital image processing [Vese
and Chan (2002)]. To overcome the limitation of
the conventional level set methods in nucleation
of new holes in the material domain, the classi-
cal topological derivatives [Sokolowski and Żo-
chowski (2001)] were also exploited by some re-
searchers [Burger, Hackl, and Ring (2004); Al-
laire, Gournay, Jouve, and Toader (2004); Allaire,
de Gournay, Jouve, and Toader (2005); Amstutz
and Andrä (2006)]. More recently, the use of
radial basis functions was explored [Wang and
Wang (2006b,c); Wang, Lim, Khoo, and Wang

(2007)] for structural shape and topology opti-
mization using the level set methods to improve
the computational efficiency and to reduce the
probability of converging to a local minimum. In
optimal synthesis of compliant mechanisms, the
level set methods have been used as an effective
tool for designing monolithic compliant mech-
anisms made of either single material [Allaire,
Jouve, and Toader (2002, 2004); Chen, Wang,
Wang, and Xia (2005); Mechkour, Jouve, Bidard,
and Rotinat-Libersa (2006)] or multiple materi-
als as an optimization of continuum heteroge-
neous structures [Mei and Wang (2004); Wang
and Wang (2005b); Wang, Chen, Wang, and Mei
(2005)].

In spite of the considerable advances recently
achieved for shape and topology optimization us-
ing the level set methods, the undesirable connec-
tivity issues resulting from the drastic topologi-
cal changes and significant geometric deforma-
tions during the level set evolution were rarely ad-
dressed. The structural connectivity and/or topol-
ogy may be destroyed due to the considerable ge-
ometric deformations, which may pose remark-
able difficulty for structural shape and topology
optimization. In the literature [Wang, Wang, and
Guo (2003); Allaire, Jouve, and Toader (2004);
Wang, Wang, and Guo (2004); Wang and Wang
(2005b, 2006a,b,c); Wang, Lim, Khoo, and Wang
(2007)], the level set methods have been success-
fully applied to shape and topological optimum
of the minimum compliance design. The struc-
tural connectivity can be well maintained during
the evolution since the minimum compliance de-
sign requires that the design become increasingly
stiff with the evolution of the moving boundary.
Hence, an explicit constraint on the structural con-
nectivity would become unnecessary [Zhou and
Wang (2006)]. However, the structural connec-
tivity may not be generally preserved for applica-
tions different from the minimum compliance de-
sign. As shown in [Wang, Chen, Wang, and Mei
(2005)], in compliant mechanism design using the
level set methods, there is a strong tendency to
destroy the structural connectivity in the geomet-
ric model and to develop the de facto hinge zones
in the finite element (FE)-based physical model,
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which may be due to the FE method adopted in
structural analysis and the problem formulation
used to obtain the design, as shown in the popu-
lar continuum optimal topology design of compli-
ant mechanisms using the homogenization-based
methods [Bendsøe and Sigmund (2003)]. The
structural disconnection in the geometric model
and the de facto hinge zones in the physical model
would make the design questionable. An ex-
plicit constraint on the geometric deformation to
preserve the structural connectivity becomes nec-
essary. Nevertheless, further investigation into
this issue was not taken into account by most re-
searchers using the level set methods. The arti-
ficial spring model in continuum optimal topol-
ogy design of compliant mechanisms using the
homogenization-based methods to avoid the de
facto hinge zones [Bendsøe and Sigmund (2003)]
has been generally adopted [Allaire, Jouve, and
Toader (2002, 2004); Mei and Wang (2004);
Rahmatalla and Swan (2005); Wang and Wang
(2005b); Wang, Chen, Wang, and Mei (2005);
Mechkour, Jouve, Bidard, and Rotinat-Libersa
(2006)]. However, this model may not guaran-
tee the structural connectivity, or may generate
a stiff rather than a flexible structure, depend-
ing on the the assumed stiffness of the artificial
spring [Rahmatalla and Swan (2005)]. More re-
cently, some preliminary study on the connectiv-
ity issue was reported in [Chen, Wang, Wang,
and Xia (2005); Wang, Chen, Wang, and Mei
(2005)]. Since the systematic connectivity analy-
sis was not introduced, the preliminary study can
neither eliminate the de facto hinges completely
nor guarantee the smooth topology optimization,
as illustrated in [Chen, Wang, Wang, and Xia
(2005); Wang, Chen, Wang, and Mei (2005)]. The
level set method has the potential to perform the
mere boundary-based shape optimization due to
the smoothness of the level set function (at least
Lipschitz-continuous) [Osher and Fedkiw (2002);
Tsai and Osher (2003)]. However, this potential
may not be made full use of due to the lack of
a topology preserving mechanism in the existing
shape and topology optimization using the level
set methods. In model reconstruction using the
level set methods, Han et al. [Han, Xu, and Prince
(2003)] developed a topology preserving geomet-

ric deformable model for brain cortical surface re-
construction. Nevertheless, the structural connec-
tivity was not involved and only relatively simple
topological changes were considered to simplify
the analysis and the de facto hinge zones may not
be eliminated due to the node-based connectivity
measure. In structural shape and topology opti-
mization, a volume constraint is usually involved
to limit the use of material. The geometric defor-
mation may thus be severely constrained. How-
ever, this volume constraint was either skipped
[Allaire, Jouve, and Toader (2002, 2004); Wang
and Wang (2006b)] or inappropriately handled
due to the resulting fluctuations of the total vol-
ume [Osher and Santosa (2001); Wang, Wang,
and Guo (2003); Wang and Wang (2005b); Wang,
Chen, Wang, and Mei (2005); Wang and Wang
(2006a)]. To guarantee a feasible design and the
full use of the given material, the volume con-
straint must be handled properly.

The objective of the present study is to de-
velop a geometric deformation constrained level
set method to resolve these issues in shape and
topology optimization using the level set meth-
ods. An image-processing-based structural con-
nectivity preserving and/or topology preserving
approach is proposed. The structural connectiv-
ity during the course of evolution can be guaran-
teed and the occurrence of de facto hinge zones
in the FE-based physical model can be prevented.
Furthermore, the structural topology can be pre-
served to perform the boundary-based shape opti-
mization only. The volume constraint can be ef-
fectively handled to make full use of the given ma-
terial by the bi-sectioning algorithm. Numerical
examples in two dimensions (2D) that are widely
investigated by many other researchers are cho-
sen to demonstrate the distinctive effectiveness of
the present level set method for structural shape
and/or topology optimization.

2 A Geometric Deformation Constrained
Level Set Method

2.1 Hamilton-Jacobi Equation

The level set method is a powerful and versatile
numerical technique. In the standard level set



158 Copyright c© 2007 Tech Science Press CMES, vol.18, no.3, pp.155-181, 2007

method first introduced by Osher and Sethian [Os-
her and Sethian (1988)], the interface (or moving
boundary) is embedded into a higher-order (one
dimension higher) level set function Φ(x) as the
zero level set

{
x ∈ Rd |Φ(x) = 0

}
(d = 2 or 3). The

implicit scalar level set functionΦ (x) has the fol-
lowing properties:

Φ(x) = 0 ⇐⇒ ∀x ∈ ∂Ω∩D
Φ(x) < 0 ⇐⇒ ∀x ∈ Ω\∂Ω
Φ(x) > 0 ⇐⇒ ∀x ∈ (D\Ω)

(1)

where D ⊂ Rd is a fixed design domain in which
all admissible shapes Ω (a smooth bounded open
set) are included, i.e. Ω ⊂ D . Figure 1 displays
that a 2D design can be embedded into a 3D
level set functionΦ(x), which is a signed-distance
function for this case.

Figure 1: Level set description of a 2D design.

To let the level set function dynamically change
with time, i.e. Φ (x) = Φ (x, t), where t is the
pseudo time, a continuous normal velocity field
vn(x, t) should be provided. In the present shape
and topology optimization, this velocity field is
determined by a steepest gradient method, which
will be discussed in the following section. The
evolution of the interface or moving boundary can
be obtained by solving the following Hamilton-
Jacobi equation [Sethian (1999); Osher and Fed-

kiw (2002)]:

∂Φ

∂t
+ vn|∇Φ| = 0, Φ(x,0) =Φ0(x) (2)

where Φ0(x) embeds the initial position of the in-
terface, and the relationship between the normal
velocity vn(x, t) and the velocity v(x, t) is:

vn = v ·n (3)

in which n is the outward normal defined by

n =
∇Φ
|∇Φ| (4)

Usually, the Hamilton-Jacobi PDE (2) is solved to
evolve the interface by using a capturing Eulerian
approach based on an explicit upwind finite dif-
ference scheme [Osher and Fedkiw (2002)]. The
solving procedure requires appropriate choice of
the upwind schemes, reinitialization algorithms
and extension velocity methods [Sethian (1999);
Osher and Fedkiw (2002)]. Furthermore, the
timestep size must be sufficiently small to satisfy
the CFL condition (CFL � 1) to ensure the con-
vergence of the solution [Sethian (1999); Osher
and Fedkiw (2002)]. In this study, a second-order
ENO (essentially non-oscillatory) upwind scheme
is used for the propagation of the moving bound-
ary and a third-order reinitialization algorithm
is adopted to minimize the numerical diffusion
around the location of the original interface [Os-
her and Fedkiw (2002); Tsai and Osher (2003)],
and an aggressive CFL number of CFL = 0.9 is
used to drive a fast convergence speed. Reini-
tialization is only performed as an auxiliary step.
A natural extension velocity method is to be pre-
sented in the following section to preserve the
simplicity of a level set method. As shown in
[Sethian and Wiegmann (2000); Osher and San-
tosa (2001); Allaire, Jouve, and Toader (2004);
Wang, Wang, and Guo (2003)], drastic topolog-
ical changes and significant geometric deforma-
tions of a level set model can be achieved. How-
ever, as aforementioned, the geometric deforma-
tion may even hinder further applications of the
level set methods in structural shape and topology
optimization.
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In the present study, a geometric deformation con-
strained level set method is developed. The prop-
agation of the interface at each time t predicted by
the explicit upwind finite difference scheme [Os-
her and Fedkiw (2002)] is taken as an exploratory
move of the interface only. The exploratory move
will be accepted as an actual move only if the con-
nectivity requirements are satisfied. Otherwise,
the motion of parts of the interface crucial to pre-
serve the connectivity will be constricted after an
image-processing-based connectivity analysis is
performed. More details are to be given in the
following sub-sections.

2.2 A Structural Connectivity Preserving Level
Set Method

In this study, a structural connectivity preserving
level set method based on an image-processing
technique is first proposed. In image process-
ing for a 2D problem [Jahne (1997)], either a
4-neighborhood connectivity, where only verti-
cal and horizontal directions can be followed,
or a 8-neighborhood connectivity, where hori-
zontal, vertical and diagonal directions are al-
lowed, can be used, as shown in Fig. 2. To
determine the structural connectivity more effec-
tively, the 4-neighborhood connectivity is em-
ployed in the present study. Since the undesirable
patches of checkerboard patterns, within which
the density of the material assigned to contigu-
ous finite elements varies in a periodic fashion
similar to a checkerboard consisting of alternat-
ing solid and void elements [Bendsøe and Sig-
mund (2003)], will not be considered as appro-
priately connected in the 4-neighborhood connec-
tivity, the occurrence of checkerboard patterns
is actually prohibited in a structurally connected
design. Furthermore, the edge connection im-
posed by the 4-neighborhood connectivity, rather
than the node connection permitted by the 8-
neighborhood connectivity, may prevent the oc-
currence of weak connections such as de facto
hinges during the course of evolution [Wang, Tai,
and Wang (2006)].

Moreover, in image processing [Jahne (1997)],
region identification is indispensable for region
description since extracting and labeling of vari-

ous disjoint and connected components in an im-
age is central to many automated image analysis
applications. In this study, the connected com-
ponents labeling approach [Jahne (1997); Chang,
Chen, and Lu (2004)] is used for region identifi-
cation. The connected components labeling ap-
proach scans an image and groups its pixels into
components based on pixel connectivity. Once all
groups have been determined, each pixel is la-
beled with a unique (integer) number according
to the component it was assigned to. With this
labeling, the number of connected regions and
their relative areas can be readily obtained with
a simple inspection of the labeled image’s his-
togram [Wang and Wang (2005a)]. The connected
components labeling approach can work on bi-
nary or gray-level images and different measures
of connectivity. In the present structural connec-
tivity analysis, only binary input images and the
4-neighborhood connectivity measure are taken
into account. Figure 3 displays the region identi-
fication procedure for a 0-1 topological design us-
ing the connected components labeling approach.
After obtaining the bit-array representation of the
input 0-1 design, the connected components la-
beling can be performed. The resulting labelled
connected components can be expressed as

Clab =
{
c1,c2, · · · ,ci, · · · ,cN

}
(5)

where Clab is the set of all labelled connected
components, ci the i-th labelled connected com-
ponent, and N the total number of labelled con-
nected components. For this case, it has been
identified that N = 4 and c2 is the structurally con-
nected component, which has the load bearing ca-
pacity when the left end of the design domain is
fixed and a concentrated load is applied at the cen-
tre of the right free end, as shown in Fig. 3(d).
As expected, a 0-1 structurally connected design
must have one structurally connected component.

To provide the discrete 0-1 design for region iden-
tification, in this study, the fixed FE discretized
design domain D is approximated as a black-
and-white digital image, or binary image. Each
element is analogously considered as one pixel
and its color is represented by a binary variable
only, where white is void and black is solid ma-
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Figure 2: Connectivity measures for a 2D problem.

(a) Original 0-1 design

     1     1     1     1     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0
     1     1     0     1     1     1     1     1     1     0     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     1     1     1     1     1     1     0     0     0     0     0     0
     0     0     0     0     0     0     0     1     0     0     0     0     0     1     1     1     1     1     1     1
     1     1     1     0     0     0     0     1     0     0     0     0     0     0     0     0     1     1     1     1
     1     0     0     0     0     0     0     0     0     0     0     0     0     0     1     1     1     1     1     1
     0     0     0     0     0     0     0     0     0     0     1     1     1     1     1     0     0     0     0     0
     0     0     0     0     0     0     1     1     1     1     1     0     0     0     0     1     0     0     0     0
     0     0     1     1     1     1     1     0     0     0     0     1     1     1     1     1     0     0     0     0
     1     1     1     0     0     0     0     0     0     0     0     0     0     0     1     0     0     0     0     0

(b) Bit-array representation

     2     2     2     2     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0
     2     2     0     2     2     2     2     2     2     0     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     2     2     2     2     2     2     0     0     0     0     0     0
     0     0     0     0     0     0     0     3     0     0     0     0     0     2     2     2     2     2     2     2
     1     1     1     0     0     0     0     3     0     0     0     0     0     0     0     0     2     2     2     2
     1     0     0     0     0     0     0     0     0     0     0     0     0     0     2     2     2     2     2     2
     0     0     0     0     0     0     0     0     0     0     2     2     2     2     2     0     0     0     0     0
     0     0     0     0     0     0     2     2     2     2     2     0     0     0     0     4     0     0     0     0
     0     0     2     2     2     2     2     0     0     0     0     4     4     4     4     4     0     0     0     0
     2     2     2     0     0     0     0     0     0     0     0     0     0     0     4     0     0     0     0     0

(c) Connected components labeling (d) Identified structurally connected component

Figure 3: Region identification using connected component labeling.

terial. It is assumed that the elements with inter-
mediate values can be neglected since these el-
ements may result in the unreliable weak con-
nections such as the de factor hinges during the
level set evolution and the removal of them for re-
gion identification would greatly simply the con-
nectivity analysis without destroying the reliable
structural connectivity. Hence, only the approxi-
mated design strictly comprising discrete 0-1 ele-

ments are taken into account in the present image-
processing-based connectivity analysis. Figure 4
displays the procedure to obtain the binary image
of an admissible design for a compliant mecha-
nism design problem. It can be seen that the bi-
nary image of an admissible design that transmits
the applied forces from the specified input region
(port) to the output region (port) by elastic defor-
mation can be readily obtained by removing those
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Input
region

Output
region

Support
region

Design domain D

(a) Problem definition (b) Admissible design

(c) Density representation (d) Resulting binary image

Figure 4: Binary image of an admissible design.

elements with intermediate densities.

A structural connectivity preserving level set
method based on the image-processing technique
can then be developed. As aforementioned, the
propagation of the moving boundary at each time t
predicted by using an explicit upwind finite differ-
ence scheme [Osher and Fedkiw (2002)] to solve
the Hamilton-Jacobi PDE (2) is only taken as an
exploratory move. This exploratory move will be
considered acceptable as an actual move only if
the binary image Iexp of the resulting design is
structurally connected. If there is no structurally
connected component among all the labelled con-
nected components Clab

exp, the binary image will
be identified as structurally disconnected and thus
the exploratory move cannot be accepted as an ac-
tual move. Hence, to maintain the structural con-
nectivity, we need to further analyze the removed
solid elements during the exploratory move. The
set of removed elements Crem can be obtained as

Crem = It\
(
Iexp∩It

)
(6)

by comparing the binary images It and Iexp be-
fore and after the exploratory move respectively.
Furthermore, the connected components of Crem

can be labelled as Clab
rem:

Clab
rem =

{
c1

rem,c
2
rem, · · · ,ci

rem, · · · ,cNR
rem

}
(7)

where NR is the total number of the connected
components of the removed solid elements. The
effect of each component ci

rem on the structural
connectivity of the binary image It can be ob-
tained by gradually removing the components
identified as irrelevant to the structural connec-
tivity from It using the connected components
labeling approach [Jahne (1997); Chang, Chen,
and Lu (2004)] again. The remaining components
Clab

c ⊂ Clab
rem must be crucial to maintain the struc-

tural connectivity and thus cannot be removed
during the exploratory move, which can be ex-
pressed as

Clab
c =

{
c1

c ,c
2
c , · · · ,ci

c, · · · ,cNC
c

}
(8)

where NC is the total number of the crucial com-
ponents (NC � NR). These crucial components
should be recovered in the binary image Iexp

and thus the resulting binary image after the ex-
ploratory move should be modified as Ĩexp:

Ĩexp = Iexp+Clab
c (9)
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The recovery of the crucial components may be
equivalent to setting zero velocities at the corre-
sponding local grid points to restrict their move-
ment during the level set evolution. Hence, the
decrease of the objective function for shape and
topology optimization can be well maintained due
to the steepest gradient method [Osher and San-
tosa (2001); Wang, Wang, and Guo (2003); Al-
laire, Jouve, and Toader (2004)] adopted and the
relatively small movement of the free boundary
(less than one grid size) at a single timestep con-
stricted by the CFL condition [Sethian (1999);
Osher and Fedkiw (2002)]. Therefore, the opti-
mality condition can be well kept and the numer-
ical instabilities can be avoided.

Comparing with the topology preserving geo-
metric deformable model for brain cortical sur-
face reconstruction in model reconstruction us-
ing the level set methods [Han, Xu, and Prince
(2003)], the present method can not only pre-
serve the structural connectivity, but also well
maintain the decrease of the objective function
due to the present zero velocities rather than
the Φ values of the non-simple grid points with
changed signs only [Han, Xu, and Prince (2003)]
and prevent the occurrence of weak connec-
tions such as the de factor hinge zones due to
the present 4-neighborhood connectivity measure
rather than the node-connection measure [Han,
Xu, and Prince (2003)]. In the work of [Chen,
Wang, Wang, and Xia (2005); Wang, Chen,
Wang, and Mei (2005)], since only some pre-
liminary analysis based on image processing was
introduced, the structural connectivity and the
topology optimization could not be guaranteed si-
multaneously. Since the structural connectivity
can be preserved at the discrete 0-1 level during
the level set evolution, the present method can
be significantly different from the conventional
level set methods [Osher and Santosa (2001);
Wang, Wang, and Guo (2003); Allaire, Jouve, and
Toader (2004)], in which the occurrence of de fac-
tor hinge zones cannot be prevented, as shown
in [Wang, Chen, Wang, and Mei (2005)]. In
the field of shape and topology optimization, the
popular continuum optimal topology design using
the homogenization-based methods [Bendsøe and

Sigmund (2003)] cannot eliminate the occurrence
of the de facto hinge zones either, which are gen-
erally regarded as improper designs [Rahmatalla
and Swan (2005)], depending on the the objective
functions and the artificial spring models used. It
should also be noted that the region identification
technique introduced in this study is not time con-
suming in general since the FE-based structural
analysis in shape and topology optimization usu-
ally dominates the computational time.

Figure 5 illustrates the present structural connec-
tivity preserving analysis during the level set evo-
lution. The structurally connected binary image
It at time t, as shown in Fig. 5(b), is obtained
from the design at time t, as shown in Fig. 5(a). It
becomes a structurally disconnected binary image
Iexp after an exploratory move, as shown in Fig.
5(c). The removed solid elements Crem during
the exploratory move can be found and labelled
as removed components Clab

rem, as shown in Fig.
5(d). Further analysis on the components Clab

rem re-
moved from It, as shown in Fig. 5(b), can iden-
tify the crucial components Clab

c which are nec-
essary to preserve the structural connectivity of
It, as shown in Fig. 5(e). Those crucial compo-
nents are recovered in the resulting binary image
Ĩexp to satisfy the structural connectivity require-
ments during the level set evolution, as shown in
Fig. 5(f). Hence, the structural connectivity can
be well preserved after an actual move at time t.

2.3 A Structural Connectivity and Topology
Preserving Level Set Method

The present structural connectivity preserving
level set method can be further developed into
a structural connectivity and topology preserving
level set method such that the mere boundary-
based structural shape optimization in addition
to simultaneous shape and topology optimization
can be performed using the level set methods.
Similar to the structural connectivity preserving
analysis, the structural connectivity and topology
preserving analysis needs to identify crucial com-
ponents Clab

c from the the removed components
Clab

rem during an exploratory move which are nec-
essary to maintain the structural connectivity as
well as preserve the topology. Besides the struc-
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(a) Design at time t (b) Structurally connected binary image It

(c) Structurally disconnected Iexp after an exploratory move (d) Removed components Clab
rem during the exploratory move

(e) Crucial componentsClab
c of Clab

rem (f) Structurally connected binary image Ĩexp

Figure 5: Structural connectivity preserving analysis during the level set evolution.

tural connectivity condition, a removed compo-
nent will also be identified as a crucial component
if its removal from the binary image It may cause
a topological change measured by the total num-
ber of internal holes in this study. This handling
to prevent the topological changes can be justi-
fied since there is no nucleation mechanism in the
conventional level set methods [Osher and Fed-
kiw (2002); Burger, Hackl, and Ring (2004); Am-
stutz and Andrä (2006)] and thus the topological
changes are only due to the elimination of the in-
ternal holes. Hence, the recovery of the removed
components crucial to structural connectivity and
topology will lead to a structural connectivity and
topology preserving design during the level set
evolution.

Figure 6 demonstrates the present structural con-
nectivity and topology preserving analysis. The
structurally connected binary image It with 6 in-
ternal holes at time t becomes structurally dis-
connected with topological changes after an ex-
ploratory move since one-node connection is
considered as disconnected by the present 4-
neighborhood connectivity measure, as shown in
Fig. 6(c). After a region identification of both
Figs. 6(b) and 6(c), the removed components Clab

rem
during the exploratory move can be obtained and
labelled, as shown in Fig. 6(d). Further analysis
on the components Clab

rem removed from It can find
Clab

c crucial to preserve the structural connectiv-
ity and topology, as shown in Fig. 6(e). Those
necessary components are recovered in the final
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binary image Ĩexp, as shown in Fig. 6(f). Hence,
the structural connectivity and topology at the dis-
crete 0-1 level can both be preserved after a move
at time t.

3 An Implementation of Structural Shape
and Topology Optimization Using the Level
Set Methods

3.1 Shape and Topology Optimization Using
the Level Set Methods

Using a level set model as defined in Eq. (1),
the usual structural shape and topology optimiza-
tion problem with a volume constraint [Sigmund
(2001); Bendsøe and Sigmund (2003)] to limit the
use of material can be written as follows:

min
Φ

J(u,Φ) =
∫

D
F(u)H(−Φ)dΩ

s.t :
a(u,υ,Φ) = L(υ,Φ), u|ΓD

= u0, ∀υ ∈U
V(Φ)/V0 = ζ

(10)

where J(u,Φ) is the objective function, u the dis-
placement field, F(u) the design function, H(Φ)
the Heaviside step function, V(Φ) the material
volume, V0 the total volume of the design domain
D , and ζ the prescribed volume fraction. The
linearly elastic equilibrium equation is written in
its weak variational form in terms of the energy
bilinear form a(u,υ,Φ) and the load linear form
L(υ,Φ) [Wang and Wang (2004b)], with υ denot-
ing a virtual displacement field in the space U of
kinematically admissible displacement fields, and
u0 the prescribed displacement on the admissible
Dirichlet boundary ΓD. Furthermore, we have

a(u,υ,Φ) =
∫

D
εT (u)Cε(υ)H(−Φ)dΩ (11)

L(υ,Φ) =
∫

D
υT fH(−Φ)dΩ

+

∫
D
υTτδ(Φ)|∇Φ|dΩ (12)

V(Φ) =
∫

D
H(−Φ)dΩ (13)

where C is the elasticity matrix, f the body force
vector, τ the boundary traction force vector, and
δ(Φ) the Dirac delta function.

In the present geometric deformation constrained
level set method, since both the structural con-
nectivity and topology may be preserved, simul-
taneous shape and topology optimization as well
as mere shape optimization can be performed by
solving (10). The Lagrange multiplier method can
be used to solve this optimization problem [Os-
her and Santosa (2001)]. By setting the constraint
on the equilibrium state inactive, the Lagrangian
L (u,Φ,�) with a positive Lagrange multiplier �
can be given by

L (u,Φ,�) = J(u,Φ)+ �G(Φ) (14)

where the volume constraint functional G(Φ) can
be expressed as

G(Φ) = V(Φ)− ζV0 (15)

According to the Kuhn-Tucker condition of the
optimization, the necessary condition for a min-
imizer is

DΦL (u,Φ,�) = 0
G(Φ) = 0

(16)

where DΦL (u,Φ,�) is the gradient of the La-
grangian with respect to Φ. It should be noted
that u is also a function of Φ, i.e. u = u(Φ).

3.2 Normal Velocities

The gradient, or shape derivative, of the La-
grangian DΦL (Φ,�) may be obtained following
the well-known approach of Murat and Simon of
shape diffeomorphism [Haug, Choi, and Komkov
(1986); Sokolowski and Zolesio (1992)]. Based
on local perturbations of the moving free bound-
ary of an admissible design [Wang and Wang
(2004b)], the resulting shape derivative of the La-
grangian can be written as

DΦL (u,Φ,�)

=

∫
D

(g(u,Φ)+ �) δ(Φ)|∇Φ|vn dΩ (17)



A Geometric Deformation Constrained Level Set Method 165

(a) Design at time t (b) Binary image It at time t

(c) Binary image Iexp after an exploratory move (d) Removed components Clab
rem during the exploratory move

(e) Crucial componentsClab
c of Clab

rem (f) Final binary image Ĩexp

Figure 6: Structural connectivity and topology preserving analysis during the level set evolution.

where

g(u,Φ) = F(u)+ (u∗)T (f + κτ)+∇((u∗)Tτ) ·n
− εT (u)Cε(u∗) (18)

in which u∗ is the adjoint displacement field of u,
and the curvature κ can be given as

κ = ∇· (∇Φ/|∇Φ|) (19)

Furthermore, Eq. (17) can be simplified as

DΦL (u,Φ,�) =
∫
ΓM

(g(u,Φ)+ �) vn ds (20)

where ΓM is the moving free boundary. Simi-
larly, the resulting shape derivative of the volume

constraint functional G(Φ) (15) can be simply ex-
pressed as

DΦG(Φ) =
∫
ΓM

vn ds (21)

In the present shape and topology optimization
using the level set methods, choosing the nor-
mal velocity field vn is equivalent to choosing a
descent direction for the Lagrangian L (u,Φ,�),
which can be readily implemented by using the
steepest gradient method extensively employed in
the literature [Osher and Santosa (2001); Wang,
Wang, and Guo (2003); Allaire, Jouve, and
Toader (2004); Wang and Wang (2006a,c)]. Ac-
cording to the shape derivative of the Lagrangian
in Eq. (20), a descent direction of the normal ve-
locity vn for the Lagrangian can be obtained by
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simply identifying the normal velocity vn as

vn = −g(u,Φ)− � (22)

in which the adjoint displacement field u∗ may
be involved, as shown in (18). For the present
problem with a moving free boundary, without
remeshing, the displacement fields may be accu-
rately and efficiently obtained by using several
existing numerical methods such as the “ersatz
material" approach [Allaire, Jouve, and Toader
(2004)], the geometry projection method [Norato,
Haber, Tortorelli, and Bendsøe (2004)], the ex-
tended finite element methods [Belytschko and
Black (1999); Strouboulis, Copps, and Babuska
(2001); Belytschko, Xiao, and Parimi (2003);
Wang and Wang (2006a)], or the true meshless
local Petrov-Galerkin method [Atluri and Shen
(2002)]. In the present study, only the relatively
simple “ersatz material" approach is adopted,
which is well-known in topology optimization
and can be rigorously justified in some cases [Al-
laire (2001); Allaire, Jouve, and Toader (2004);
Wang and Wang (2006a)]. In numerical practice
of the “ersatz material" approach, material den-
sity is assumed to be piecewise constant in each
element and is adequately interpolated in those el-
ements cut by the moving free boundary ΓM.

It should be stressed that the present normal ve-
locity field vn can guarantee that the final de-
sign be monolithic, though polylithic designs may
appear during the level set evolution. In the
present geometric deformation constrained level
set method, there is only one structurally con-
nected component in a polylithic design. The
structurally disconnected components, which can-
not connect the input ports and the output ports
properly through structural deformation, do not
possess the mechanical strains. Hence, we have

ε(u) = ε(u∗) = 0 (23)

Due to the lack of mutual strain energy, it can be
derived that if the design function F(u) is energy-
based, the normal velocity at the free boundary of
those components is:

vn = −� (24)

This negative velocity field will drive the free
boundary to move inwardly during the level set
evolution and thus the volumes of the structurally
disconnected components may become smaller
and smaller. At the convergence, those compo-
nents may disappear and a monolithic design may
be finally reached.

3.3 Extension Velocities

The normal velocity vn defined at the moving free
boundary ΓM must be extended in the Eulerian
capturing level set methods, either to the whole
design domain D [Allaire, Jouve, and Toader
(2004)] or to a narrowband around the free bound-
ary [Osher and Fedkiw (2002)]. The choice of
an extension velocity method is crucial since it
can directly influence the overall efficiency of the
level set methods [Sethian (1999)].

In this study, a physically meaningful extension
velocity method without the additional PDE solv-
ing procedure is presented. According to Eq. (22),
a natural extension of the normal velocity vn at the
free boundary can be obtained if the displacement
field u is extended to the entire design domain
D by assuming that u = 0,u ∈ (D\Ω). This nat-
ural extension velocity method is simple and easy
to implement and the conventional PDE solving
procedure in extending the normal velocities at
the free boundary [Sethian (1999)] is not needed.
Nevertheless, direct use of these natural exten-
sion velocities may cause numerical instabilities,
which are well known in the field of shape and
topology optimization due to the ill-posedness
of the optimization problem [Bendsøe and Sig-
mund (2003); Allaire, Jouve, and Toader (2004);
Wang and Wang (2006a)]. To regularize the ill-
posed problem into a well-posed problem, a fil-
tering technique, which has become quite popu-
lar and successful in various domains of applica-
tions as a numerical method to ensure regularity
or existence of solutions to an ill-posed engineer-
ing problem and has become a major regulariza-
tion method in the continuum topology optimiza-
tion [Bendsøe and Sigmund (2003); Wang and
Wang (2005a)], is employed to smooth the natu-
ral extension velocities. It should be noted that
a perimeter control method has been presented
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to smooth the extension velocities in the litera-
ture [Allaire, Jouve, and Toader (2004); Wang and
Wang (2004a)].

In the present implementation, a linear smooth-
ing filter is introduced for the extension veloci-
ties in a narrowband region around the moving
free boundary to achieve the computational effi-
ciency. The extension velocity ve

n in the narrow-
band is smoothed as v̂ e

n by using a linear hat kernel
function [Sigmund (2001)] to achieve an excellent
edge smoothing effect [Wang and Wang (2005a)],
which can be written as

v̂ e
n = v̂ e

n(x) = k−1(x)
∑

p∈N(x)

w(‖p−x‖)ve
n (x) (25)

where

w(‖p−x‖) = rmin−‖p−x‖ (26)

k(x) =
∑

p∈N(x)

w(‖p−x‖) (27)

in which N(x) is the neighborhood of x in the 2D
filter window and rmin the filter window size.

3.4 Lagrange Multiplier

The Lagrange multiplier � in (22) can be ob-
tained by solving the volume constraint equation
G(Φ) = 0 in (16), which will greatly restrict the
geometric deformation of a level set model. Since
the variation of the total volume V(Φ) is due to
the extension velocities in the capturing level set
methods, we have

V(Φ) = V(vn) = V(ve
n) = V(�) (28)

Furthermore, it can be found that V(�) is a mono-
tonically decreasing function of � since a smaller
� will cause the velocity vn as well as the volume
V(Φ) to become larger due to the more outward
movement along the normal direction, according
to (22). This monotonicity makes the fast con-
vergent bi-sectioning algorithm [Sigmund (2001);
Wang and Wang (2006c)] suitable and efficient for
solving the constraint equation in (16), which can
be re-written as

G(Φ) = V(�)− ζV0 = 0 (29)

The bi-sectioning algorithm is initialized by set-
ting a lower bound �1 and an upper bound �2 for
the Lagrange multiplier �. The interval which
bounds the Lagrange multiplier is halved and the
Lagrange multiplier is given by � = (�1 + �2)/2.
Based on the sign of the error in solving Eq. (29)
using this Lagrange multiplier, either the lower
bound �1 or the upper bound �2 can be updated.
The interval which bounds the Lagrange multi-
plier can be repeatedly halved until its size is less
than the convergence criteria.

By using this relatively simple algorithm, the
complexities in boundary integration of the mu-
tual energy density [Wang, Wang, and Guo
(2003)] can be circumvented and the additional
efforts to put the iteration back to the feasible set
to eliminate the significant volume fluctuations
[Osher and Santosa (2001)] would become redun-
dant. The present implementation can thus be
both accurate and efficient. Since the total volume
constraint may be satisfied accurately to make full
use of the given material, the present geometric
deformation constrained level set method can be
not only structural connectivity and/or topology
preserving to guarantee properly connected de-
signs, but also volume conservative to generate
feasible designs during the course of evolution.

4 Numerical Examples and Discussion

Numerical examples are provided to illustrate
the effectiveness of the present geometric defor-
mation constrained level set method for struc-
tural shape and topology optimization. Unless
stated otherwise, all the units are consistent and
the following parameters are assumed as: the
Young’s elasticity modulus E = 1 for solid materi-
als, E = 1×10−5 for void materials, and Poisson’s
ratio ν = 0.3. For all examples, a fixed rectilinear
FE mesh is specified over the entire design do-
main D for the structural analysis of the designs.
The present numerical calculation will be termi-
nated when the relative difference between two
successive objective function values is less than
10−5 or when the given maximum number of iter-
ations has been reached.
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4.1 Shape and/or Topology Optimization of a
Cantilever

The minimum compliance design problem of
shape and topology optimization of a short can-
tilever, as shown in Fig. 7, is considered. The
whole design domain D is a rectangle of size 2×1
with a fixed boundary ∂D on the left side and a
unit vertical point load P = 1 applied at a fixed
non-homogeneous Neumann boundary ∂DN , the
middle point of the right side. The prespecified
material volume fraction is ζ = 0.5. A regular
mesh of 80× 40 is used in the spatial discretiza-
tion. The present geometric deformation con-
strained level set method is used to perform simul-
taneous shape and topology optimization as well
as mere shape optimization of this cantilever.

P

1

2

x

y

D esign  dom ain  D

D∂

D∂

D∂ D∂

Figure 7: Minimum compliance design problem
of a cantilever beam.

Figure 8 displays the evolution history of an op-
timal design for simultaneous shape and topol-
ogy optimization of the cantilever using the
present structural connectivity preserving level set
method. It can be seen that the structural connec-
tivity can be well maintained during the level set
evolution. As expected, a monolithic final design
may be approximately achieved at the conver-
gence of the objective function. It should be noted
that for this minimum compliance optimization
problem the structural connectivity can be pre-
served without the additional explicit structural
connectivity constraint due to the stiffest design
objective and the relatively small timestep size
constricted by the CFL condition [Sethian (1999);

Osher and Fedkiw (2002)]. The convergence of
the objective and volume functions is shown in
Fig. 9. The objective function converges smoothly
due to the present filtered extension velocities.
The volume constraint can be almost exactly sat-
isfied during the iterations due to the present bi-
sectioning algorithm. Hence, the present volume
constraint handling approach is effective to keep
the total volume conservative.

The distinctive features of the present geomet-
ric deformation constrained level set method are
further illustrated by performing boundary-based
shape optimization of the cantilever with differ-
ent topologies. Figure 10 shows the evolution his-
tory of a final design for shape optimization of
the cantilever with 6 internal holes. The topol-
ogy of the initial design shown in Fig. 10(a) is
in fact the same as that of the final design shown
in Fig. 8(f) for simultaneous shape and topology
optimization of the cantilever since the number
of internal holes is the same. It can be seen
that by using the present geometric deformation
constrained level set method both the structural
connectivity and topology can be well preserved
during the level set evolution. The effectiveness
of the present geometric deformation constrained
level set method is thus demonstrated. The ac-
curacy of the present shape optimization may be
verified by the excellent agreement between the
boundary of the final design shown in Fig. 8(f)
and the zero normal velocity curve shown in Fig.
11. Theoretically, the final design possesses zero
normal velocities at its free boundary such that
a homogeneous stress distribution along the free
boundary may be arrived at, as discussed in de-
tail in [Wang and Wang (2006c)]. Again, it can be
seen from Fig. 10 that the final design is mono-
lithic. The convergence of the objective and vol-
ume functions is shown in Fig. 11. The objec-
tive function converges smoothly due to the fact
that the present constraint on the geometric de-
formation does not change the decrease of the
objective function because of the steepest gradi-
ent method, as aforementioned. The convergence
speed of shape optimization is quite slow since
the boundary-based shape optimization is usually
time consuming, as detailed in [Bendsøe and Sig-
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(a) Initial design (b) Design 1

(c) Design 20 (d) Design 40

(e) Design 60 (f) Final design (design 165)

Figure 8: Evolution history of an optimal design for simultaneous shape and topology optimization.
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Figure 9: Convergence of objective and volume functions for the cantilever.
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mund (2003)]. It should be noted that the conven-
tional level set methods [Wang, Wang, and Guo
(2003); Allaire, Jouve, and Toader (2004); Wang
and Wang (2004a)] cannot preserve the topology
during the course of evolution due to the lack of
a geometric deformation constraint. The effec-
tiveness of the present method in boundary-based
shape optimization is further illustrated in Fig. 13,
in which the topology is with 7 internal holes.
During the level set evolution, the strong tendency
to change the topology to further improve the ob-
jective function is successfully prevented due to
the fact that the present level set method is topol-
ogy preserving at the discrete 0-1 level. Again,
Fig. 14 shows that the objective function can be
smoothly convergent and the total volume can be
conservative. Figure 15 displays the evolution
history of a final design for the boundary-based
shape optimization of the cantilever with 3 inter-
nal holes. It can be seen that topological changes
are actually prohibited due to the present topol-
ogy preserving level set method and the final de-
sign is quite smooth due to the present extension
velocities. The present method may guarantee
the smooth convergence of the objective function
while generating feasible designs during the evo-
lution, as shown in Fig. 16. It should be noted
that the topology shown in Fig. 15 is also the opti-
mal topology predicted for this problem by a pop-
ular homogenization-based continuum topology
optimization method (the power-law approach)
[Sigmund (2001)]. Since the element relaxing-
based method in [Sigmund (2001)] is less ac-
curate than the present moving boundary-based
level set method in general, it can be expected that
the resulting optimal topology could be less ef-
fective. In fact, after the present boundary-based
shape optimization, the objective function value
(61.84) of the final design shown in Fig. 15(f) is
worse than that (60.76) of the final design shown
in Fig. 10(f), which may suggest that the corre-
sponding topology could be less effective than the
one predicted by the present simultaneous shape
and topology optimization, as shown in Fig. 8.

4.2 Topology Optimization of an Inverter
Mechanism

The present level set method is further applied to
topology optimization of compliant mechanisms,
which has been investigated by many other re-
searchers using different methods [Yin and Anan-
thasuresh (2003); Bendsøe and Sigmund (2003);
Rahmatalla and Swan (2005); Wang, Chen, Wang,
and Mei (2005)]. An inverter mechanism [Bend-
søe and Sigmund (2003)], as shown in Fig. 17,
is first adopted. In Fig. 17(b), the workpiece is
modeled by an artificial spring with a stiffness kout

under the action of an input actuator modeled by
another artificial spring with a stiffness kin and a
force fin and a displacement uin. The 1×1 square
design domain D is discretized by a regular FE
mesh of 100× 100. Due to the symmetry, only a
half structure is used in the analysis to reduce the
computational cost. It is assumed that kin = kout,
fin = 2, and a volume fraction of ζ = 0.3.

Figure 18 shows the optimal design for the in-
verter mechanism using a conventional level set
method without the present explicit geometric de-
formation constraint. Due to the lack of a geo-
metric deformation constraint and the relatively
low stiffness of the artificial springs (kin = kout =

0.008), the final design is structurally discon-
nected. Hence, a conventional level set method
cannot guarantee the structural connectivity of a
design. Similar results can be observed in [Wang,
Chen, Wang, and Mei (2005)], in which struc-
turally disconnected designs are generated during
the level set evolution. The structural disconnec-
tivity of a final design should be avoided since
the design would become structurally unusable
and the corresponding artificial material-based FE
analysis [Allaire, Jouve, and Toader (2004)], as
shown in Fig. 20(a), would become questionable
due to the inaccuracy of the use of a weak ma-
terial to eliminate the singularity. In the popu-
lar element-based continuum topology optimiza-
tion methods [Bendsøe and Sigmund (2003)], this
phenomenon is indicated by the occurrence of de
factor hinge zones. Although many efforts have
been made [Yin and Ananthasuresh (2003); Bend-
søe and Sigmund (2003); Rahmatalla and Swan
(2005); Wang, Chen, Wang, and Mei (2005)] to
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(a) Initial design (b) Design 100

(c) Design 500 (d) Design 1000

(e) Design 1500 (f) Final design (design 2000)

Figure 10: Evolution history of a final design for shape optimization of the cantilever with 6 holes.
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Figure 11: Scalar velocity field (ve
n � 0) of the final design for shape optimization of the cantilever.

eliminate this phenomenon to guarantee reliable
designs, only limited success was reported since
a geometric deformation constraint was not prop-
erly introduced.

Figure 19 displays the evolution history of a fi-
nal design for the inverter mechanism using the

present geometric deformation constrained level
set method (kin = kout = 0.008). During the evolu-
tion, the structural connectivity can be well main-
tained since the present moving boundary-based
method can be structural connectivity preserving
at a discrete 0-1 level. The final design is thus
structurally connected and can even be mono-
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Figure 12: Convergence of objective and volume functions for shape optimization of the cantilever with 6
holes.

(a) Initial design (b) Design 100

(c) Design 200 (d) Design 300

(e) Design 400 (f) Final design (design 500)

Figure 13: Evolution history of a final design of shape optimization of the cantilever with 7 holes.
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Figure 14: Convergence of objective and volume functions for shape optimization of the cantilever with 7
holes.

(a) Initial design (b) Design 100

(c) Design 500 (d) Design 1000

(e) Design 1500 (f) Final design (design 2000)

Figure 15: Evolution history of a final design for shape optimization of the cantilever with 3 holes.



174 Copyright c© 2007 Tech Science Press CMES, vol.18, no.3, pp.155-181, 2007

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

200

400

600

800

1000

1200

Number of timesteps
J
(Φ

)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.45

0.5

0.55

0.6

0.65

0.7

0.75

Number of timesteps

V
(Φ

)/
V

0

ζ = 0.5

Figure 16: Convergence of objective and volume functions for shape optimization of the cantilever with 3
holes.
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Figure 17: Inverter mechanism design problem.

lithic, as aforementioned. The corresponding FE
model, as shown in Fig. 20(b), can be consis-
tent with the final design and the inaccurate FE
model featuring de factor hinges popular in con-
tinuum topology optimization of compliant mech-
anisms [Bendsøe and Sigmund (2003)], as shown
in Fig. 20(a), is avoided. The development of
structurally disconnected design is successfully
prevented. The effectiveness of the present struc-
tural connectivity preserving level set method is
thus further demonstrated. The resulting design
shown in Fig. 19 can be different from the one
shown in Fig. 18 using a conventional level set

method due to the present explicit geometric de-
formation constraint. It should also be noted
that the present method is independent of the ar-
tificial spring model widely adopted in compli-
ant mechanism design [Bendsøe and Sigmund
(2003)]. Hence, the present method can be of a
significant improvement over the existing level set
methods [Wang, Wang, and Guo (2003); Wang,
Chen, Wang, and Mei (2005); Allaire, Jouve, and
Toader (2004)] in achieving reliable and properly
connected designs.
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(a) Initial design (b) Final design (design 5000)

Figure 18: Optimal design for the inverter mechanism using a conventional level set method (kin = kout =

0.008).

4.3 Topology Optimization of a Gripper Mech-
anism

A gripper mechanism [Rahmatalla and Swan
(2005)], as shown in Fig. 21, is employed. The
1× 1 design domain D is discretized by a mesh
of 100× 100. Only a half structure is used in
the analysis of this symmetric problem to save the
computational time. It is assumed that kin = kout,
fin = 2, and a volume fraction of ζ = 0.3.

Figure 22 displays an optimal design for the grip-
per mechanism using a conventional level set
method. Again, the final design is structurally dis-
connected since the conventional level set method
may destroy the structural connectivity of a design
during the level set evolution. Figure 23 shows
the evolution history of an optimal design using
the present level set method. It can be seen that
the structural connectivity can be well maintained
during the course of evolution due to the distinct
structural connectivity preserving feature of the
present level set method. Hence, the final design
is properly connected and can be monolithic. The
present geometric deformation constrained level
set method may thus be more effective to gener-
ate reliable monolithic designs.

5 Conclusions

A geometric deformation constrained level set
method is proposed for robust and effective shape

and/or topology optimization. The present level
set method is first implemented to capture the mo-
tion of the free boundary of a structure to ob-
tain an exploratory move at each time. Stable
and smooth level set evolution with high accu-
racy can be achieved due to the appropriately cho-
sen finite difference ENO scheme, extension ve-
locity method, reinitialization and timestep size.
Existence of solutions can be reached due to the
present edge smoothing filtering on the extension
velocities. Furthermore, the structural connec-
tivity and/or structural topology can be explic-
itly taken as geometric deformation constraints on
the resulting design, which may be well identified
by an image-processing-based connected compo-
nents labeling technique due to the present dis-
crete 0-1 approximation of the design and the
4-neighborhood connectivity measure. Any vio-
lation on the geometric deformation constraints
would disable the use of the exploratory move
as the actual move and lead to further identifica-
tion of the binary images of the designs before
and after the move. The removed components
crucial to structural connectivity and/or topology
preserving can be further identified using the con-
nected components labeling technique. The cru-
cial components are recovered in the resulting de-
sign to preserve the structural connectivity and/or
topology and the decrease of the objective func-
tion in structural shape and/or topology optimiza-
tion can be well maintained because of the steep-
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(a) Initial design (b) Design 200

(c) Design 400 (d) Design 600

(e) Design 800 (f) Final design (design 1000)

Figure 19: Evolution history of a final design for the inverter mechanism using the present level set method
(kin = kout = 0.008).
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(a) Conventional level set method (b) Present level set method

Figure 20: FE Model of the final design for the inverter mechanism.
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Figure 21: Gripper mechanism design problem.

(a) Initial design (b) Final design (Design 1000)

Figure 22: Optimal design for the gripper mechanism using a conventional level set method (kin = kout =

0.002).
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(a) Initial design (b) Design 50

(c) Design 100 (d) Design 200

(e) Design 400 (f) Final design (design 1000)

Figure 23: Evolution history of a final design for the gripper mechanism using the present level set method
(kin = kout = 0.002).
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est gradient method. The geometric deformation
constraints are thus imposed during the level set
evolution and the resulting design after the actual
move can be reliable and properly connected. The
mere boundary-based shape optimization may be
allowed for and simultaneous shape and topol-
ogy optimization may become more robust. A bi-
sectioning algorithm is used to handle the volume
constraint to guarantee a feasible design since the
fluctuations of the total volume can be effectively
prevented. The present level set method may be
structural connectivity and/or topology preserv-
ing and volume conservative to generate mono-
lithic feasible designs. Numerical examples show
the distinctive effectiveness of the present level set
method in minimum compliance design and com-
pliant mechanism design. It is suggested that a
level set method with geometric deformation con-
straints may be more powerful and robust in the
field of structural optimization.
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