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Weight Optimization of Skeletal Structures with Multi-Point Simulated
Annealing

L. Lamberti1,2 and C. Pappalettere1,3

Abstract: This paper presents a novel optimiza-
tion algorithm for minimizing weight of skele-
tal structures. The algorithm–denoted as MPISA
(Multi Point Improved Simulated Annealing)–
utilizes a multi-level simulated annealing scheme
where different candidate designs are compared
simultaneously. This is done in purpose to in-
crease computational efficiency and to minimize
the number of exact structural analyses.
MPISA is tested in three complicated design
problems of skeletal structures: (i) sizing opti-
mization of a planar bar truss under five indepen-
dent loading conditions including 200 design vari-
ables; (ii) sizing-configuration optimization of a
cantilevered bar truss including 81 design vari-
ables; (iii) sizing-configuration optimization of a
frame structure including 84 design variables.
The new algorithm is compared to another multi-
level simulated annealing algorithm and to gradi-
ent based optimizers recently presented in litera-
ture or included in commercial software.
Numerical results demonstrate the very high effi-
ciency of MPISA which achieved weight savings
ranging between 250 and 350 kg in all test prob-
lems.

Keyword: Simulated annealing (SA), multi-
point random search, structural optimization,
skeletal structures.

1 Introduction

Global optimization of structures is a compli-
cated task which may often entail a considerable
number of exact structural analyses. Gradient
based optimizers (GBO) can find optimum de-
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signs rather quickly but there is no guarantee they
reached the true global optimum. Global opti-
mization may be attempted by performing multi-
start gradient based optimizations from different
initial designs chosen randomly. This is done,
for instance, in design of stiffened panels under
combined loads, subjected to stress, displacement
and buckling constraints (Bushnell, 1996). Ad-
vantages and limitations of this approach applied
to the preliminary design of reusable launch ve-
hicle tanks under multiple loading conditions are
extensively discussed in Lamberti et al. (2003).

Non-gradient based optimizers (NGBO) search
the optimum in regions of design space that are
significantly larger than in the GBO case. The
most straightforward way to avoid the recur-
sive gradient evaluations entailed by sensitivity
analysis is to use heuristic criteria that add (re-
move) material to those parts of the structure
where stress values go beyond (below) the al-
lowable limit. This approach, based on the idea
of Evolutionary Structural Optimization (Xie and
Steven, 1997), has been followed, for instance, by
Tapp et al. (2004) in topology optimization of
sandwich structures with composite face-sheets.
Lightweight structures could be designed yet with
a reasonably low computational effort.

The other approach followed in NGBO is to gen-
erate a certain number of random trial designs
in order to cover each possible combination of
optimization variables that can be considered in
the design space. A variety of optimization algo-
rithms inspired to biology, evolution theory and
physics have been proposed in literature. Ge-
netic Algorithms (GA), Ant Colony Optimization
(ACO), Particle Swarm Optimization (PSO) and
Simulated Annealing (SA) are certainly the most
popular methods amongst this class of optimiza-
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tion techniques.

Genetic Algorithms (Goldberg, 1989) rely on
concepts of genetics and Darwinian survival of
the fittest. The design is represented by a com-
binatorial set, called chromosomes and each com-
ponent of the set is called a gene. Chromosomes
and genes are generated by three predefined rules
of evolution: reproduction (rebirth or duplica-
tion), cross-over (generation) and mutation. Thus,
one must define the population size, rate of repro-
duction, cross-over pattern, percentage of muta-
tion, etc. After many generations, the design rep-
resented by the most popular chromosomes indi-
cates the optimal design. Two recent examples of
application of GA-related techniques in structural
optimization problems are reported in Baumann
and Kost (2005) and Fedelinski and Gorski (2006)
who, respectively, determined the optimum shape
of grid structures and stiffened panels under static
and dynamic loads.

The ACO (Dorigo and Stuzle, 2004) and PSO
(Clerc, 2006) algorithms are specially suited for
problems where the location and value of global
optimum may change with time. These methods
attempt to mimic interactions between individu-
als of insect colonies or bird/fish swarms. If one
individual sees a desirable path to go (for food,
protection, etc.), the rest of colony/swarm will
be able to follow quickly even if they are not in
a direct connection with the leading individuals.
On the other hand, in order to facilitate the ex-
ploration of the search space, each insect/particle
should have a certain level of “craziness” or ran-
domness in their movement. Therefore, the opti-
mization problem consists in determining the best
path or the optimal positions of the colony/swarm
ensemble.

An ACO-based algorithm has been applied suc-
cessfully by Aymerich and Serra (2006) to the de-
termination of the optimal stacking sequence in
composite laminates subjected to different com-
binations of in-plane and out-of-plane loads and
in presence of different constraint conditions.
Schutte et al. (2005) have proven that the PSO
technique can solve difficult biomechanical prob-
lems such as identification of human movements
or estimation of muscular actions or/and other

internal forces where design variables may have
very different length scales or units.

It should be noted that the canonical forms of both
ACO and PSO algorithms include a considerable
level of heuristics. Therefore, the performance of
these algorithms may be very sensitive to modifi-
cations introduced ad hoc to deal with the specific
optimization problem that has to be solved (see
discussion reported in Engelbrecht, 2005).

Simulated annealing (Kirkpatrick et al., 1983;
Haftka and Gurdal, 1992; Rao, 1996) has been
developed from the statistical thermodynamics to
simulate the behavior of the atomic arrangements
in liquid or solid material during the annealing
process. Lowering the temperature of the melted
material, the material reaches the lowest energy
level (globally stable condition). SA includes a
rather simple optimization strategy. A trial design
is randomly generated and problem functions are
evaluated at that point. If the trial point is infeasi-
ble, it is rejected and a new trial point is evaluated.
If the trial point is feasible and the cost function
is smaller than the current best record, then the
point is accepted and the best record is updated.
If the trial point is feasible but the cost function
is higher than the best value, then the point is ac-
cepted or rejected based on a probabilistic crite-
rion which estimates if design may improve in the
next function evaluations. In order to compute
probability, a parameter called the temperature is
utilized. In the optimization problem, tempera-
ture can be a target value (estimated) for the cost
function corresponding to a global minimizer. Ini-
tially, a larger target value is selected. As the tri-
als progress, the target value is reduced based on
a cooling schedule. The acceptance probability
steadily decreases to zero as the temperature is re-
duced.

SA has been widely utilized in structural opti-
mization problems because of its inherent sim-
plicity and ability to find the global optimum even
if there are many design variables. However, the
basic SA algorithm has often been modified in
order to improve convergence behavior and re-
duce the number of exact structural analyses. For
instance, Shim and Manoochehri (1997) solved
non-linear shape optimization problems by con-



Weight Optimization of Skeletal Structures 185

ducting the annealing search on the approximate
problem formed through linearization of stress
constraints. To ensure design feasibility, a correc-
tion factor adjusted stress terms based on the max-
imum ratio of the change in the linearized stress
to the change in the actual stress values.

Pantelides and Tzan (2000) used SA for optimiz-
ing structural systems subjected to dynamic loads.
They included in the annealing procedure a sensi-
tivity analysis in order to identify which design
variables must be modified to decrease global dis-
placements.

Researchers have proposed many different
schemes for generating randomly new trial de-
signs. Yu Chen and Su (2002) and Blachut (2003)
pointed out that two different random generation
mechanisms can be used in SA: 1-directional
(“local”) search where design variables are per-
turbed one at a time; multi-directional (“global”)
search where all design variables are perturbed
simultaneously. The latter strategy allows to
increase the convergence speed but may fail
in finding the global optimum. On the other
hand, 1-directional search may result in too high
computation times.

More recently, Luo and Tang (2005) have em-
ployed a neighborhood search function for pro-
ducing tentative solutions by using the mutation
strategy of GA as reference. Erdal and Sonmez
(2005) have proposed an SA algorithm where a
set of current configurations is used rather than
just one trial design. However, their algorithm
included too many heuristics. Finally, Higgin-
son et al. (2005) have coded a parallel SA algo-
rithm where each different size of the neighbor-
hood search radius - set randomly - is analyzed
by a single processor.

Generally speaking, a good compromise between
global optimization capability and computational
speed is an algorithm able to explore large frac-
tions of design space using also gradient informa-
tion in order to speed up the design process. Gen-
ovese et al. (2005) demonstrated the validity of
this approach in structural design and reverse en-
gineering problems by implementing a multi-level
optimization algorithm based on Simulated An-
nealing. The ISA - Improved Simulated Anneal-

ing - algorithm is an advanced optimization code
integrating different search strategies into a multi-
level annealing process. Global search is per-
formed when the nominal design at the beginning
of the current annealing cycle is feasible. Trial
designs lie on descent directions. Local search is
performed only when global search failed or inter-
mediate designs ended up infeasible. Superiority
of ISA over classical annealing algorithms comes
from the fact that ISA always attempts to gener-
ate trial designs which may guarantee design im-
provements or at least limit oscillations in cost.
ISA was successfully applied in sizing and config-
uration structural optimization problems with up
to 200 design variables and 3500 non-linear con-
straints. Remarkably, ISA was averagely twice as
fast as classical annealing and required less struc-
tural analyses.

The structure of ISA is now briefly recalled. If the
design at the beginning of a cooling cycle is fea-
sible, a new trial design point PT R is defined by
perturbing simultaneously all optimization vari-
ables. Let XXX OPT be the current best record cor-
responding to the design point POPT . The new
trial search direction SSST R is limited in the de-
sign space by points POPT and PT R: the compo-
nents of SSSTR are the perturbations taken for each
design variable. Since the total change in cost
is the sum of cost changes yield by perturbing
design variables one at a time, ISA defines the
descent direction SSST R by imposing the condition
SSST

T R∇W (XXXOPT ) < 0. This task involves gradient
evaluations for the cost function.

If the optimizer enters in an infeasible region,
design is perturbed by taking movements along
directions where constraint violation may be re-
duced. In order to steer the design back to a fea-
sible domain, constraint functions are linearized
and trial designs are evaluated in the approximate
model. The trial design that violates linearized
constraints the least is taken as the starting point
for a new search. This strategy reduced compu-
tational cost of optimization in case of infeasi-
ble trial points. Reliability and accuracy of the
approximate model are ensured by a trust region
model.

Improvement routines using quadratic approxi-
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mations of cost function and constraints are ac-
tivated if the trial point is better than the current
best record but violates constraints. Finally, the
cooling schedule changes adaptively in the opti-
mization process based on the improvement in de-
sign achieved in the current annealing cycle.

In spite of its advanced formulation and the
proven numerical efficiency, ISA has two major
limitations. In the first place, each new gradient
evaluation leads to defining only one new descent
direction SSSTR and, hence, only one new trial de-
sign. Furthermore, no information are available
on whether SSSTR is the descent direction for which
the improvement in cost is actually the largest.

In order to overcome these limitations, ISA is
re-formulated more rationally in this paper. The
new optimization algorithm MPISA - where the
acronym stands for Multi Point Improved Simu-
lated Annealing - maintains the same overall ar-
chitecture of ISA and is yet based on the combi-
nation of multidimensional and one-dimensional
annealing search. However, MPISA now builds
a search domain Ω, centered about each current
best record, including a set of descent directions
and not only one SSST R vector. Step size along each
descent direction is adjusted by means of a trust
region scheme. Non-descent directions are also
included in the Ω domain provided that they sat-
isfy a probabilistic criterion of acceptance which
might yield later effective improvements in de-
sign.

Then, MPISA searches for the descent direction
SSST R which actually yields the largest improve-
ment or the minimum increase in cost. Further-
more, line search is performed in order to deter-
mine the optimal step size along each direction
included in the Ω domain.

The quadratic model included in the improvement
routine originally implemented in ISA is now re-
placed by a cubic approximation which does not
require any constraint linearizations. This strat-
egy further reduces the number of exact structural
analyses.

Multi-point search strategy is activated in MPISA
also in case of infeasible intermediate designs.
This allows to approach more quickly the bound-

aries of the constraint domain with respect to the
original algorithm ISA.

Finally, MPISA includes a strategy for handling
constraint domain non-convexity. This is very im-
portant when local annealing search has to be per-
formed.

These new features implemented in MPISA cer-
tainly augment the potentiality of simulated an-
nealing with respect to the other NGBO algo-
rithms - GA, ACO and PSO - discussed previ-
ously. In fact, the present code now deals with
a “pool” of candidate designs rather than with a
single trial design like it usually occurs in clas-
sical SA and even happened in ISA. Each can-
didate design is connected to the set (“pool") of
neighboring designs lying on the SSST R directions
included the Ω domain.

Therefore, MPISA becomes conceptually very
similar to the biologically inspired optimization
algorithms - GA, ACO and PSO - that are all
based on the existence of some relationship be-
tween parent and child (GA) or between sin-
gle individuals (leaders) and other members of
the colony/swarm ensemble (ACO, PSO). How-
ever, MPISA has a definite strength-point in the
fact that biologically inspired algorithms include
a considerable level of heuristics which may
strongly affect their performance.

The MPISA code has successfully been tested in
three weight minimization problems of skeletal
structures: (i) sizing optimization of a planar 200
bar truss including 200 design variables; (ii) com-
bined sizing-configuration optimization of a 45-
element cantilevered bar truss including 81 design
variables; (iii) combined sizing- configuration op-
timization of a frame comprised of 45 I-beam ele-
ments including 84 design variables. Constraints
on cross section geometry, nodal displacements,
element stress and buckling are considered.

Remarkably, weight savings between 250 and 350
kg with respect to ISA and other referenced algo-
rithms have been achieved in all test cases.

The present paper is organized as follows. After
the Introduction section, MPISA is described in
Section 2 providing a pseudo-code of the new op-
timization algorithm. Section 3 presents the op-
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timization problems chosen as test cases. Results
of the optimization runs are discussed in Section
4. Finally, Section 5 summarizes the work done
and the main findings of this study.

2 The MPISA Optimization Algorithm

The non-linear optimization problem can be for-
mulated as:⎧⎨
⎩

minW(x1,x2, . . . ,xN)
Gk(x1,x2, . . . ,xN) ≤ 0
xl

j ≤ x j ≤ xu
j

{
j = 1, . . .,N
k = 1, . . . ,NC

(1)

where:

• (x1,x2, . . . ,xN) are the N design variables;

• W(x1,x2, . . . ,xN) is the objective function;

• Gk(x1,x2, . . . ,xN) are the NC inequality con-
straint functions;

• xl
j and xu

j are the lower and upper bounds of
the jth design variable.

The pseudo code of MPISA is now provided in
order to make potential users able to code the new
algorithm on computers. A detailed flow chart of
the new optimization algorithm is shown in Fig. 1.

Step 1. Start the optimization process. Set initial
design and temperature.

Choose the initial design vector
XXXo(x1,o,x2,o, . . . ,xN,o) and set it as the cur-
rent best record XXXOPT . Define the corresponding
point POPT in the design space. Say WOPT the
cost function value computed at POPT .

In general, the initial design XXXo should be feasi-
ble and far enough from constraint domain bound-
aries in order to explore a zone of design space ap-
proximately centered about POPT with no risk to
generate infeasible points that might bias the op-
timum design search since the very beginning of
the optimization process. This strategy serves also
to reduce the number of constraint evaluations
eventually done in the infeasible region when de-
sign variables are perturbed one by one.

Set the K counter of cooling cycles as K = 1
and choose the limit number of cooling cycles as
KLIM=100.

Set the IGLOB counter of the global annealing cy-
cles eventually performed by MPISA in a cooling
cycle as IGLOB=0. Let ILIM=5 be the limit number
of global cycles.

If the optimization problem is constrained and the
starting design is feasible, set the initial tempera-
ture To as about 10% of the initial cost. If there are
“soft” non-linear constraints or the optimization
problem is unconstrained, use a very large value
of To. These two strategies are practically equiv-
alent because the cost of a “very feasible” initial
design (i.e., located very far away from the con-
straint domain boundaries) is usually much more
than 10 times as large as the final optimum cost.

If the starting point violates constraints, set the
initial temperature To as 10 times the cost corre-
sponding to the first feasible trial design PFEA,1

generated by MPISA. The rationale behind this
strategy is the following. In order to steer the de-
sign back to a feasible region, MPISA perturbs
the nominal design by taking movements along
a series of directions whose components depend
on constraint gradients (see Step 8). If some of
these directions are not descent, the cost WFEA,1

computed at PFEA,1 will be larger than the cost
Wo computed at the starting point. In such a
case, MPISA will try to reduce WFEA,1 in order
to minimize the cost function W (XXX). If PFEA,1 is
pretty far away from the constraint domain bound-
ary, the corresponding cost WFEA,1 will be much
higher than the final optimum cost and hence
MPISA will easily reduce W(XXX) by performing
global annealing cycles (see Step 3). Conversely,
if the PFEA,1 point is close to constraint bound-
aries, the cost WFEA,1 may be comparable to the
minimum cost. Hence, MPISA will have to eval-
uate an acceptance/rejection probability function
in order not to get stuck in local minima. Since
this is done in the very early stages of the op-
timization process, the temperature To should be
high enough to ensure exploration of a sufficiently
large zone of the design space.
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START  OPTIMIZATION 
   Set K=1 

   Set K=K+1 

BEGIN A NEW COOLING CYCLE

RUN IMPROVEMENT ROUTINES
Perform approximate line search 

Is the initial
design feasible? 

CONVERGENCE 
REACHED?

Skip check if K<3 

YES

NO

YES

NO

PERFORM GLOBAL ANNEALING 
Define descent direction STR

1 by generating NDV random numbers 
Define “limit” directions orthogonal to W and then transform them 
into descent directions STR

q

Define non descent direction SND which minimizes cost penalty 
Find optimal step sizes along descent directions STR

q (use trust region) 
and non descent direction SND (use probabilistic criterion) 
Use optimal step sizes to find candidate designs
Identify trial design PTR as the best candidate design 

Is the trial design
XTR feasible? 

IGLOB = 0
SEARCH FOR A FEASIBLE DESIGN 

Linearize constraints
Find intersections between constraint gradients
and linearized constraint domain 
Find feasible segments and generate random 
designs far enough from domain boundaries 

FOUND 

IGLOB = IGLOB +1

RUN IMPROVEMENT 
ROUTINE 

Try “mirror” trial point  NO

UseMetropolis’ criterion 
to minimize penalty in 
cost

SUCCESSFUL
 YES

FAILED 

PERFORM LOCAL ANNEALING 
Perturb design variables one by one  
Use linearized responses and Metropolis’ criterion
Check for local non-convexity of constraint domain
Update design to bypass critical region 

END OPTIMIZATION 

WTR<0

IGLOB=ILIM

END COOLING CYCLE and 
REDUCE TEMPERATURE 

IGLOB<ILIM

EVALUATE WTR=WTR-WOPT

WTR>0 WTR<0 WTR>0

Figure 1: Flow chart of the MPISA algorithm
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Step 2. Check on design feasibility.

Evaluate non-linear constraints at the current best
record XXXOPT . If constraints are satisfied execute
Step 3. Conversely, if constraints are violated ex-
ecute Step 8.

Step 3. Global annealing by perturbing all de-
sign variables simultaneously. Definition of the
search domain Ω.

Set IGLOB = IGLOB + 1. Evaluate the gradient
∇W (XXXOPT ) of the cost function W(XXX) at the POPT

point. Perturb randomly each design variable
x j( j = 1, . . .,N) so that (∂W/∂x j)Δx j < 0. Each
movement Δx j is calculated as follows:

∂W/∂x j > 0 ⇒ Δx j = −
(

xu
j −xl

j

)
·NRND, j ·μ j

∂W/∂x j < 0 ⇒ Δx j =
(

xu
j −xl

j

)
·NRND, j ·μ j

(2)

The NRND, j parameter in expression (2) is a ran-
dom number chosen in the interval (0,1) for the jth

variable. Each weighting coefficient μ j is defined

as
∣∣∂W/∂x j

∣∣/ ∣∣∣∣∣∣∇W(XXXOPT )
∣∣∣∣∣∣. The purpose of μ j

is to adjust the Δx j movement based on the con-
tribution that the jth sensitivity gives to the mag-
nitude of cost function gradient. Design variables
are changed following their order sequentially.

The Δx jmovements are taken as the components
of the first descent direction SSS1

TR defined in the
search process. That is, we define the vector
SSS1

T R(Δx1,Δx2, . . .,ΔxN). Therefore, the SSS1
TR vec-

tor is the diagonal of the Ω1 domain defined by
the Δx j movements. Figure 2 shows the domain
Ω1 for the simple case of an optimization prob-
lem including two design variables.

It can be seen that each movement included in
SSS1

T Ryields an improvement in cost. Ideally, the
SSS1

T R direction should have coincided with the di-
rection defined by the −∇W(XXXOPT ) vector in or-
der to perturb design by moving along the steepest
descent direction (i.e., along the negative gradi-
ent of cost function). However, the random na-
ture of the generation process of the Δx j move-
ments may lead to significant misalignment be-
tween −∇W(XXXOPT ) and SSS1

T R. Furthermore, it

x2

x1

SLIM’’

W(XOPT)

A1

A2

 C H K

STR
1

SLIM’

1

B

T

     M   L 

 STR
2

 POPT

 STR
3

 H 

- W(XOPT)

 STR
1

1STR

R

Figure 2: Definition of search domain Ω for feasi-
ble designs and special cases where SSS1

TR may lead
to marginal improvements in cost

may happen that the total step
∣∣∣∣SSS1

TR

∣∣∣∣ along SSS1
T R

is much smaller than
∣∣∣∣∣∣−∇W(XXXOPT )

∣∣∣∣∣∣ (see detail

in the top right corner of Fig. 2).

In order to overcome these limitations inherently
carried by the original code ISA developed by
the present authors, MPISA now defines many
other descent directions. Consequently, portions
of design space are added to the Ω1 domain so
to extend the search region. Figure 2 shows that
any descent direction has to lie below the A1A2

segment which is orthogonal to the gradient vec-
tor ∇W(XXXOPT ). Therefore, two “limit directions”
SSSLIM

′ and SSSLIM” lying on the A1A2 segment must
be defined. Direction SSSLIM

′–limited by points
POPT and B–has one known component equal to
Δx1 and one unknown component Δxlim

2 in the
x2-direction. Direction SSSLIM”–limited by points
POPT and C–has one known component equal to
Δx2 and one unknown component Δxlim

1 in the x1-
direction.

As is clear, SSSLIM
′ and SSSLIM” must sat-

isfy the conditions of orthogonality

stated as
(
SSSLIM

′)T
[
∇W (XXXOPT )

]
= 0 and(

SSSLIM
′′)T

[
∇W (XXXOPT )

]
= 0. Hence, unknown

movements can easily be determined by solving
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the following linear system:⎧⎪⎨
⎪⎩

Δx1
∂W
∂x1

(XOPT )+Δxlim
2

∂W
∂x2

(XOPT ) = 0

Δxlim
1

∂W
∂x1

(XOPT )+Δx2
∂W
∂x2

(XOPT ) = 0
(3)

However, movements Δxlim
1 and Δxlim

2 must be
compatible with design variable bounds. There-
fore MPISA resets those movements for which
such requirement is not satisfied. For instance,
for the jth variable, the corresponding movement

Δxlim
j is reset as

(
x j

OPT −xl
j

)
or

(
xu

j −x j
OPT

)
, re-

spectively, if Δxlim
j < 0 or Δxlim

j > 0.

Movements Δxlim
1 and Δxlim

2 so determined
have to be adjusted in order to transform
the limit directions SSSLIM

′ and SSSLIM” into
the descent directions SSS2

T R and SSS3
T R for

which it holds (SSS2
TR)T

[
∇W (XXXOPT )

]
< 0

and
(
SSS3

TR

)T
[
∇W (XXXOPT )

]
< 0. Interestingly,

the process of resetting too large movements
to satisfy side constraints also leads to define
descent directions.

Say Δxexp
1 and Δxexp

2 the movements which serve
to expand the Ω1 domain so to include as many
descent directions as possible. These new move-
ments are defined in MPISA using another set of
random numbers ζ chosen in the interval (0,1).
That is:{

Δxexp
1 = ξ1Δxlim

1
Δxexp

2 = ξ2Δxlim
2

(4)

In the case portrayed by Fig. 2, SSSLIM
′ is trans-

formed into the descent direction SSS2
TR

(
Δx1,Δxexp

2

)
while SSSLIM” is transformed into the descent direc-
tion SSS3

T R

(
Δxexp

1 ,Δx2
)
. Once movements Δxexp

1 and
Δxexp

2 have been defined, the position of the last
vertex (L for the case of Fig. 2) of the search do-
main Ω also is univocally defined.

The process described above can be generalized
for optimization problems with N design vari-
ables: N limit directions SSSLIM,r (r = 1, . . .,N) are
to be determined. Each direction SSSLIM,r will in-
clude Np known components - denoted as M� -
and N-Np unknown components - denoted as Mu.
The former set of movements can be defined us-
ing Eq. (2) while the latter is the set of movements

yet to be determined. Hence, MPISA solves a sys-
tem of N linear equations each of which is derived
by choosing a new combination of known and un-
known movements. The rth equation included in
the linear system is obtained by imposing the or-

thogonality condition (SSSLIM,r)T
[
∇W(XXXOPT )

]
=

0. Implementation tricks allow us to solve ef-
ficiently the linear system thus formed. For in-
stance, each time a limit direction SSSLIM,r has been
completely defined, the components of the oppo-
site direction -SSSLIM,r are searched.

Say MMMu the vector including the new movements
Δxlim

j derived from the conditions of orthogonality
(for the case of Fig. 2, it is MMMu

(
RC,T B

)
. Each

movement Δxlim
j must be resized in order to define

the set of descent directions SSST R:

Δxexp
j = ξ jΔxlim

j ( j = 1, . . .,N) (4 mod.)

Each movement Δxexp
k is stored as a component of

the MMMexp
u vector (for the case of Fig. 2, it occurs

MMMexp
u

(
RK,T M

)
. Finally, limit directions SSSLIM,r

are replaced by the descent directions SSSq
T R each of

which includes some of the movements stored in
MMMexp

u .

Say Δx f in
j the movements associated with the de-

scent directions. They may be in turn the Δx j

movements determined with Eq. (2) or the Δxexp
j

movements. As is clear, the former will be the
case of a trial design lying on the first descent di-
rection SSS1

TR defined in Step 3.

It can be seen from Fig. 2 that the descent direc-
tions SSS1

TR, SSS2
T R and SSS3

T R are the diagonals of the
search domain Ω while the last diagonal POPT L is
not a descent direction. Therefore, in the case of
N design variables, there will be (2N−1) descent
directions SSSq

TR and 1 non-descent direction SSSND.

Figure 2 clearly shows that the step size along
the non-descent direction SSSND is automatically set
once step sizes on each descent direction have
been defined. Say ΔxND

j ( j = 1, . . .,N) the move-
ments defining the non-descent direction SSSND.

Step 4. Refinement of the search domain Ω with
trust region scheme and probability criterion.

Step sizes along the (2N−1) descent directions
SSSq

T R and the non-descent direction SSSND are ad-
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justed in order to guarantee the highest probability
of improving cost function in the current anneal-
ing cycle.

Each descent direction SSSq
T R(q = 1, . . .,2N −

1) defined in Step 3 satisfies the

(SSSq
T R)T

[
∇W(XXXOPT )

]
<0 inequality where

the internal product represents the reduction in
cost which would be achieved by moving along
the SSSq

T R direction by the step ||SSSq
T R||. However, if

the cost function is non-linear the actual change
in cost ΔW includes also the contributions of 2nd

order sensitivities (stored by the Hessian matrix
[H]) and of higher order terms. Therefore, the
actual change in cost ΔW can be expressed by
Eq. (5):

ΔW =
(
SSSq

T R

)T
[
∇W (XXXOPT )

]
+

(
SSSq

TR

)T [H(XXXOPT )]
(
SSSq

T R

)
/2+H.O.T. (5)

The above expression can be rewritten for a step
size δSq

T R taken along the corresponding descent
direction SSSq

T R. It follows:

Δ
(
WδSSSq

T R

)
=

(
δSSSq

T R

)T
[
∇W(XXXOPT )

]
+

(
δSSSq

TR

)T [H(XXXOPT )]
(
δSSSq

T R

)
/2+H.O.T. (6)

where δSq
T R =

∣∣∣∣δSSSq
T R

∣∣∣∣.
For a skeletal structure to be designed with respect
to sizing variables such as the cross sectional area
of each member or the dimensions of different
segments included in the transverse section, cost
function is linear with respect to the optimiza-
tion variables. Conversely, the cost function is
non-linear with respect to configuration variables
defining position of nodes. In the latter case, the
effective reduction in cost achieved moving along
the qth descent direction by the δSq

T R step may be
less than that expected.

Since evaluating exactly ΔW
(
δSq

T R

)
may be com-

putationally too expensive, it is preferable to have
a rather quick way to determine the change in
cost, especially in optimization algorithms such as
simulated annealing that require a large number of
cost function evaluations. As is clear, the step size
δSq

TR on each descent direction must be such to

ensure a good correspondence between the “lin-
earized” change in cost (δSSSq

TR)T [∇W(XXXOPT )] and
the actual ΔW . Therefore, MPISA implements the
following trust region scheme (q = 1, . . .,2N −1):

W(XOPT )−W
(
XOPT +δSq

T R

)
(
δSq

TR

)T ∇W (XOPT )
≥ 0.75 (7)

where δSq
TR is the unknown step to be taken along

the qth descent direction in order to fall within the
trust region.

As is known, trust region methods adaptively
manage the amount of movement allowed in de-
sign space when the optimization is based on ap-
proximate models. A well established procedure
consists in defining a reliability index γ which
monitors how well the approximate model pre-
dicts the reduction in cost: the reliability index
is the ratio of the actual change in the function to
the change predicted by the approximation. After
each optimization iteration, the trust region radius
Δ is reduced or increased if the magnitude of the
γ parameter is small or large, respectively; the Δ
radius usually stays the same if 0.25 < γ < 0.75.
Therefore, 0.75 can be assumed as the γ threshold
value at which movements may be accepted with
no need for any modifications. More details on
trust region methods are given in Alexandrov et
al. (1998), and Wujek and Renaud (1998).

It appears that the rationale behind Eq. (7) is to
reverse the traditional use of the trust region tech-
nique in order to adapt to the random design pro-
cess entailed by simulated annealing. In fact, the
reliability index, which is nothing but the ratio in
the LHS of the trust region equation (7), is no
longer computed to check the new intermediate
design obtained at the end of an optimization cy-
cle. Instead, Eq. (7) now includes an unknown
step δSq

TR to be determined for each descent direc-
tion in order to define a candidate design such that
the reliability index is higher than the fixed thresh-
old value. The kind of “approximate model” in-
troduced in the MPISA algorithm derives from the
fact that the linearized increase in cost is used for
defining the possible search domain Ω. Therefore,
the trust region relationship (7) has to be used for
accepting or rejecting potential designs. In the
former case, the step sizes along the descent di-
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rection SSSq
T R stays the same. In the latter case, the

step size has to be reduced in order to make the
current candidate design fall within the trust re-
gion.

Descent directions are hence re-defined as follows
(8):

SSSq, f inal
T R = max

[
1,

(
δSq

TR/
∣∣∣∣SSSq

TR

∣∣∣∣)]SSSq
T R

(q = 1, . . .,2N −1) (8)

That is, the step size is always reduced and stays
the same only if the movement

∣∣∣∣SSSq
T R

∣∣∣∣ originally
defined in Step 3 falls within the trust region.

Let ωq be the scaling factor (<1) eventually used
for resizing the step size along SSSq

T R. As is clear,
ωq = 1 for those directions whose step size has
not been modified. Finally, say ωmin the smallest
scaling factor used in the step resizing process.

For each descent direction, variable movements
can be redefined as:

Δxq,final
j = ωq ·Δxq,fin

j ( j = 1, . . .,N) (9)

The non-descent direction SSSND might play a role if
the search along descent directions failed in find-
ing a better design (see Step 6-C). As is known,
the Metropolis’ acceptance/rejection criterion is
used in simulated annealing for estimating if trial
designs at which the cost function increased can
later lead to improvements in cost. Therefore,
MPISA chooses the non-descent direction SSSND so
to satisfy the Metropolis’ criterion. Should this
be the case, the points lying on SSSND could be uti-
lized to continue the optimization process when
the current annealing cycle did not result in cost
improvements. An ad hoc probability function
P(ΔWND) is hence defined as:

P(ΔWND) = e
−

⎡
⎣1−

(δSND)T ∇W(XOPT )
ΔWNL(δSND)

⎤
⎦ 1

TK

(10)

where ΔWND = WND −WOPT is the difference in
cost function values respectively evaluated at PND

and POPT .

This probability function increases as the approx-
imate value of ΔWND is close to the actual change

in cost and accounts also for the effect of temper-
ature TK set in the current annealing cycle.

The SSSND direction is kept or changed in view of
the following acceptance/rejection criterion:

P(ΔWND) > max(λND,ρND) ⇒ Keep SSSND

P(ΔWND) < max(λND,ρND) ⇒ Change SSSND

(11)

where ρND is a random number defined
in the interval (0,1) while the λND pa-
rameter is a scalar product defined as
{[∇W (XXXOPT )/ ||∇W (XXXOPT )||] · [SSSND/ ||SSSND||]}.
As is clear, λND is always smaller than 1 except
when the non-descent direction SSSND coincides
with the direction of the cost function gradient.

The rationale behind criterion (11) is the follow-
ing. If candidate designs defined by descent di-
rections were not effective in reducing cost and
improvement routines were unsuccessful, the op-
timizer has to pay some cost in order to improve
design later. However, the penalty should be the
smallest as possible. If λND is small, the non-
descent direction SSSND is far enough from the gra-
dient of cost function and therefore we expect the
penalty in cost not be too large. The random na-
ture of the rejection/acceptance process of SSSND is
ensured by the presence of the ρND numbers.

If SSSND is to be changed, MPISA performs two
operations. Firstly, the step size ||SSSND|| is re-
duced by ωmin. This will reduce the difference
between the approximate cost function and the
actual cost and hence increase the value of the
probability function P(ΔWND). Equations (10-
11) are recomputed and the new step size is ac-
cepted if the acceptance criterion (11) is satis-
fied. The design PND(xOPT,1ωminΔxND

1 ,xOPT,2 +
ωminΔxND

2 , . . . ,xOPT,N + ωminΔxND
N ) is hence de-

fined.

Conversely, if the acceptance criterion (11) is not
satisfied by simply reducing the step size, MPISA
perturbs randomly the components of SSSND in or-
der to move away from the cost function gradient
thus reducing the penalty in cost. The scalar prod-
uct λND between SSSND and ∇W(XXXOPT ) can hence
decrease thus making it easier to satisfy the cri-
terion (11). To this purpose, the limit direction
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SSSclosest
LIM closest to SSSND must be considered. There-

fore, SSSclosest
LIM will be such to maximize the internal

product SSST
NDSSSclosest

LIM .

Figure 3 illustrates the case of a two-design vari-
able problem. The new direction SSS final

ND has to lie
between SSSND and SSSLIM”.

The new movements Δx f inal
ND corresponding to

SSS final
ND are hence set as follows ( j = 1, . . .,N):

ΔxND
j ΔxLIM,closest

j > 0 ⇒
ΔxND, f inal

j = ρ j
NDΔxND

j (12a)

ΔxND
j ΔxLIM,closest

j < 0 ⇒
ΔxND, f inal

j = ΔxND,min
j

+ρ j
ND

[
ΔxND,max

j −ΔxND,min
j

]
(12b)

where ρ j
ND is a random number defined in the in-

terval (0,1) for each design variable; Δxclosest
LIM are

the movements corresponding to SSSclosest
LIM ; ΔxND,min

j

is defined as min
(

ΔxND
j ,ΔxLIM,closest

j

)
; ΔxND,max

j

is defined as max
(

ΔxND
j ,ΔxLIM,closest

j

)
.

x2

x1

SLIM’’

W(XOPT)

A1

A2

C

SLIM’

B   L 

 POPT

SND

SND
final

Figure 3: Definition of the non-descent direction
included in Ω so to minimize cost penalty

Equations (10-11) are re-computed for the SSS final
ND

direction. If the probabilistic acceptance criterion
is satisfied, the new non-descent design

PND

(
xOPT,1 +ΔxND, f inal

1 ,xOPT,2 +ΔxND, f inal
2 , . . .,

xOPT,N + ΔxND, f inal
N

)

is finally defined. Conversely, SSSND is reset as
SSS final

ND and MPISA searches a new direction SSS final
ND

yet closer to the limit direction SSSclosest
LIM .

Say P
(

ΔW final
ND

)
the probability function value

computed for the non-descent direction finally ac-
cepted.

x2

x1

W(XOPT)

H K

  L     M

POPT

H

PTR
2

 PND

 PTR
3

PTR
1

Figure 4: Replacement of domain Ω with a set of
candidate designs (circle and square dots) inde-
pendently defined

At the end of refinement process described in this
Step 4, the domain Ω is no longer a hyper-prism.
This is because the step size along each descent
direction is adjusted independently from the other
step sizes. Furthermore, the non-descent direc-
tion SSSND originally defined by some components
of the descent directions SSSq

TR is also changed in-
dependently (see Fig. 4). This strategy serves to
increase the design freedom included in the opti-
mization.

Step 5. Evaluation of trial designs. Choice of the
best candidate design.

Each descent direction SSSq, f inal
T R (q = 1, . . .,2N−1)

is limited by the current optimum design POPT

and a trial design Pq
T R

(
xOPT,1 + Δxq

1,xOPT,2 +
Δxq

2, . . .,xOPT,N +Δxq
N

)
. The latter is identified by

a circle dot in Fig. 4. Design variables are per-
turbed by the Δxq, f inal

j ( j = 1, . . .,N) movements.

In the ISA algorithm previously proposed by the
authors constraints are evaluated only at the trial
point lying on direction SSS1

T R. Conversely, MPISA
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now takes as candidate design the trial point ly-
ing on the descent direction for which it holds the
condition (q = 1, . . .,2N-1):

min

{[
SSSq, f inal

T R

]T [
−∇W(XXXOPT )

]}
(13)

Say s the sorting number denoting the descent di-
rection SSStrial

T R which meets condition (13). The cor-
responding point Ps

T R will hence be the point at
which there is the largest reduction in weight. If
there are two or more descent directions for which
condition (13) is satisfied, all of the corresponding
trial points are taken as candidate designs.

Let XXXT R(xT R,1,xT R,2, . . .,xT R,N) be the trial design
vector containing the co-ordinates (i.e., the design
variables) set for the PT R point. Design variables
are “temporary” updated as follows:

xT R, j = xOPT, j +Δxs
j ( j = 1, . . .,N) (14)

where the Δxs
j movements are the components of

the descent direction defining the PT R point.

It appears that the PT R point is defined by MPISA
without performing any structural analyses.

Step 6. Check if the candidate design actually
reduces cost. Eventually, activate improvement
routines.

Evaluate cost function and constraints at the trial
point PTR generated in Step 5. Let WTR denote
the corresponding value of the cost function. Cal-
culate ΔWTR = WTR −WOPT . Remarkably, ΔWTR

never can be positive since this would be in con-
flict with the constraint posed by the trust region
relationship (7). This fact allows us to avoid the N
constraint evaluations required by the former pro-
gram ISA when ΔWTR > 0. However, based on
whether constraints are satisfied or not, there may
be two different cases.

6-A. If it holds ΔWTR < 0 and the PT R point is fea-
sible, accept the design XXXT R as the new opti-
mum. Hence, set XXXOPT ≡ XXXT R and WOPT =
WTR. If IGLOB < ILIM, MPISA returns to Step
3. Otherwise, if IGLOB = ILIM, MPISA jumps
to Step 9.

6-B. If it holds ΔWTR < 0 but the PTR point is
infeasible, MPISA builds a cubic approxi-
mation of the optimization problem about
the current best record POPT . The original
program - ISA - developed by the present
authors considered a quadratic model fitted
through three points: the current best record,
the trial design and the point of intersection
between SSSs

T R and the boundaries of the lin-
earized constraint domain. However, this
strategy required N new constraint evalua-
tions to linearize the optimization problem.
For this reason, MPISA now generates only
two new random designs Q and R lying on
the segment limited by POPT and PT R.
Coordinates of points Q and R are respec-
tively defined as:

xQ, j = xOPT, j +ηQ(xT R, j −xOPT, j) (15a)

and

xR, j = xOPT, j +ηR(xTR, j −xOPT, j) (15b)

where j = 1, . . .,N;ηQ and ηR are two ran-
dom numbers in the (0,1) interval.
The cubic approximation is built by expand-
ing the cost function and the NCact active
constraints in fashion of:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

W cubic(α) = WOPT +bwα +cwα2

+dwα3

Gcubic
k (α) = Gk(XOPT )+bkα +ckα2

+dkα3

0 ≤ α ≤ 1

(16)

where k = 1, . . .,NCact. A change of ref-
erence system is necessary in order to per-
form the series expansion of each non-linear
function along the POPT PT R segment. Re-
markably, no sensitivity computations are re-
quired. The parameter α represents the mag-
nitude of the step taken along POPT PT R. Co-
efficients cw, dw, and ck, dk, respectively de-
fined for cost functions and constraints, ac-
count for local changes in curvature and can
be determined by imposing that the cubic
model fits the responses evaluated at Q and
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R.
Once the cubic model is set, MPISA solves a
set of NCact cubic equations in order to find
the steps Δαk for which the constraint vi-
olation vanishes in the approximate model.
The cubic equations derive from the equali-
ties Gcubic

k (Δαk) = 0 (k = 1, . . .,NCact). The
smallest step amongst steps Δαk is taken as
the trial step ΔsTR. The trial step ΔsT R serves
to define the new trial design point FT R on
the SSSs

T R direction at which the real cost func-
tion W is evaluated again.
If the cost function improves (WT R < WOPT ),
MPISA evaluates non-linear constraints at
FT R. If FT R is feasible, accept it as the new
current best record. Hence, MPISA executes
Step 3 or Step 9 if it holds IGLOB < ILIM or
IGLOB = ILIM , respectively.
Conversely, if the improvement routine fails
(WTR > WOPT ), MPISA executes Step 7.

6-C. The case ΔWTR > 0 may occur if design
space is locally non-convex. The trust re-
gion model (7) serves to resize step sizes
along descent directions but does not deal
directly with possible non-convexity. In or-
der to overcome this problem, MPISA ac-
tivates different improvement routines. Re-
markably no linearization of constraints is
performed by MPISA since the trust re-
gion model should have granted the accuracy
of linear approximation but did not work
well. Conversely, the original code ISA did
linearize constraints and hence required a
higher computational time.
A new trial point PT R,NEW is defined as the
“symmetric” of the old PT R point about the
POPT point. This strategy is justified by the
fact that the search direction limited by POPT

and PTR (identified as a descent direction in
the approximate model) actually was found
not to be a descent direction. Therefore,
MPISA tries to perturb design by moving
along the opposite direction. The cost func-
tion is re-evaluated at PT R,NEW . If the new
increment ΔWTR = WTR,NEW −WOPT is nega-
tive, MPISA evaluates non-linear constraints
at PT R,NEW . If PT R,NEW is feasible, MPISA

accepts it as the new current best record; the
optimization algorithm is hence re-started
from Step 3. Conversely, if PTR,NEW is in-
feasible, MPISA executes Step 6-B.
If the new increment ΔWTR = WTR,NEW −
WOPT is yet positive, the trial point PTR,NEW

is compared to the PND point (square dot in
Fig. 4) defined in Step 4. If WTR,NEW <
WND, MPISA chooses this as the new best
record and executes Step 3. Conversely, if
WTR,NEW > WND, a probabilistic criterion is
adopted.
The probability threshold P(ΔWND) used for
finding PND is compared to the acceptance
probability P(ΔWTR) = e−[1−ΔWND/ΔWT R ]/TK .
If P(ΔWTR) > P(ΔWND), the PT R,NEW point
is taken as the new best record. Conversely,
MPISA takes PND as the new best record.
Optimization is restarted from Step 3.

Step 7. Local annealing. Perturb design vari-
ables one at a time.

Perturb the design variables one by one about the
current best record POPT in order to move away
from constraint boundaries and to escape from
local minima. Linearize constraints about POPT .
Use linearized constraints in order to reduce the
number of exact analyses thus saving computation
time.

MPISA checks if the design space is locally non-
convex. Figure 5 illustrates the case of a two-
design variable problem.

x1

POPT   
C3

+ C4
+ C5

+

 I1

 I2 I3 I4

 Snc,1
+  Snc,2

+ Snc,3
+

x2

 Snc,1

Figure 5: Line search strategy performed if con-
straint domain is non-convex
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Let SSS1d
j be the direction defined by perturbing

only the jth variable. MPISA solves the linear
system formed by the linearized constraints and
the SSS1d

j direction. If there are NCact active con-
straints, define hence the points C+

1 , C+
2 , C+

3 , . . . ,
C+

Nact or C−
1 , C−

2 , C−
3 , . . . , C−

Nact where super-
scripts + and - respectively indicate that the in-
tersection occurs at a value of x j larger or smaller
than xOPT, j .

For x j > xOPT, j , define the POPTC+
1 segment and

the corresponding middle point I+
o . Define other

NC+
act −1 segments in fashion of C+

maC+
ma+1 (m+

a =
1, . . .,NC+

act −1): for each segment define the mid-
dle point I+

ma so that C+
maI+

ma = I+
maC+

ma+1. The
same is done for x j < xOPT, j . Hence, the C−

ma set of
points for which there are NC−

act active constraints
can be defined.

Evaluate linearized constraints at each of
the I+

ma and I−ma points in the negative
(m+

a = 0, . . .,NC+
act−1) and positive verse

(m−
a = 0, . . .,NC−

act−1) with respect to POPT .
In general, there will be MF feasible segments
and MI infeasible segments. It obviously holds
NCact = MF + MI, where 0 < MF < NCact . Let
p be a counter for the MF feasible segments. MF
and MI include both “negative” and “positive”
point series.

Write the expression of cost function W(XXX) in
the one-dimensional reference system whose co-
ordinate is the step Δs+

nc,p or Δs−nc,p taken along
the pth feasible segment (p = 1, . . .,MF) defined
by increasing or decreasing x j with respect to
xOPT, j . That is, rearrange the objective function
as W(Δsnc,p). Do this operation for each of the
MF feasible segments.

Search for minimum cost along each of the
MF segments. Since each W(Δsnc,p) func-
tion is a single-variable function, find the Δsnc,p

step by means of the straightforward condition
dW/d(Δsnc,p)=0. Let be Snc,p the design point de-
fined by the Δsnc,p step. Store each Snc,p point in
the Γ database. Include in the Γ database also the
current best record POPT .

Search for the SNCONV point at which it holds
minp=1,...,MF W (Δsnc,p). Transform the local co-
ordinate into the new xT R, j. Finally, rename the

SNCONV point as PTR, j .

If there are only two intersections C+
1 and C−

1 the
constraint domain can be assumed locally convex.
Figure 6 illustrates this situation for a two-design
variable problem. MPISA generates another se-

x2

 x2
u , lin 

 x1
l , lin       POPT [xOPT,1,xOPT,2] x1

u , lin

x2
l , lin

x1

Figure 6: Definition of search domain for lo-
cal annealing when design variables are perturbed
one at a time

quence of random numbers NRND, j ( j = 1, . . .,N) -
one for each design variable - in the interval (0,1).
Each trial point is generated as follows (17):

NRND, j > 0.5 ⇒
xT R, j = xOPT, j +(xu,lin

j −xl,lin
j ) ·NRND, j · γK

NRND, j < 0.5 ⇒
xT R, j = xOPT, j − (xu,lin

j −xl,lin
j ) ·NRND, j · γK

(17)

Similarly to Step 3, design variables are yet
changed following their order sequentially. Say
Δx1d

j the movements (xT R, j − xOPT, j) or (xOPT, j −
xT R, j) set with Eq. (17). It can be seen that,
for each design variable, new designs are gener-
ated inside the segment limited by the intersec-
tions xl,lin

j and xu,lin
j with the boundaries of the lin-

earized constraint domain. The two dots in Fig. 6
correspond to trial designs.

The knockdown factor γK is defined as:

γK = min [TK/To,
√

εLIN ] (18)

The purpose of γK is twofold: (i) to keep trial de-
signs far enough from the boundaries of the con-
straint domain; (ii) to account for the fact that trial



Weight Optimization of Skeletal Structures 197

points have been searched in the linearized design
space.

As is clear, TK/To decreases as the optimization
progresses. Since the current best record becomes
more and more closer to constraint boundaries,
movement size should be reduced approaching
the end of the optimization process.

Including parameter
√

εLIN in the knockdown fac-
tor expression (18) is justified by the fact that the
error introduced by linearization is about propor-
tional to the square of the step size: that is, to the
distance between trial designs and the current best
record. In order to make a conservative estimate
on εLIN , MPISA takes the point PFAR - defined
by the XXXFAR design vector - lying on the bound-
ary of linearized constraint domain and located at
the largest distance from the current best record
POPT . PFAR is obviously one of the intersection
points between directions SSS1d

j and linearized do-
main boundaries. The error εLIN is hence evalu-
ated at PFAR:

εLIN = max
k=1,...,NC

{|1−WLIN(XFAR)/W(XFAR)| ,∣∣1−GLIN
k (XFAR)/Gk(XFAR)

∣∣
}

(19)

where the linearized functions WLIN and GLIN
k are

defined as (20):

W(XXXFAR) = W(XXXOPT )

+(XXXFAR −XXXOPT )T ∇W(XXXOPT )

GLIN
k (XXXFAR) = Gk(XXXOPT )

+(XXXFAR −XXXOPT )T ∇Gk(XXXOPT )
(20)

Cost function gradient is not utilized for Eq. (17)
since MPISA performs local annealing only if the
step sizes taken on the descent directions SSSq, f inal

T R
in the current global annealing cycle led to vio-
late constraints or pushed design search towards
a non-convex region. MPISA attempts either to
recover the constraint violation - eventually at the
cost of some penalty in weight - or to get back
to a convex region of design space. The former
might imply SSST

T R∇W(XXXOPT ) > 0. In the latter
case, unlike the original code ISA, the new al-
gorithm MPISA now includes a strategy for han-
dling domain non-convexity.

Remarkably, MPISA is able to assess the differ-
ent degree of non-convexity with respect to each
design variable. For instance, Fig. 5 shows
that multiple intersections with the constraint do-
main boundaries occur only for variable x1. As is
clear, the probability of reaching a globally opti-
mum design may increase if one knows the role
played by each design variable in the optimiza-
tion process, especially if variable perturbations
will push the design search towards a non-convex
region. Therefore, the new capability included
in MPISA turns to be extremely useful in opti-
mization problems where the design space is com-
prised of different sub-set of optimization vari-
ables that are not directly connected: for instance,
skeletal structures optimized with sizing and con-
figuration variables.

While in the ISA case trial designs could end up
infeasible with respect to linearized constraints,
MPISA now generates trial points that always
satisfy approximate constraints. This strategy is
justified by the informal argument that if a trial
design violates linearized constraints, non-linear
constraints also will be very likely to be violated.
Consequently, the trial design is not useful.

Now, let PTR, j denote the new trial de-
sign generated for the jth variable. Let
XXX j(xOPT,1,xOPT,2,...,xTR, j,...,xOPT,N) be the corre-
sponding design vector. Compute cost function
W(XXX j) at each PT R, j and cost change ΔWj =
W(XXX j)−WOPT .

If it occurs ΔWj <0, store the XXX j vector and the Wj

cost in the Π1 database. However, as the Wj cost
decreases the corresponding XXX j design may get
too close to the boundary of linearized constraint
domain and finally end up infeasible when non-
linear constrains are evaluated. For this reason,
MPISA chooses from the Π1 database the two de-
signs XXX j,SMALL and XXX j,LARGE , respectively, corre-
sponding to the smallest and the largest amongst
the weight changes |ΔWj|. Non-linear constraints
are evaluated at these two points. If design
XXX j,LARGE is feasible, MPISA takes this as the new
best record. Conversely, the XXX j,SMALL design is
taken as the new best record.

If ΔWj >0 and linearized constraints are satisfied,
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re-define the Metropolis’ probability function as:

P(ΔWj) = e

−ΔWj(
∑NDW

r=1 ΔWr/NDW
) · TK (21)

The NDW parameter in Eq. (21) is the num-
ber of trial points at which the cost function re-
sulted larger than the current best records found
throughout the optimization process. The ΔWr

terms are the corresponding weight penalties. The
∑r=1,NDW ΔWr/NDW ratio accounts for the gen-
eral formation of all the previous candidate de-
signs and serves to normalize the probability
function with respect to the change in cost func-
tion.

Each design XXX j is provisionally accepted or cer-
tainly rejected according to the Metropolis’ crite-
rion re-formulated as:

P(ΔWj) > max
[
NRD j,P

(
ΔW final

ND

)]
⇒ Accept

P(ΔWj) < max
[
NRD j,P

(
ΔW final

ND

)]
⇒ Reject

(22)

The XXX j designs provisionally accepted are in-
cluded in the Π2 database. If there are no trial
designs yielding reductions in cost, MPISA ex-
tracts from Π2 the design XXXBEST

j for which the
cost function value is the least and sets this as
the current best record. In simple words, MPISA
minimizes the increase in cost if the local anneal-
ing could not improve design.

It should be noted that the probability threshold
set by MPISA in purpose to accept or not a de-
sign depends on both local and global information
since the random perturbation of a single vari-
able (NRND, j) is compared to the level of proba-
bility P(ΔW final

ND ) relative to the non-descent di-
rection defined by perturbing simultaneously all
optimization variables (see Step 4).

Once Step 7 is completed, MPISA returns to Step
2.

Step 8. Search for a feasible design or for a de-
sign violating constraints the least.

Set IGLOB = IGLOB + 1. This step is executed if
the optimization process or a cooling cycle begins

from an infeasible point. Any infeasible starting
design is yet denoted as XXXOPT adopting the nota-
tion used in Step 1. Let us assume that there are
NCV violated constraints. MPISA tries to move
back to a region where constraints get less vio-
lated than at XXXOPT and cost function may eventu-
ally improve.

To this purpose, MPISA linearizes the optimiza-
tion constraints and defines NCV directions each
of which is the negative gradient of a violated con-
straint. That is, we have: δG,V = −∇GV (XXXOPT ),
where v = 1, . . .,NCV .

MPISA checks if for some of the δG,V directions
it holds δ T

G,V ∇W(XXXOPT ) < 0. Should this be the
case, the linear system formed by the δG,V direc-
tions and the linearized constraints is solved.

Figure 7 illustrates this process for a two-variable
problem with one violated constraint. Constraint
numbers are indicated within circles. The direc-
tion δG,1 intersects constraints 1, 2 and 3 in the
points 1’, 2’ and 3’, respectively. It can be seen
that feasible designs may be generated by moving
along the segment limited by points 1’ and 3’.

POPT

W(XOPT)

G,1
1’

3’

2’

2
1 PFEAS-NF

3

Figure 7: Design perturbation in case of infeasible
points and one violated constraint

MPISA generates a random number ηNF in the
interval (0,1) in order to define a feasible point
PFEAS−NF lying between points 1’ and 3’. These
intersections are sorted based on the magnitude
of their distances from the infeasible initial point
POPT . The optimization variables corresponding
to the coordinates of PFEAS−NF are defined as:

XFEAS−NF, j = x1′, j +ηNF · (x3′, j −x1′, j)
( j = 1, . . .,N) (23)
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Figure 8 illustrates the strategy implemented in
MPISA when there are more than one violated
constraint. The constraint domain is also locally
non-convex.

W(XOPT)
1

2

3

4

56

7

G,1

G,2 G,3

POPT

1’

7’

6’’ 

4’’ 

2’’’ 

3’’’ 

4’’’
5’’’

PFE-NF
1

PFE-NF
2

PFE-NF
3

PFE-NF
4

2’’ 

Figure 8: Design perturbation in case of infeasible
points and multiple violated constraints

Since the initial point POPT violates constraints
1, 2 and 4, MPISA defines directions δG,1,
δG,2 and δG,3. For each direction, it holds
δ T

G,V ∇W(XXXOPT ) < 0 (v = 1, . . .,3).

Direction δG,1 intersects the linearized constraint
domain at points 1’ and 7’. Direction δG,2 inter-
sects the linearized constraint domain at points 2”,
4” and 6”. Finally, direction δG,3 intersects the
linearized constraint domain at points 2”’ and 3”’,
4”’ and 5”’. The number of apices is relative to
the sorting number of the constraint gradient cur-
rently examined.

Therefore, feasible designs Pr
FE−NF (r = 1, . . .,4)

can be generated by moving along the four seg-
ments respectively limited by points 1’ and 7’, 2”
and 6”, 2”’ and 3”’, 4”’ and 5”’. To this purpose,
MPISA generates four new random numbers in
the interval (0,1). That is, optimization variables
(j=1,. . . ,N) can be set as:

x1
FE−NF, j = x1′, j +ηNF,1 · (x7′, j −x1′, j)

x2
FE−NF, j = x2′′, j +ηNF,2 · (x6′′, j −x2′′, j)

x3
FE−NF, j = x2′ ′′, j +ηNF,3 · (x3′′′, j −x2′′′, j)

x4
FE−NF, j = x4′′′, j +ηNF,1 · (x5′′′, j −x4′′′, j)

(24)

This procedure can be generalized as follows.
Solve the linear system formed by each direc-

tion δG,v (v = 1, . . .,NCV ) and the linearized con-
straints. Sort the NINT,v intersection points ac-
cording to the magnitude of their distance from
the initial point POPT . Define NINT,v −1 segments
limited by these intersection points. Any segment
is said “feasible” if it is limited by two points sat-
isfying the linearized constraints. A random num-
ber in the interval (0,1) is hence generated each
time a feasible segment is found in order to define
a new trial design Pr

FE−NF where the r superscript
ranges between 0 (no feasible segments) and the
number of feasible segments NSGFEA,v.

However, it may happen that there are no con-
straint gradients such that δ T

G,V ∇W(XXXOPT ) < 0.
Figure 9 illustrates this scenario for a two-variable
problem.

p

G,1

2

3

1

POPT W(XOPT)

G,3  

2

PFEA VIOL
1

SVIOL PVIOL

Figure 9: Design perturbation when there are no
directions δG,V such that δ T

G,V ∇W (XXXOPT ) < 0

It appears that no feasible segments can be found
by intersecting directions δG,1 and δG,3 - relative
to violated constraints 1 and 3 - with the linearized
constraint domain. Constraint domain boundary
could be approached, and violation might be re-
duced, by moving along δG,1 or δG,3. However,
constraint violation can be reduced more quickly
if we move along a direction SSSV IOL whose compo-
nents are proportional to the gradients of violated
constraints. Therefore, MPISA generates NCV
random numbers ηv (v = 1, . . .NCV ) in the inter-
val (0,1). The SSSV IOL direction is hence defined as:

SSSV IOL =
NCV

∑
v=1

ηvδG,V (25)
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Say PV IOL the design point defined
as PV IOL(xOPT,1 + ΔSV IOL,1,xOPT,2 +
ΔSVIOL,2, . . .,xOPT,N + ΔSVIOL,N) where SVIOL, j

( j = 1, . . .,N) are the components of the SSSV IOL

vector.

Since direction SSSV IOL attempts to move back the
design search towards a feasible region, MPISA
checks if some feasible segment may lie on SSSV IOL.
Therefore, the intersection points between SSSV IOL

and the linearized constraint domain are found by
MPISA. In general, there will be only one feasible
segment when the linearized constraint domain is
convex while multiple feasible segments will lie
on SSSVIOL if this direction intersects a non-convex
linearized constraint domain. Intersection points
are again sorted based on the magnitude of their
distance from POPT .

If there are no intersection points limiting feasi-
ble segments, constraints are re-linearized about
PV IOL and MPISA searches again for feasible seg-
ments. A new SSSV IOL direction and a new PV IOL

point are defined. As is clear, directions δG,V are
re-defined each time the linearization point (i.e.,
PV IOL) changes. The process ends when it is pos-
sible to find feasible segments from the intersec-
tion between SSSV IOL and the linearized constraint
domain.

For instance, Fig. 9 shows that it is possible to
find a feasible segment limited by points 1 and
2, that are the intersections between SSSV IOL and
linearized constraints 1 and 2. Feasible designs
PFEA−V IOL (one intersection) or Ps

FE−V IOL (mul-
tiple intersections) can be defined by generating
random numbers in the interval (0,1) in a similar
fashion as for points PFEAS−NF or Pr

FE−NF defined
through Eqs. (23-24).

Each feasible design lying on a direction δG,V

such that δ T
G,V ∇W(XXXOPT ) < 0 is stored in the

database ΠFEA−NF . Conversely, each feasible de-
sign eventually lying on the SSSV IOL direction is
stored in another database ΠFEA−V IOL.

As is clear, trial points included in ΠFEA−NF are
such that the double goal of reducing constraint
violation and reducing cost function is achieved.
Conversely, trial points included in ΠFEA−V IOL

satisfy linearized constraints but do not necessar-

ily lie on a descent direction. Therefore, the opti-
mizer may have to pay some weight penalty in or-
der to get in a feasible region of the design space.

MPISA tries to maximize the improvement in cost
or, alternatively, attempts to minimize the weight
penalty. Therefore, MPISA extracts from the
ΠFEA−NF database the Pr,max−red

FE−NF point for which
the cost reduction is largest with respect to the ini-
tial design. Non linear constraints are evaluated
at Pr,max−red

FE−NF and if this design is feasible, MPISA
takes it as the new best record. Should the point
Pr,max−red

FE−NF not be feasible, MPISA checks the other
points left in ΠFEA−NF . Again, the point at which
cost improvement is largest is taken as trial design
and non-linear constraints are evaluated. The pro-
cess terminates when one of the points included
in the ΠFEA−NF database satisfies non-linear con-
straints.

If the ΠFEA−NF database is empty, MPISA
extracts from the ΠFEA−V IOL database the
Ps,least−pen

FE−V IOL point for which the cost penalty is the
least and sets this design as the new best record.
The optimization process is re-started from Step
2.

It should be noted that linear approximation of op-
timization constraints used by MPISA allows to
reduce significantly the number of exact analyses.
In fact, classical simulated annealing algorithms
usually deal with violated constraints by gener-
ating new random designs until non-linear con-
straints are satisfied. This process is completed
by perturbing one design variable at a time. How-
ever, at least N exact analyses may be required
each time one wants to see what happens in the
neighborhood of a design point. Furthermore, this
strategy may result in increasing the cost func-
tion too much. In order to overcome these prob-
lems, the ISA algorithm previously developed by
the present authors already utilized a linearly ap-
proximated model and defined a search direction -
whose target is the feasible design space - by com-
bining the set of movements corresponding to the
intersections between the δG,V directions and the
linearized constraint domain boundary.

Remarkably, the new algorithm MPISA is able to
find feasible segments for each constraint gradi-
ent or at least to minimize cost penalty yet find-
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ing some feasible design. Therefore, one or more
candidate designs can be defined for each δG,V

rather than the single trial point originally defined
in ISA. The stochastic nature of the optimization
process is ensured by the fact that each trial de-
sign included in the ΠFEA−NF and ΠFEA−V IOL

databases is generated by MPISA using a random
number.

As far as it concerns the accuracy of linear ap-
proximation, it should be noted that MPISA does
not use any more the trust region scheme orig-
inally implemented in ISA to resize step along
the search direction which pushes design back
to a feasible region. Trust region served in ISA
to ensure that the linear approximation portrayed
accurately the actual non-linear problem. How-
ever, any point satisfying linearized constraints
will certainly satisfy also non-linear constraints if
it is far enough from constraint boundaries. Since
random numbers defining trial points included in
ΠFEA−NF and ΠFEA−V IOL may not be equal to 0
or 1, trial points defined in MPISA are directly
pushed away from linearized constraint bound-
aries. This fact increases the probability to have
trial points that satisfy both linearized and non-
linear constraints.

Step 9. Check for convergence of the optimiza-
tion process.

If K > 3, MPISA checks if the optimization pro-
cess converged. The following convergence crite-
rion (26) is used:

max

{
max

[ |WOPT,K−WOPT,K−1|
WOPT,K

; |WOPT,K−1−WOPT,K−2 |
WOPT,K−1

;
|WOPT,K−2−WOPT,K−3 |

WOPT,K−2

]
;

max

[ ||XOPT,K−XOPT,K−1||
||XOPT,K || ; ||XOPT,K−1−XOPT,K−2 ||

||XOPT,K−1 || ;
||XOPT,K−2−XOPT,K−3||

||XOPT,K−2 ||

]}

≤ εCONV (26)

where WOPT,K and XXXOPT,K, respectively, denote
the best record and the corresponding design vec-
tor found in the Kth cooling cycle.

The εCONV parameter is set to 10−5 in order to
avoid premature convergence if the last four cool-
ing cycles resulted in marginal improvements in
design.

If criterion (26) is satisfied go to Step 11.

Step 10. Reset parameters for a new cooling cy-
cle.

If K < 3 or the convergence criterion (26) is not
satisfied:

- Reduce temperature in fashion of TK+1 =
βKTK where the parameter βK is chosen as
(27):

βK =

[
K−1

∑
r=0

βr/K

]

·max

⎡
⎣ 0.95(

1+ NREJE
NT RIA

) ;

(
1− WFIN,K−1

WINIT,K−1

)⎤
⎦
(27)

WFIN,K−1 and WINIT,K−1 are respectively the cost
function values at the beginning and at the end of
the current annealing cycle. NREJE is the num-
ber of trial designs rejected by MPISA out of the
total number of trial designs NT RIA generated in
the current cooling cycle. The NREJE number in-
cludes each trial point which does not yield im-
mediate improvement in design. For instance, if
ILIM = 5 global annealing cycles are performed
within the current cooling cycle and MPISA exe-
cutes Step 6-B in each global annealing cycle (that
is, there are five infeasible trial points at which the
cost function decreases), it yields NREJE = 5 and
NT RIA = ILIM +NREJE = 10.

The simplest strategy suggested by optimization
handbooks is to use a constant temperature reduc-
tion factor chosen between 0.9 and 0.99. Con-
versely, temperature reduction factor is adaptively
updated by MPISA throughout the optimization
process. In particular, Eq. (27) takes care of two
important facts: the percentage of trial points that
immediately yield improvements in design and
the trend of the cost function. The former effect
is captured by a term whose upper limit is the
0.95 value that is about the average between 0.9
and 0.99; this upper limit is eventually reduced
by means of a knockdown factor λK defined as
the inverse of (1 + NREJE/NTRIA): the λK factor
is obviously equal to 1 if NREJE = 0. The effect
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of cost function is captured in (27) by computing
the relative change in cost attained in the current
cooling cycle.

The rationale behind Eq. (27) is the follow-
ing. If the cost function decreased much in the
current cooling cycle, the temperature can be
kept high since the optimizer is still exploring
a zone where cost function gradient is negative.
Hence, new descent directions can be found eas-
ily and the risk to reject candidate designs is very
low. In simple words, criterion (27) is driven
by (1 −WFIN,K−1/WINIT,K−1). For instance, if
Step 6-B is executed one time within each global
annealing cycle (NREJE = 5; NT RIA = 10), one
gets 0.633 for the 0.95λK product. This im-
plies that if cost function improvement is larger
than 63.4% (very likely to occur in the early
cooling cycles if the initial design is far enough
from constraint domain boundaries) makes the
(1−WFIN,K−1/WINIT,K−1) term predominate over
the 0.95λK product.

Conversely, if the cost function improved
marginally or even increased, the optimizer en-
tered in a zone where there are few descent di-
rections or a descent direction could not even
be defined. Hence, the temperature should be
reduced in order to reject many trial points be-
cause they certainly will not yield significant im-
provements in design. In simple words, since the
(1−WFIN,K−1/WINIT,K−1) term may get close to
zero, criterion (27) is driven by the 0.95λK prod-
uct: the larger the number of trial designs rejected
in the current design cycle, the higher will be the
reduction in temperature. This strategy is not too
conservative. In fact, assuming that the 30% of
total trials were rejected (that is, a very high re-
jection rate), one gets a value of about 0.75 for
the 0.95λK product.

Eq. (27) is derived from the original formulation
implemented in ISA. However, MPISA now intro-
duces in Eq. (27) the Σr=0,...,K−1βr/K correction
term which is the average of all of the βK factors
defined in the optimization process until the cur-
rent annealing cycle. As is clear, the correction
term is equal to 1 in the first annealing cycle. The
purpose of the Σr=0,...,K−1βr/K correction term is
to avoid too drastic reductions in temperature if a

design cycle resulted in a very large number of re-
jected points or marginal improvements in design.
This scenario may occur for instance near a local
optimum. However, temperature can be reduced
substantially only when the optimizer has already
explored a sufficiently large portion of the design
space and by-passed many local optima. The cor-
rection term averaging all βK factors allows us not
to increase too much the threshold value of ac-
ceptance probability P(ΔW) already in the early
stages of optimization process.

- Reset K as K=K+1;

- Reset IGLOB as IGLOB = 0;

- Repeat from Step 2 onward.

Step 11. End optimization process and store re-
sults.

The optimum design and convergence history
(cost function and constraint values) are written
into output files made available to the user.

3 Test Cases

Numerical behavior of MPISA is tested in three
optimization problems of skeletal structures. This
kind of structure is widely used in optimization to
demonstrate numerical efficiency of new design
codes since complicated structures can be consid-
ered but no structural analysis is entailed by each
new evaluation of the cost function.

In this work, two bar trusses and a frame structure
are designed for minimum weight under multiple
loading conditions and constraints on nodal dis-
placements, element stress and buckling. Sizing
and configuration optimization problems are con-
sidered.

Test cases are now described in detail.

3.1 Weight minimization of bar truss struc-
tures

The weight minimization problem for a bar truss
structure comprised of NOD nodes and NEL ele-
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ments may be stated as follows:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

minW = ρg
NEL
∑
j=1

l j x j

ul
(x,y,z),k ≤ u(x,y,z),k,ilc ≤ uu

(x,y,z),k
σ l

j ≤ σ j,ilc ≤ σu
j

xl
i ≤ xi ≤ xu

i

(28)

where

• i = 1, . . .,N; j = 1, . . .,NEL; k = 1, . . .NOD;
ilc = 1, . . .,NLC;

• x j is the cross sectional area of the jth ele-
ment of the structure included as sizing vari-
able in the optimization process;

• l j is the length of the jth element of the struc-
ture;

• g is the gravity acceleration value (9.81
m/s2); ρ is the material density;

• NLC is the number of independent loading
conditions acting on the structure;

• u(x,y,z),k,ilc are the displacements of the kth

node in the directions x, y, z, with the lower
and upper bounds ul

(x,y,z),k and uu
(x,y,z),k;

• σ j,ilc is the stress in the jth element, with
the lower and upper bounds σ l

j (compression
stress limit includes critical bucking load)
and σu

j (tensile);

• The ilc subscript indicates that displace-
ment and stress constraints are relative to the
ilcth loading condition. The constraints on
stresses and displacements are put in a di-
mensionless form.

If the optimization includes also configuration
variables in fashion of nodal coordinates, Eq. (28)
becomes (29):

minW = ρg
NEL

∑
j=1

x j

·
√

(x j1 −x j2)2 +(y j1 −y j2)2 +(z j1 − z j2)2

(29)

where x j1,2, y j1,2, z j1,2 are the co-ordinates of the
nodes limiting the generic jth element of the struc-
ture.

In test case 1, the planar two-hundred bar truss
structure shown in Fig. 10 is designed to carry
five independent loading conditions:

a) 453.592 kgf (1000 lbf) acting in the positive
x-direction at node points 1, 6, 15, 20, 29, 43,
48, 57, 62 and 71;

b) 453.592 kgf (1000 lbf) acting in the negative
x-direction at node points 5, 14, 19, 28, 42,
47, 56, 61, 70 and 75;

c) 4535.924 kgf (10000 lbf) acting in the negative
y-direction at node points 1, 2, 3, 4, 5, 6, 8, 10,
12, 14, 15, 16, 17, 18, 19, 20, 22, 24, 26, 28,
29, 30, 31, 32, 33, 34, 36, 38, 40, 42, 43, 44,
45, 46, 47, 48, 50, 52, 54, 56, 57, 58, 59, 60,
61, 62, 64, 66, 68, 70, 71, 72, 73, 74, 75;

d) Loading conditions a) and c) acting together;

e) Loading conditions b) and c) acting together.

Constraints are imposed on nodal displacements
and member stresses.

This design problem is often presented as an ex-
ample of fairly large-scale optimization. The
structure has 77 nodes. The optimization includes
200 design variables (cross sectional area of truss
members) and 3500 non-linear constraints. The
Young’s modulus of the material is 2.069 · 1011

N/m2 while the density is 7833.413 kg/m3. The
lower bound of the cross sectional area is set to
0.00064516 m2 (0.1 in2). The displacements of
the free nodes must be less than 0.0127 m (0.5
in). The allowable stress (the same in tension and
compression) is set to 21.092 kgf/mm2 (30,000
psi). More details on geometry and loading con-
ditions are given in the work of Venkayya (1978).

Interestingly, since the cost function of the truss
problem is linear, the ∇W gradient vector re-
quired by MPISA in global annealing cycles can
be immediately determined and does not change
through the entire optimization process.

In test case 2, the cantilevered truss structure
shown in Fig. 11 is to be designed with con-
straints on nodal displacements, member stresses
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Figure 10: Schematic of planar 200-bar truss
structure

and critical buckling loads. The structure has 45
elements and 20 nodes. Element numbering pro-
gresses as we move towards the tip of the structure
(i.e., nodes 9-12). The truss is comprised of nine
repeating modules each of which contains five el-
ements. In addition, the nodal co-ordinates of the
eighteen free nodes are included as configuration
variables. Therefore, 81 design variables are con-
sidered. The Young’s modulus of the material is
6.897 · 1010 N/m2 while the density is 2767.990
kg/m3. Vertical forces are applied to the struc-
ture: respectively, 68038.856 kgf (150,000 lbf) at
nodes 9 and 10 acting downward, and 22679.619
kgf (50,000 lbf) at nodes 11 and 12 acting upward.
The lower bound of the cross sectional areas is
again 0.00064516 m2 (0.1 in2).

A total of 162 non-linear constraints are con-
sidered. The allowable tensile stress is 17.577
kgf/mm2 (25,000 psi), the stress limit in compres-
sion accounts also for buckling loads (Dhingra
and Lee, 1994). The displacements of the free
nodes must be less than 0.0508 m (2 in).

As far as it concerns the computation of the ∇W
gradient vector, it should be noticed that cost
function sensitivities with respect to configura-
tion variables can be easily obtained in fashion
of closed form expressions while sizing variable
sensitivities are obtained in the same way as in
the two-hundred bar truss case.

Optimization runs started from both lower and up-
per bounds of cross sectional areas where the for-
mer is set as 0.00064516 m2 (i.e., 0.1 in2) while
the latter is set as 0.64516 m2 (i.e., 100 in2).
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Figure 11: Schematicof 45-member cantilevered
bar truss

MPISA is compared to the ISA algorithm recently
developed by the present authors. Although ISA
is based on the same idea of alternating global
and local annealing cycles, MPISA now includes
a substantially improved formulation.

The two truss structures have been optimized also
with the powerful Sequential Quadratic Program-
ming (SQP) routine available in the commercial
software Matlab, Version 6.5. The SQP method
[Haftka, 1992; Rao, 1996] is a globally conver-
gent technique which formulates and solves a se-
ries of approximate sub-problems. Quadratic ap-
proximation is used for the cost function while
constraints are linearized.

3.2 Weight minimization of frame structures

The frame shown in Fig. 12 is to be designed for
minimum weight. The frame has 30 nodes and
45 elements (nodes are numbered, elements not).
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The elements are grouped into twelve groups: the
first three groups include ten horizontal elements
each (those located at the same y) while the other
nine groups include two vertical elements each
(those located at the same x). The frame is mod-
eled by using I-beam elements: the schematic and
the local reference system of the element cross-
sections are also shown in Fig. 12. The geometric
dimensions b, h, tw and t f of the segments of the
cross-section of the elements of each group are in-
cluded as sizing variables. Since four design vari-
ables are considered for each group, forty-eight
sizing variables are considered. In addition, the
co-ordinates of nodes 5, 8, 11, 14, 17, 20, 23, 26,
29, 6, 9, 12, 15, 18, 21, 24, 27 and 30 are included
as configuration variables. Therefore, the frame
structure is optimized with 84 design variables.
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Figure 12: Schematic of frame structure and ele-
ment cross-section nomenclature

The cost function is of the same type as that writ-
ten for truss structures in fashion of Eq. (29).
However, the cross sectional area x j included as
design variable for the jth group of elements now
depends on the cross-section dimensions b, h, tw
and t f . That is: x j = 2 · b · t f + h · tw. Therefore,
the cost function is yet linear with respect to each
sizing variable but non-linear with respect to con-
figuration variables. Cost function gradient can be

easily obtained in fashion of closed form expres-
sions.

The material density is 8303.971 kg/m3 and the
Young’s modulus is 2.069.1011 N/m2. The frame
is designed to carry 9071.8474 kgf (20,000 lbf)
vertical forces P acting downward: the loads are
applied at nodes 4, 7, 10, 13, 16, 19, 22, 25 and
28. A total of 324 constraints are imposed on
nodal displacements (less than 0.0254 m; i.e., 1
in), Von Mises equivalent stresses at nodes (the
stress limit is 17.577 kgf/mm2; i.e., 25,000 psi)
and Euler buckling. Geometric constraints are
also imposed on the design variables: 0.005 ≤
tw/b≤ 0.1, 0.005≤ t f /h≤ 0.1, and 0.05≤ b/h≤
1. The lower bound of the b and h dimensions
is set to 0.01 m while the lower bound of the tw
and t f thicknesses is set to 0.001 m. The ini-
tial configuration of the structure is shown in Fig.
12. Two different initial designs are considered
by changing sizing variables: (i) the infeasible de-
sign is such that for all frame elements b=0.05 m,
h=0.1 m, tw = t f =0.01 m; (ii) the feasible design
is such that for all frame elements b = h=0.3 m,
tw = t f =0.1 m.

MPISA is again compared to the SQP routine im-
plemented in Matlab 6.5. Since the frame prob-
lem was proposed and solved for the first time
by the present authors (see most recent results in
Lamberti and Pappalettere, 2004), MPISA is now
compared also to the LSTRLP optimization algo-
rithm used in the aforementioned study. LSTRLP
combined Sequential Linear Programming, line
search and trust region techniques; approximate
sub-problems were solved using the simplex rou-
tine. However, LSTRLP optimizations were run
only for the infeasible starting design b=0.05 m,
h=0.1 m, tw = t f =0.01 m. In order to reduce
the computation cost entailed in the optimization
process by the use of the simplex linear solver,
the original LSTRLP algorithm is now com-
bined with the well known commercial optimizer
DOT R© - developed by the Vanderplaats R&D -
into an optimization code denoted as TRLP-DOT
in the rest of the paper. In TRLP-DOT, move
limits imposed on optimization variables are com-
puted (notice that different lower and upper move
limits are set for each variable) and each interme-
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diate design is checked and eventually improved
as prescribed by LSTRLP while the approximate
sub-problem defined in the current iteration is
solved using the feasible-directions based routine
available in DOT R©. Numerical tests reported in
Genovese et al. (2005) demonstrate the good nu-
merical efficiency of TRLP-DOT in optimizing
complicated skeletal structures with many design
variables.

4 Results and Discussion

The MPISA optimization algorithm has been im-
plemented by a Fortran 90 code. Optimizations
carried out with MPISA, Matlab 6.5 and TRLP-
DOT have been run on a Dell Optiplex GX-260
Windows Workstation equipped by a single 2.66
Ghz Pentium IV CPU and 1 Gb of RAM mem-
ory. Some results relative to ISA and LSTRLP
were obtained with different hardware configura-
tions. Relative computation speeds are however
indicated in Tab. 1 which summarizes results ob-
tained in the different optimization problems.

The set of design problems solved in this re-
search is certainly indicative since it included
some examples of large-scale sizing optimization.
Furthermore, combined sizing-configuration opti-
mization is complicated by the fact that sizing and
configuration variables belong to two well dis-
tinct design spaces. Several ad hoc schemes have
been proposed in literature to solve this class of
problems: tailored approximations of constraints
(Hansen and Vanderplaats, 1990; Vanderplaats,
1998); evolutionary node shifting to simultane-
ously minimize displacement and/or stress values
and weight penalty (Wang et al., 2002); setting
of individual move limits for each design variable
(Lamberti and Pappalettere, 2003 and 2004).

Non-convexity of design space in the test prob-
lems considered in this study comes from the wide
variety of interactions which may be established
between hundreds of design variables in the large-
scale problem or between different types of vari-
ables in the sizing/configuration problems. There-
fore the use of simulated annealing is very logical.

The real challenge in optimization is to identify
which variable or group of variables really drives

the overall design process in the different opti-
mization cycles. It appears that this ability is in-
trinsically possessed by MPISA which alternates
global and local search based on the nature of the
current best record (i.e., far or close to constraint
boundaries, feasible or infeasible, near to local
minima or to non-convex regions, etc.) and ex-
plores simultaneously several different regions of
the design space.

Although Matlab is not a dedicated optimization
code and a considerable fraction of CPU time
is spent in the communication between the op-
timizer and the routines written by the user for
structural analysis, cost function and constraint
definition, its built-in SQP routine proved to be
very efficient in optimization of skeletal structures
(Lamberti and Pappalettere, 2004). Indeed, com-
parison between MPISA and Matlab 6.5 is indica-
tive in terms of ability of the different optimiz-
ers to find the global optimum regardless of the
CPU time required in the design process. In struc-
tural optimization problems, weight or stress min-
imization is certainly the main goal of the entire
design process and it is even more important than
computational speed that may be too sensitive to
programming skills and/or coding options.

Table 1 reports the optimized structural weight,
number of optimization iterations (annealing cy-
cles or approximate sub-problems), number of
structural analyses and total CPU time required in
the optimization process. The number of global
annealing cycles performed by MPISA and ISA
is also shown in the table within round brackets.

It appears that MPISA converged to the lowest
structural weight either when the optimization
process started from feasible points - the most
active constraints are about 7.5%, 74% and 24%
of allowable limits for the two-hundred bar truss,
cantilevered bar truss and frame structure, respec-
tively - or the initial design violated very much
the optimization constraints (for the two hundred
bar truss, 7600% violation on nodal displace-
ments and 4850% violation on element stresses;
for the cantilevered bar truss, 73900% violation
on nodal displacements, 32000% violation on el-
ement stresses and 73332.5% violation on critical
buckling load; for the frame, 1705% violation on
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Table 1: Comparison of optimization results obtained with different algorithms

Test case Initial
design

Optimization
Algorithm

Structural
weight (kg)

Number of cool-
ing (global) cy-
cles / optimization
iterations

Structural
analyses

CPU
time (s)

Two-hundred
bar truss

Feasible
MPISA 12495.922 34 (25) 11232 1602
ISA 12767.294 43 (21) 15411 3133∗

SQP-Matlab 12501.000 54 11914 3729

Infeasible
MPISA 12494.949 39 (22) 12811 1921
ISA 12764.179 40 (15) 18508 3613∗

SQP-Matlab 12503.300 127 24532 9102

Cantilevered
bar truss

Feasible
MPISA 3318.273 25 (17) 5657 38.3
ISA 3551.007 33 (17) 7785 60.6∗

SQP-Matlab 3357.520 56 4937 117

Infeasible
MPISA 3320.378 38 (22) 7601 49.2
ISA 3581.897 42 (19) 11350 83.7∗

SQP-Matlab 3397.120 60 5100 248

Frame

Feasible
MPISA 2489.143 36 (26) 3110 108
SQP-Matlab 2513.756 55 4843 280
TRLP-DOT 2648.545 13 1214 26

Infeasible

MPISA 2501.851 37 (26) 3230 156
SQP-Matlab 2532.104 43 3365 246
TRLP-DOT 2692.923 26 2342 47
LSTRLP+ 2827.475 21 1815 98.3+

+ Lamberti and Pappalettere, 2004. This optimization was run on a CPU about 70% slower than that
used in the present study.

∗ These optimization runs were performed on a CPU about 50% slower than that used in the present
study.

nodal displacements, 1950% violation on element
stresses and 396% violation on critical buckling
load). Remarkably, designs optimized by MPISA
are practically insensitive to starting point: in fact,
the largest percent difference in weight is only
0.48% and occurred in the frame case.

Table 1 shows that reductions in structural weight
achieved by MPISA with respect to optimized de-
signs reported in literature are very significant:
about 270 kg (2.2% weight saving) for the two-
hundred bar truss structure; between 230 and 260
kg (7.5% weight saving) for the cantilevered bar
truss structure; about 325 kg (13% weight saving)
in the frame structure case.

In the two-hundred bar truss problem, the SQP
routine implemented in Matlab could reach prac-
tically the same structural weight found by

MPISA. However, in the sizing-configuration
problems, the weight penalty seen for Matlab with
respect to MPISA ranges between 1 and 2% and
increases when the optimization runs started from
infeasible designs.

In the frame problem, Sequential Linear Program-
ming based optimizers (LSTRLP and TRLP-DOT
codes) resulted considerably less efficient than
MPISA and SQP-Matlab. In particular, TRLP-
DOT performed better than literature but designed
a structure about 190 kg heavier than MPISA.

The multi-point annealing search implemented in
MPISA allowed to reduce the number of required
optimization cycles with respect to the original
code ISA. This improvement is more significant
in case of feasible starting points. For all test
problems, MPISA has run a considerably higher
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number of global annealing cycles out of the total
number of optimization iterations than in the ISA
case: between 56 and 73% vs. 37-51%.

Among the different optimization algorithms con-
sidered in this study, the SQP routine imple-
mented in Matlab required the largest number of
design cycles overall. MPISA is the fastest code
in the two truss problems. Finally, TRLP-DOT
required the smallest number of optimization cy-
cles in the frame problem but converged to sub-
optimal designs.

It can be seen from Tab. 1 that the improved
formulation implemented in MPISA required less
structural analyses per optimization cycle than
ISA: from 5-10% in case of feasible starting de-
signs to about 30% in case of infeasible starting
designs. This results is very significant if we con-
sider that ISA itself was considerably less expen-
sive than classical simulated annealing in terms of
structural analyses.

MPISA seems very efficient in terms of computa-
tion time. In fact, the average CPU time required
to complete one optimization cycle in MPISA is
considerably lower than for SQP-Matlab which
must solve a quadratic sub-problem in each op-
timization iteration. However, MPISA is slightly
slower than the original code ISA developed by
the present authors. Although this is not a limita-
tion since MPISA found better designs than ISA,
we have to remind that the considerably large
number of global annealing cycles performed by
MPISA using the multi-point search strategy led
to repeat many times the task of constructing the
Ω domain that includes the descent directions
where candidate designs lie. Such operation has
been demonstrated in Section 2 to be not ex-
pensive in terms of required structural analyses.
However, it may entail solving many linear sys-
tems - up to 2N−1 - in fashion of Eq. (3) each of
which is formed by N equations.

In order to gather more evidence of the rel-
ative performance of different optimization al-
gorithms considered in this study, convergence
curves recorded in the optimization process and
the corresponding constraint margins are respec-
tively presented in Figs. 13-15 and Figs. 16-18.

Figures 13 and 14 prove that in the truss prob-
lems MPISA converged to the optimum designs
more quickly than ISA. As is clear, the multi-
point search strategy implemented in MPISA al-
lows to explore a larger fraction of design space
and hence results in a higher probability of reduc-
ing the cost function already in the first optimiza-
tion cycles. Consequently, it is much easier to ap-
proach the region containing the optimum design.

Furthermore, MPISA convergence curves did not
exhibit steps where the cost function improves
marginally. At least, cost steps cover a much
smaller number of annealing cycles than in the
ISA case. This behavior, more evident if the opti-
mization started from a feasible design, can be ex-
plained in view of the fact that MPISA now com-
bines the multi-point search strategy (Step 3) with
a local annealing search accounting for constraint
domain non-convexity (Step 7).

The reason why the convergence behavior of
MPISA is considerably better than that exhib-
ited by SQP-Matlab when the optimization started
from a feasible design is that the present code
perturbs the design variables by moving along
descent directions. However, while Matlab can
explore only the descent direction which results
from the solution of the current approximate sub-
problem, MPISA is able to generate and analyze
simultaneously a much larger number of descent
directions (at most 2N−1).

Data reported in Tab. 1 suggest the following in-
teresting question. The difference in optimized
weights between MPISA and SQP-Matlab seen
in the two-hundred bar truss problem is indeed
very marginal (less than 0.1%). It is generally ac-
knowledged that minor improvements in weight
in large-scale problems including hundreds of de-
sign variables may result from the interaction be-
tween constraint tolerances and permitted con-
straint violations rather than by differences in al-
gorithm formulations. However, the present au-
thors want to point out that no constraint viola-
tion was permitted in this study. Therefore, any
penalty in structural weight indicates that the cor-
responding algorithm may have missed the global
optimum. This statement is supported by the anal-
ysis of the constraint margins plotted in Fig. 16.
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Figure 13: Comparison of convergence curves obtained in the case of the two-hundred bar truss structure

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000
12000
13000
14000
15000
16000
17000
18000
19000
20000
21000

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60
Number of cooling cycles / optimization iterations

St
ru

ct
ur

al
 w

ei
gh

t  (
kg

)

MPISA - Feasible start

ISA

SQP-MATLAB

MPISA - Infeasible start

ISA

SQP-MATLAB

Figure 14: Comparison of convergence curves obtained in the case of the forty-five bar structure



210 Copyright c© 2007 Tech Science Press CMES, vol.18, no.3, pp.183-221, 2007

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

24000

26000

28000

30000

0 5 10 15 20 25 30 35 40 45 50 55

Number of cooling cycles / optimization iterations

St
ru

ct
ur

al
 w

ei
gh

t  (
kg

)
MPISA - Infeasible start
SQP-MATLAB
TRLP-DOT

MPISA - Feasible start
SQP-MATLAB
TRLP-DOT

Figure 15: Comparison of convergence curves obtained in the case of the frame structure

It can be seen that MPISA was able either to re-
cover immediately any constraint violations and
to keep the design search process inside a feasi-
ble region throughout the optimization process.
Conversely, SQP-Matlab yet exhibited 9% con-
straint violation after 33 design cycles when the
optimization started from a feasible design and re-
quired more than 60 iterations to find a feasible
intermediate design when the optimization pro-
cess started from an infeasible point. Therefore,
the SQP-Matlab optimizer had repeatedly to pay
some weight penalty in order to reduce constraint
violation in the subsequent iterations.

In the frame problem, SQP-Matlab and TRLP-
DOT seem much faster than MPISA in reduc-
ing structural weight when the initial design is
feasible (see Fig. 15). However, SQP-Matlab
and TRLP-DOT perturbed the design by mov-
ing along feasible directions which are too steep.
Consequently, some infeasible intermediate de-
signs have been generated very soon (see con-
straint margins plotted in Fig. 18). Such a fast
reduction in cost involved very large step sizes
thus deteriorating the quality of the approxima-

tion. Hence, TRLP-DOT had to repeatedly shrink
the move limits while SQP-Matlab had to reduce
step sizes along the descent direction obtained
solving the approximate sub-problem in order to
improve the quality of approximation in the sub-
sequent sub-problems. Nevertheless, TRLP-DOT
and SQP-Matlab, respectively, generated infeasi-
ble intermediate designs yet after about 15 and 35
optimization iterations even though the initial de-
sign satisfied largely the optimization constraints.
Oscillatory behavior of constraint margins is cer-
tainly due to local non-convexity of design space
where the set of active constraints driving the op-
timization process changes sharply. Since MPISA
is the only algorithm explicitly formulated for
dealing with this problem as it checks for local
non-convexity caused by each single design vari-
able and attempts to find anyhow the best feasible
design regardless of the local shape of constraint
domain (see Step 7), the present code could gen-
erate feasible intermediate designs in most of the
cooling cycles performed in the optimization pro-
cess.

Insensitivity of MPISA to sharp changes in the set
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of active constraints derives from its inherent abil-
ity to generate intermediate designs close or far
enough to constraint domain boundaries based on
the degree of local non-convexity of design space
(see descriptions of Steps 3 and 7). This opera-
tion is performed for each optimization variable
and greatly increases the design freedom. Hence,
there is a much higher probability of capturing the
type and set of constraints which will be effec-
tively active at the optimum. For instance, Figure
17 clearly proves how MPISA could shift contin-
uously from one set of active constraints to an-
other during the optimization process. In the can-
tilevered bar truss problem, constraints on nodal
displacements became very soon critical in the
first design cycles. However, when buckling con-
straints started to turn active, displacement and
stress constraints have been somehow relaxed and
vice versa. Some intermediate designs generated
by MPISA even resulted uncritical with respect to
each different type of constraints.

Table 1 shows that optimum designs obtained in
the sizing-configuration problems for infeasible
starting points are generally heavier than those
obtained in case of feasible starting points. In
the cantilevered bar truss problem, weight penalty
is marginal only for MPISA (about 0.06%) while
is much larger for ISA and SQP-Matlab: respec-
tively, about 0.9 and 1.2%. In the frame prob-
lem, the weight penalty raised from 0.48% seen
in the MPISA case to 0.75% and 1.7% respec-
tively for SQP-Matlab and TRLP-DOT. These re-
sults can be explained in view of the large oscil-
lations in constraint margins that occur for SQP-
Matlab (Fig. 17) and TRLP-DOT (Fig. 18). In
particular, the largest constraint violation exhib-
ited by SQP-Matlab at an intermediate design oc-
curred in the cantilevered bar truss problem: 80%
and 1000%, respectively, for feasible and infea-
sible initial designs (see Fig. 17). In the frame
case, the largest constraint violation at an inter-
mediate design generated by TRLP-DOT is about
60%. Buckling constraints continuously shifted
from critical to uncritical and vice versa when the
optimization started from an infeasible point (see
Fig. 18).

As has been already remarked, oscillations of con-

straint margins seen for SQP-Matlab and TRLP-
DOT are caused by poor approximations that fail
in capturing the local non-convexity of design
space and cannot follow sharp changes in the
active constraint set. Therefore, step sizes or
move limits had to be reduced by SQP-Matlab and
TRLP-DOT in order to improve the quality of ap-
proximation in the subsequent iterations. How-
ever, this strategy forced the gradient based opti-
mizers to narrow the portion of design space ex-
plored in each optimization iteration. This finally
led to weight penalty because the initial design
is very far from the optimum as it strongly vio-
lated constraints. Conversely, the random search
process utilized in simulated annealing is intrin-
sically more able than gradient based optimizers
to explore a sufficiently large fraction of design
space regardless of the position of the starting
point with respect to the optimum point. This
statement is well supported by the fact that even
the original simulated annealing code ISA which
did not include any multi-point search strategy is
less sensitive to initial design than SQP-Matlab al-
though ISA itself found just sub-optimal designs.
As is clear, the multi-point search implemented
in MPISA made the present code even more in-
sensitive to initial design since extended further
the fraction of design space explored by the opti-
mizer.

Generally speaking, when the initial design vi-
olates strongly the optimization constraints as it
happens in the present study, weight history may
follow two well distinct trends: (i) the optimizer
reduces slightly the constraint violation and in-
creases cost function a little in each new design
cycle; (ii) the optimizer increases much the cost
function already in the first design cycle in or-
der to move back quickly to the feasible space.
Indeed, both strategies (i) and (ii) could not be
successful in reaching the global optimum. In the
former case, the optimizer can get stuck in a local
minimum for which some active constraint dom-
inates much the design process. Furthermore, a
very large number of iterations may be required in
order to complete the optimization process. In the
latter case, if the cost function increased much,
the optimizer may jump into a region very far
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from the optimum and a considerable number of
extra cycles where no constraints are active could
be required in order to reduce structural weight.
Oscillatory behavior could be encountered when
the type of the most violated constraint changes
as the optimizer approaches the constraint domain
boundary. This may be the case of a locally non-
convex constraint domain.

Figures 13-15 show that the gradient-based op-
timizers such as SQP-Matlab and TRLP-DOT
slowly increased the cost function while MPISA
and ISA increased suddenly the structural weight
already in the first design cycles. In particular,
analysis of constraint margins plotted in Figs. 16-
18 reveals that SQP-Matlab could find the first
feasible intermediate design after about 60, 45
and 20 optimization cycles, respectively, for the
two-hundred bar truss, cantilevered bar truss and
frame structure problems. Similarly, TRLP-DOT
required more than 20 iterations in the frame
problem and exhibited yet 30% constraint viola-
tion at the iteration 19 (see Fig. 18). Conversely,
MPISA already satisfied optimization constraints
after only 2 annealing cycles in the truss problems
and 7 annealing cycles in the frame problem.

Remarkably, MPISA was able to contain the in-
crease in weight with respect to the initial de-
sign: about 8000 kg (i.e., 65% of the optimum
weight) less than ISA in the two-hundred bar truss
problem and about 1650 kg (i.e., 50% of the op-
timum weight) less than ISA in the cantilevered
bar truss problem (see again Figs. 13-14). Fur-
thermore, MPISA performed less annealing cy-
cles than ISA in which cost function increases.
The improvement is very evident in the cantilever
bar truss problem (see Fig. 14). This behavior
was somehow expected since MPISA approaches
the boundaries of constrain domain more quickly
than ISA but, at the same time, now searches
for feasible segments limited by linearized con-
straints yet accounting for constraint domain non-
convexity, and explores then these segments in or-
der to improve the current best record.

A careful analysis of MPISA optimization histo-
ries reveals that convergence curves correspond-
ing to feasible or infeasible starting designs co-
incided after only 9 annealing cycles in the two

hundred bar truss case while much more cy-
cles (25-30) had to be performed in the sizing-
configuration problems. The first argument that
can be made in order to explain this difference
is that while for the large scale problem the ra-
tio κINIT−OPT between the initial and optimum
structural weights does not change much in case
of feasible or infeasible initial designs (36 vs.
27), in the sizing-configurationproblems the same
ratio changed significantly (6.3 vs. 160 - can-
tilevered bar truss - or 3.4 vs. 13.5 - frame).
Another argument is that the large scale prob-
lem included much more design variables than
the sizing-configuration problems. However, both
these arguments do not seem completely exhaus-
tive. In fact, in the ISA case, convergence curves
coincided after 32-33 annealing cycles for both
truss problems regardless of the number of design
variables and values of the κINIT−OPT ratio.

In reality, one should consider the larger design
freedom introduced by having two well distinct
design spaces - sizing and configuration variables
- and the way in which MPISA performed the ran-
dom search. Since MPISA carried out a very large
number of global cycles in the optimization runs
(see Tab. 1), cost function gradients have been
repeatedly evaluated in the optimization process.
The perturbation given to each design variable is
initially “weighted” (see Eq. (2) of Step 3) by the
ratio μ j between the corresponding cost function
sensitivity and the magnitude of the cost func-
tion gradient. The μ j coefficients do not change
for sizing variables while do obviously depend on
the current value taken by each configuration vari-
able. Although the same argument could be made
in principle also for ISA, this algorithm did not in-
clude the multi-point search strategy implemented
in MPISA which uses cost function gradient in-
formation also for accepting/modifying trial de-
sign points based on trust region or linearization
error models. This strategy allowed us to reduce
the number of annealing cycles until optimization
histories coincide (in the worst case, MPISA was
however 30% faster than ISA) but made MPISA
optimization history more sensitive to the number
of configuration variables.

Another important information that can be de-
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rived from constraint margins plotted in Figs. 16-
18 is which types and set of constraints are ac-
tive at the optimum design. For instance, Fig.
16 shows that in the two-hundred bar truss case
displacement constraints are always active during
the entire optimization process. Conversely, stress
constraints became soon inactive or never turned
active. However, safety margin computed for
MPISA resulted considerably smaller than that
relative to ISA: from about 63% (ISA) to less than
25% (MPISA).

In the two sizing-configuration problems (can-
tilevered bar truss and frame structures), displace-
ment, stress and buckling constraints are all active
for the designs optimized by MPISA and SQP-
Matlab (see Figs. 17-18). However, Fig. 18
shows that the optimum design found by TRLP-
DOT for the infeasible starting point is not critical
in buckling (about 67% safety margin). There-
fore, such design is clearly sub-optimal. This
statement is supported by the fact that in the
early design cycles, both MPISA and TRLP-DOT
found intermediate designs for which buckling
constraints are not critical (about 80% safety mar-
gin). However, while TRLP-DOT exhibited large
oscillations in buckling constraint margins and fi-
nally converged to the uncritical safety margin of
67%, MPISA gradually turned the buckling con-
straint margin critical.

Figure 19 presents some of the designs optimized
in the truss problems. Similar trends have been
observed in the frame structure case - and there-
fore are not reported in the paper in order to save
space - although element grouping strongly re-
duced the design freedom. The different loads
applied to the two planar trusses generate a sort
of resultant bending state. Consequently, the op-
timizer distributed stiffness in different elements
trying to design structures with a rather uniform
resistance. Stiffer elements are designed near the
nodes where displacement constraints are applied.
Stiffness progressively decreases as we move to-
wards the tip of the structure (i.e., elements 1-4
and 40-45, respectively, for the two-hundred and
cantilevered bar truss).

Distributions of optimized variables show that
“thick” (i.e., with a large cross-sectional area) el-

ements are surrounded by thinner elements (some
cross-sectional areas are even at their minimum
gage) in order to distribute stresses in the struc-
ture more or less uniformly. It can be seen that
MPISA has been able to reduce the area size for
most of the “thick” elements. This explains why
MPISA could save weight with respect to ISA. In-
terestingly, some very stiff elements have been de-
signed by SQP-Matlab even though the optimized
weight is very close to that found by MPISA.
This is because the commercial optimizer reduced
constraint violation for some critical zone of the
structure by increasing the corresponding design
variables but did not have enough design free-
dom to recover the extra penalty in weight yield
by constraint relaxation. Such a behavior is per-
fectly consistent with constraint margin oscilla-
tions seen in the Matlab optimization histories.

More indications on sensitivity of optimized de-
signs to initial point are provided by Figs. 20
and 21, respectively for the truss structures and
the frame. The top of Fig. 20 shows the distribu-
tion of the ζSIZ ratio between the optimized cross
section values obtained when the optimization is
started from a feasible point and an infeasible
point, respectively. For a given element, ζSIZ = 1
indicates that the optimized design is insensitive
to the starting point. It is apparent from the fig-
ure that MPISA achieved the smallest dispersion
(about 1.01%) of the ζSIZ parameter around 1 vs.
the 2.5% dispersion seen in the ISA case. As ex-
pected, SQP-Matlab is the optimization code most
sensitive to starting design since it is based on gra-
dient evaluations.

In the cantilevered bar truss case, plots in the bot-
tom of Fig. 20 show also the distribution of the
ζLEN ratio between the optimized lengths of each
truss element for the two initial designs (i.e., fea-
sible or infeasible). It appears that MPISA is
again the most robust algorithm overall. In fact,
the dispersion on element cross sectional area is
just 1% vs. 3.9% seen in the ISA case. The dis-
persion on element length is practically the same
as in the ISA case: elements in the optimized con-
figuration become about 1% longer if the initial
design is infeasible. Therefore, the multi-point
simulated annealing optimizer is also able to deal
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Figure 16: Evolution of constraint margins in the optimization of the two-hundred bar truss structure
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Figure 17: Evolution of constraint margins in the optimization of the forty-five bar truss structure
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Figure 18: Evolution of constraint margins in the optimization of the frame structure

efficiently with the buckling constraints in spite
of the large initial violation of 73332.5%. The
SQP-Matlab optimizer again exhibited the largest
statistical dispersion: the element length is more
sensitive to initial design than element cross sec-
tion.

Finally, Fig. 21 shows for the frame case the
trends of the ζLEN ratio evaluated for the element
length and the ζINE ratio evaluated for the ele-
ment moment of inertia. The moment of inertia
can be obviously computed only for each of the
12 groups into which frame elements have been
divided. It appears that MPISA is the most ro-
bust optimization algorithm: 1% dispersion on
element length vs. 4-5% seen for SQP-Matlab
and TRLP-DOT; 4.3% dispersion on element mo-
ment of inertia vs. 24-38% seen for SQP-Matlab
and TRLP-DOT. The considerably lower disper-
sion on element length and moment of inertia
exhibited by MPISA with respect to the gradi-
ent based optimizers is indicative of the inherent
ability of the proposed optimization algorithm to
“capture” how sensitive may be the design pro-

cess to each optimization variable. This fact also
explains why MPISA however designed the light-
est frame structures yet having all types of con-
straints active at the optimum.

5 Summary and Conclusions

This paper described a novel optimization algo-
rithm implementing an advanced formulation of
Simulated Annealing. The algorithm - denoted
as MPISA (Multi Point Improved Simulated An-
nealing) - has a multi-level architecture combin-
ing global and local annealing search mecha-
nisms. In order to speed up convergence, MPISA
includes gradient information and generates a ran-
dom set of descent directions. This allows to an-
alyze simultaneously different candidate designs
rather than a single trial point. Local annealing
where optimization variables are perturbed one
by one is performed each time global annealing
did not yield significant improvements in design.
Trial designs close or far from constraint bound-
aries are generated based on the degree of local
non-convexity of constraint domain. Trust region
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Figure 21: Sensitivity of optimized design to starting point for the frame structure

and linearization error based schemes are utilized
to accept/modify candidate designs. Multi-point
search strategy is used also when intermediate
designs end up infeasible. Finally, the cooling
schedule implemented in MPISA reduces adap-
tively the temperature based on the optimization
history.

MPISA was tested in three complicated structural
optimization problems exhibiting non-convex
and/or non-smooth behavior: (i) weight min-
imization of a large-scale truss structure with
200 design variables and 3500 non-linear con-
straints; (ii) sizing-configuration optimization of
a cantilevered bar truss with 81 design variables;
(iii) sizing-configuration optimization of a frame
structure with 84 design variables. This set of
problems can be certainly considered indicative
also in view of the fact that in all test problems
gradients are not available explicitly.

MPISA was compared to another state-of-art sim-
ulated annealing code - ISA -, gradient based op-
timizers recently presented in literature and com-
mercial software. The ISA code from which
MPISA has been derived adopted the same multi-

level architecture of MPISA but without in-
cluding the multi-search strategy and the local
non-convexity detection strategy implemented in
MPISA.

Results indicate that MPISA was the most effi-
cient optimization algorithm and achieved consid-
erable reductions in structural weight with respect
to designs reported in literature. Furthermore,
MPISA resulted very competitive or performed
even better than commercial gradient based op-
timizers.

The complexity and variety of the optimization
problems successfully solved in this study cer-
tainly support the conclusion that MPISA is a very
powerful code for design optimization of struc-
tures. However, the present authors point out that
MPISA should be tested further in other structural
optimization problems in order to draw more gen-
eral conclusions.
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