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Weight Function Shape Parameter Optimization in Meshless Methods for
Non-uniform Grids
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Abstract: This work introduces a procedure for
automated determination of weight function free
parameters in moving least squares (MLS) based
meshless methods for non-uniform grids. The
meshless method used in present work is Diffuse
Approximate Method (DAM). The DAM is struc-
tured in 2D with the one or two parameter Gaus-
sian weigh function, 6 polynomial basis and 9
noded domain of influence. The procedure con-
sists of three main elements. The first is definition
of the reference quality function which measures
the difference between the MLS approximation
on non-uniform and hypothetic uniform node ar-
rangements. The second is the construction of the
object function from the reference quality func-
tion which has to be minimized for optimum per-
formance of the method on non-uniform node ar-
rangement. The third is the optimization pro-
cedure for obtaining the minimum of the object
function. The main idea of this paper is demon-
strated on solution of the transient Burgers equa-
tion on stretched non-uniform grid and three types
of random non-uniform grids. The inverse Gauss
function is used as a reference quality function,
object function is built from the second partial
derivatives, and the k-ary heap like tree procedure
is used for optimization. A substantial improve-
ment of the accuracy of the method is achieved
with the locally optimized values of the weight
function compared to the fixed value that was ex-
clusively used in previous DAM literature. With
statistical comparison it was shown that in addi-
tion to improvement of accuracy also the stability
of simulation is substantially improved.
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1 Introduction

The meshless numerical methods represent the
most progressively developing field of computa-
tional science in the last years. The fast devel-
opment is stimulated by their great geometrical
flexibility and ease of grid generation, which is
of utmost importance in computation of practical
engineering and scientific problems. The complex
three dimensional geometries are very common in
real problems and a lot of manpower is needed for
their spatial discretization (polygonization) in tra-
ditional numerical methods. Meshless methods,
on the other hand, are characterized by the ab-
sence of polygonization and are thus very appeal-
ing for the use in problems with complex geome-
tries or, for example, moving and/or free bound-
ary problems.

The polygonization in meshless methods is
avoided by the use of meshless shape functions.
The shape function is constructed from a set of
nodal values of the field variables. However,
the construction of the most appropriate shape
function is still an open issue. Shape function
may be constructed in a variety of ways, see
[Atluri (2004), Atluri and Shen (2002)]. They
can be constructed for example by rational Shep-
ard functions [Shepard (1968)], polynomials or
radial basis functions (RBF). Coefficients of the
shape function can be determined by the colloca-
tion [Kansa (1990)], by the least squares approx-
imation or by the quasi-interpolation [Pollandt
(1997)]. In this paper the convective-diffusive
PDE is solved by the DAM [Nayroles, Touzot,
and Villon (1991)]. The shape function in DAM
is constructed by the polynomials and the de-
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termination of the coefficients follows the least
squares approximation. In the least squares ap-
proximation, the relative importance of the neigh-
boring nodes to a calculated node is determined
by the weight function. The weight function can
contain one or more shape parameters, depend-
ing on its type. The choice of shape parame-
ter values are often left to either the developers
or the end-users and is based on their experi-
ence. Finding the best values may be as cumber-
some as the mesh generation in traditional meth-
ods. In addition, shape parameters may vary
from one subdomain to another. This is partic-
ularly important in non-uniform grids. Setting
the optimal values of the shape parameters rep-
resents almost unfeasible task even for an expe-
rienced developer or end-user. In general, from
the theoretical point of view, the non-uniform grid
arrangements represent quite unresearched area
and in the literature, most of the calculations us-
ing meshless methods are still performed on uni-
form grids. So far the research on this field was
based on experimental determination [Perko, Šar-
ler, and Rek (2000)], statistical evaluation [Gol-
berg, Chen, and Karur (1996)] in Dual Reci-
procity Method (DRM) and theoretical determi-
nation of shape parameter for example in global
interpolation Radial Basis Function Collocation
Method [Kansa and Hon (2000)]. Recently the
solution of finding the optimal radius of the sup-
port for 4th order spline weight function was elab-
orated in [Nie, Atluri, and Zou (2006)]. The
idea for automated optimization of weight func-
tion shape parameters is implemented to the Mov-
ing Least Squares (MLS) based DAM with the
Gaussian weight function of the form exp (−cr),
where r is an Euclidian distance between nodes,
and c is a shape parameter.

The scaling parameter c is usually heuristically
defined by authors and depends mostly on the grid
density and on the distribution of nodes. There
is a range of different values used by different
authors. Focusing on DAM, heuristically de-
fined c parameters range from ln100 ≈ 4.6 [Prax,
Salagnac, and Sadat (1998)] to 6.25 found in
[Belytscko, Krongauz, Fleming, Organ, and Liu
(1996)] or almost 7 [Sadat and Couturier (2000)].

In case of randomly distributed nodes, however,
the appropriate shape parameter value can vary
substantially from one set of nodes to another.

It should be noted that not only optimization of
shape parameter, but also a good searching algo-
rithm for nodes in the domain of influence plays
a key role in stability and accuracy of meshless
methods. All simulations presented in this pa-
per use the simplest search algorithm based on the
nearest nodes searching only.

2 Problem description

Consider a domain Ω with boundary Γ both con-
taining N calculation nodes. The representation of
the field variables in the problem domain is made
via construction of the shape function, which
for the local approximation meshless methods is
formed from I neighboring nodes in data sites pppi

on the n′th subdomain nΩ ∈ Ω + Γ. The neigh-
boring nodes can be chosen based on two prin-
ciples. In the first principle, the total number of
neighboring nodes I is set. In the second princi-
ple, the shape and the size of the subdomain nΩ
is set. The shape is usually chosen to be a sphere
(3D) or a circle (2D) with the radius (size) σ cen-
tered around the node pppn. In former case nΩ is
denoted as the domain of influence, while in latter
case nΩ is named the support [Liu (2003)]. The
first strategy, preferable for strongly non-uniform
node arrangements, is used in present work.

In this work we focus on the DAM developed
by [Nayroles, Touzot, and Villon (1991)] which
is based on the MLS local approximation tech-
nique using polynomials as basis functions and
Gaussian weight function. This is a very promis-
ing meshless numerical method due to its sim-
plicity and ability to solve complicated large-scale
problems [Couturier and Sadat (1999), Sadat and
Couturier (2000), Sophy and Sadat (2002), Šar-
ler, Vertnik, and Perko (2004), Šarler, Vertnik, and
Perko (2005), Perko (2005)]. In DAM, the func-
tion value and the corresponding derivatives of a
variable φ in the reference node pppn are calculated
from K basis functions ϕk as

φ (ppp)≈
K

∑
k=1

αk(ppp)ϕk(‖ppp− pppn‖), ppp ∈n Ω, (1)
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with derivatives, calculated as

∂φ (ppp)
∂ξ

≈
K

∑
k=1

αk(ppp)
∂ϕk(‖ppp− pppn‖)

∂ξ
;

ξ ∈ {px, py} (2)

∂ 2φ (ppp)
∂ξ ∂ζ

≈
K

∑
k=1

αk(ppp)
∂ 2ϕk(‖ppp− pppn‖)

∂ξ ∂ζ
;

ξ ,ζ ∈ {px, py} (3)

‖ppp − pppn‖ is Euclidian distance between nodes
ppp and pppn where ppp = iiix px + iiiy py is introduced
in Cartesian coordinate system with base vec-
tors iiix and iiiy. Functions ϕk are chosen as
polynomials ϕ1 = 1; ϕ2 = (px − px n)/σ ; ϕ3 =
(py − py n)/σ ; ϕ4 = (px − px n)2/σ2; ϕ5 = (px −
px n) (py − py n)/σ2; ϕ6 = (py − py n)2/σ2, i.e.
K = 6.

In case of least squares approximation, coeffi-
cients αk are obtained from the solution of the
system of equations

Aααα = b. (4)

where the matrix A and the vector b are obtained
through the minimization of the functional

I (αk(ppp)) =
I=9

∑
i=1

Ŵ(‖ppp− pppi‖)
K

∑
k=1

[αk(ppp)ϕk(‖ppp− pppi‖)−φ (pppi)]
2 ,

(5)

which leads to the system of K ×K equations for
the calculation of the unknown coefficients α at
each node ppp in the subdomain nΩ. The number
of nodes in the domain of influence I should be
larger or equal to K, thus I ≥ K and is in our
case fixed to 9. The influence of the neighboring
nodes to the reference node is expressed in terms
of weight functionŴ which defines the condition-
ing of matrix A and subsequent accuracy and sta-
bility of the simulation. The left-hand side matrix
A and right-hand side vector b are written in ex-
plicit form for n’th subdomain as

nA jk =
I

∑
i=1

ϕk(pppi − ppp) nŴ (pppi − ppp)ϕ j(pppi − ppp), (6)

while right-hand side vector nb j is

nb j =
I

∑
i=1

ϕk(pppi − ppp) nŴ(pppi − ppp)φ (pppi). (7)

Gaussian weight function is defined as

Ŵ(ppp− pppn) =

{
e−c

‖ppp−pppn‖2

σ2 ; ‖ppp− pppn‖ ≤ σ
0 ; ‖ppp− pppn‖ > σ .

,

(8)

Gaussian weight function in equation (8) is char-
acterized by the shape parameter c. This shape
parameter, in general, may vary from one subdo-
main to another. In addition the shape parameter
can be chosen differently in different directions.
For example consider a 2D problem with 9 sup-
port nodes. In Figure 1a uniform distribution is
presented. The most appropriate weight function
for this case is intuitively radially symmetric, as
shown in Figure 1b.

In Figure 2a coordinate direction dependent uni-
form distribution of nodes is shown where grid
spacing is different in x and y directions. To ob-
tain better conditioning of matrix and consequent
more accurate spatial derivatives, the weight func-
tion for this case should be different in each di-
rection. In other words, the parameter c have to
be larger in x direction as in y direction as pre-
sented in Figure 2b. An extended formulation of
the weight function for the described case can be
written as

Ŵ(ppp− pppn) ={
e−cx

(px−pxn)2

σ2 −cy
(py−pyn)2

σ2 ;‖ppp− pppn‖ ≤ σ
0 ;‖ppp− pppn‖ > σ .

,

(9)

3 Solution procedure

The main problem of proper numerical imple-
mentation of DAM is the local selection of
shape parameter(s) in weight function in partic-
ular where non-uniform grids are present. We
introduce the following procedure for determina-
tion of corresponding shape parameter(s). The
procedure consists of three main steps; First, the
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(a) (b)

Figure 1: Uniform distribution. (a) Distribution of nodes, (b) Weight function

(a) (b)

Figure 2: Uniform non-equidistant distribution. (a) Distribution of nodes, (b) Weight function

measure against which the MLS approximation is
compared to has to be defined. This measure is
called the reference quality function. The refer-
ence quality function is used as a basis for evalua-
tion of numerical derivatives on uniform and non-
uniform grids. Second, a function called the ob-
ject function, which needs to be minimized, need
to be constructed. The object function is con-
structed from the spatial derivatives of the refer-
ence quality function on the hypothetic uniform
and non-uniform grid used in the problem dis-
cretization. And finally, the object function min-
imum is obtained by the use of the appropriate
optimization procedure.

Reference quality function: The reference qual-
ity function F is defined on each subdomain nΩ.
The reference quality function should not be any
of the used basis functions because in this case
the numerically calculated spatial derivatives al-
ways coincide with the analytical spatial deriva-
tives. In this work we define F in such a way that

F (ppp− pppn) = 1/Ŵ(ppp− pppn) inside nΩ and 0 out-
side nΩ. Explicitly, the reference quality function
is

F (ppp− pppn) ={
ecx

(px−pxn)2

σ2 +cy
(py−pyn)2

σ2 ; ‖ppp− pppn‖ ≤ σ
0 ; ‖ppp− pppn‖> σ

.

(10)

The reference quality function (10) is chosen be-
cause the right-hand side values cancel and the ex-
pression (7) simplifies to

nb j =
I

∑
i=1

ϕ j(pppi − pppn) nŴ(pppi − pppn) ·
1

nŴ(pppi − pppn)

=
I

∑
i=1

ϕ j(pppi − pppn).

(11)

The domain of influence usually contains a rela-
tively low number of nodes and the chosen refer-
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ence quality function is relatively steep. There-
fore the difference between the analytical and the
numerical partial derivatives might be very differ-
ent and the second partial derivatives of F cal-
culated on a given non-uniform grid should not
be compared to the analytically calculated par-
tial derivatives. For this reason our second partial
derivatives are obtained via least squares approx-
imation of the reference quality function calcu-
lated on a uniform grid. The approximation of the
reference quality function on the uniform grid is
denoted by Funi, while the approximation of the
reference quality function calculated on the posed
irregular grid is marked by Firr. Both approx-
imations of the functions and the partial deriva-
tives are obtained from equations (1-3). The de-
pendence on grid density is alleviated by scaling
of Euclidian distance between nodes in the basis
functions by the radius of influence in each subdo-
main nΩ. Coefficients α are thus calculated from
(4) by the least square approximation.

The approximation of the reference quality func-
tion on the uniform grid Funi is calculated with
cx = cy = 12.5 on the grid shown in Figure 3(left).
This value is chosen because it gave the most op-
timal results on all grids tested.

The evaluation of the second derivatives on the
uniform grid gives the constant value ∂2Funi

∂ p2
x

=
∂2Funi

∂ p2
y

= 6400.

Object function: Object function J is a func-
tion which needs to be minimized. The ob-
ject function proposed in this work seeks for the
minimum difference between the second partial
derivatives of the reference quality function cal-
culated on the uniform grid (Figure 3(left)) and
the second partial derivatives of the same func-
tion found on the real (non-uniform) grid (Figure
3(right)). Thus we seek for min{J (Φuni,Φirr)},
where Φuni and Φirr stand for the values or n’th
derivatives of Funi and Firr, respectively. There-
fore if the difference between derivatives of the
known reference quality function and reproduced
shape function are minimal, then the solution of
PDE will be the most accurate.

The selection of the object function has a strong
influence on optimization results. Finding the

most appropriate one is not an easy task. There-
fore our object function is constructed from two
parts. The first one is based on the assumption
that the most accurate derivatives are obtained on
a locally uniform grid. All results obtained on ar-
bitrarily arranged grid nodes are then compared
to the solution on the uniform grid. The second
condition which should be satisfied is that second
derivatives with respect to shape parameter in the
x and y directions are equal. Because errors of the
second derivatives are usually larger, our object
function is built only using second derivatives as
follows

J =
(

∂ 2Firr

∂ p2
x

− ∂ 2Funi

∂ p2
x

ω4
x

)2

(12)

+

(
∂ 2Firr

∂ p2
y

− ∂ 2Funi

∂ p2
y

ω4
y

)2

+ 16
(
ω2

x +ω2
y

)2 ·
(

∂ 2Firr

cx ∂ p2
x
− ∂ 2Firr

cy ∂ p2
y

)2

.

Object function forcing parameters ωx and ωy are
introduced to prevent the shape parameters from
being too different and too extreme and are de-
fined as ωx = cy/cx and ωy = cx/cy. The first two
terms in equation (12) are used to minimize the er-
ror between the second derivatives obtained on the
hypothetic uniform grid and the second deriva-
tives obtained on the arbitrary grid. The third term
in equation (12), however, is used to force the sec-
ond derivatives to be equal with respect to cx and
cy. Equivalence of the second derivatives is forced
more intensively when cx and cy are further apart.
The constant 16 is set as a weight between the first
two terms and the last term. For one parametric
formulation, equation (12) simplifies to

J =
(

∂ 2Firr

∂ p2
x

− ∂ 2Funi

∂ p2
x

)2

(13)

+

(
∂ 2Firr

∂ p2
y

− ∂ 2Funi

∂ p2
y

)2

+ 64

(
∂ 2Firr

c∂ p2
x
− ∂ 2Firr

c∂ p2
y

)2

.

The goal is to minimize the object function (13)
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Figure 3: Scaled node distribution (σ =
√

2): uniform (left), non-uniform (right).

for one parametric weight function or (12) for two
parametric weight function.

Optimization procedure: The optimization pro-
cedure can be chosen by the user. There are many
algorithms available [Fortran (2003)]. In cases
where J consists of more than one local min-
ima, special precaution and/or special optimiza-
tion procedures should be used. The choice of
optimization procedure also has a great influence
on the optimization time. For testing purposes a
simple but robust k-ary heap procedure with fixed
three children solutions is used:

1. Set the initial value of shape parameter c0.

2. Search for minimum around initial value
with large step λ1: c1

min = c0 ±λ1.

3. Search for minimum around c1
min with step

λ2: c2
min = c1

min ±λ2; λ2 = λ1 ϖ/2.

4. Refine search around c2
min: c3

min = c2
min ±

λ3; λ3 = λ2 ϖ/2.

5. Update new minimum (c2
min = c3

min).

6. Return to Step 4 if c3
min < c2

min.

7. Exit when condition in Step 6 is not satisfied.

λ1 is a user-defined step and ϖ ≈ 0.618 is the
golden section value. One parametric and two
parametric weight functions are used in optimiza-
tion procedure in this work. In the latter case
the weight function (9) has two shape parameters,
therefore shape parameters c and λ are second-
order vectors. The starting position is set to c0 =
{15,15} and initial step λλλ 1 = {10,10}. It is pos-
sible to expand the procedure to four degrees of
freedom for optimization of each weight function
quadrant in possible future work.

4 Numerical examples

The procedure to find optimum shape parameter
of the weight function proposed above is tested
on a convective-diffusive PDE using Dirichlet
boundary conditions.

4.1 Problem description

The optimization procedure is tested on the 2D
Burger PDE which describes the wave propaga-
tion in 2D domain. The Burger PDE is chosen
because it contains first and second order deriva-
tives and is time dependent which is important for
the calculation of real convection-diffusion phys-
ical problems. The second important feature of
the Burger equation is that the analytical solu-
tion is known. The dimensionless time period
considered for calculation is tmax=4. In this time
the “wave" propagates through the whole domain,
stretching from 0 to 1 in x and y direction, which
has two effects. The first is that each node is sub-
jected to the strong nonlinearity of the propagat-
ing wave in a certain time. The second is that er-
rors from one time step to another in an iterative
process are accumulated. The Burger PDE is de-
fined as

∂φ
∂ t

+φ
(

∂φ
∂ px

+
∂φ
∂ py

)
= ν

(
∂ 2φ
∂ p2

x
+

∂ 2φ
∂ p2

y

)
;

{px, py} ∈ Ω (14)

where ν = 0.05 is the dimensionless diffusion
constant. The analytical solution is

φ (px, py, t) =
1

1+exp
(

px+py−t
2 ν

) . (15)

Boundary conditions are Dirichlet boundary con-
ditions with values from (15) at the boundary.
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Figure 4: Analytical solution of the Burger equa-
tion at dimensionless times 0.25, 0.5, 0.75, 1, and
1.25.

At initial time t0 = 0 values for φ are taken from
the analytical solution, thus

φ (px, py,0) =
1

1+exp
(

px+py

2 μ

) . (16)

From this initial condition equation (14) is tem-
porarily discretized in an explicit manner. Vari-
able φ (px, py) at time tτ+1 is calculated explicitly
from variable φ at time tτ as

φ τ+1 = φ τ +Δt

(
ν

(
∂ 2φ τ

∂ p2
x

+
∂ 2φ τ

∂ p2
y

)

−φ τ
(

∂φ τ

∂ px
+

∂φ τ

∂ py

))
, (17)

where the derivatives are calculated as described
in equations (1-3). Time step Δt is 0.001 in all
numerical examples.

4.2 Grids used

The solution of the Burger equation is sought on
different node distributions. First, the tests are
carried out on random node distribution, and later
on grids with finer discretization at the bound-
aries. As proposed in [Lazzaro and Montefusco
(2002)] we define two quantities to measure the

density of the data set: separation distance δsep

which is the half distance between the closest pair
of nodes in the data set, and fill distance δ f ill

which gives the radius of the largest inner empty
space. Random grids are constructed here in a
way that nodes are initially distributed uniformly
with fill distance δ f ill,uni. From this initial posi-
tion each node is displaced randomly by δx in the
x direction and δy in the y direction. Displace-
ment is described by δ = 0% for no displacement
(δ f ill = δsep), i.e. uniform grid and δ = 50% for
maximal displacement to half of the initial dis-
tance δ f ill,uni/2 between the original neighboring
nodes (δsep = 0, δ f ill = δ f ill,uni/2). In latter case
the nodes can coincide at the same position. Grids
with 30 × 30 domain nodes for δ = 0(%) and
δ = 45% are shown in Figure 5 and Figure 6, re-
spectively. For the sake of comparison the same
seed number is used in the random generator (For-
tran RANDOM_NUMBER routine) in all cases
[Fortran (2003)]. Random grids are not used very
frequently in practice. Usually grids are regu-
lar, but still non-uniform as presented in Figure 7.
An example of such grid with finer node distribu-
tion near the boundary for improving calculation
accuracy and for better representation of bound-
ary layers is described for example in [Sadat and
Couturier (2000)] and here expanded for variable
stretching with

ppp = pppmin +
pppmax− pppmin

2
× (18)

×

⎛⎜⎜⎝1+
tanh

(
2 χpppr− pppmax+pppmin

2
pppmax−pppmin

)
tanh χ

⎞⎟⎟⎠ ,

where pppr corresponds to the position of the nodes
on an N × N uniform grid, χ is stretching fac-
tor and pppmax and pppmin stand for maximum and
minimum positions in the domain Ω, respectively.

Tests are carried out on four different random
grids, each defined with theoretical δ parameter:
δ = 0%, δ = 25%, δ = 35%, and δ = 45% and
one stretched non-uniform grid shown in Figure 7.
Errors are calculated in terms of maximal relative
error between analytical and numerical solution
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Figure 5: 30×30 with δ = 0% (uniform) grid.

Figure 6: 30×30 with δ = 45% random grid.

over the whole domain in each time step

η(τ) = max{|φ
τ
analytic−φ τ

numeric|
φ τ

analytic

}, (19)

where τ ∈ {0, tmax} is time, and n = 1, ...,N.

Example 1: Uniform grid The results pro-
duced on uniform grids are quite insensitive on
a wide range of parameter c (roughly from 10-30)
although the error decreases with increasing c as

Figure 7: 30×30 with stretching factor 1.3 grid.

shown in Figure 8. The results in terms of η(t) are
presented for four cases of fixed c parameters and
for optimized parameters cx and cy. Optimized
results are inside this range with value 12.5 as set
for the reference solution. Naturally, in this case
cx and cy are equal after the optimization. There-
fore both one parametric and two parametric opti-
mizations gave the same results.

Figure 8: Uniform grid, i.e. 30×30 with δ = 0%
grid.

Example 2: Slightly non-uniform random grid
(δ = 25%) Nodes are displaced from the initial
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uniform distribution by up to 25% in this case.
η(t) is roughly twice the error on the uniform
grid. Still, one can observe the same tendency of
lower errors for larger c parameter values (Figure
9). Again optimized results are very close to the
best fixed value of c. The variation of parame-
ter cx and cy values is small, since the grid is not
strongly non-uniform. However, the results ob-
tained by two parametric (denoted by Optimized
2P) weight functions give slightly lower error than
the results obtained by one parametric (denoted
by Optimized 1P) weight functions.

Figure 9: 30×30 with random δ = 25% grid.

Example 3: Non-uniform random grid (δ =
35%) Behavior η(t) in Figure 10 indicates that
the spectrum of fixed shape parameter values
with converged numerical solution is drastically
narrowed and the best shape parameter value is
around 10. At this point the optimized solution
is better than any other solution obtained by the
fixed shape parameter value.

Example 4: Extremely non-uniform random
grid (δ = 45%) The range of valid shape pa-
rameters at δ = 45% is further narrowed to values
between 9 and 10 (Figure 11) (Note that curves
are now marked with the same signs for different
c values). Therefore, in real cases, when dealing
with strongly unstructured grids, it is quite diffi-
cult to determine the most appropriate shape pa-
rameter value. Again, the optimized solution gave

Figure 10: 30×30 with random δ = 35% grid.

better results than any other solution obtained by
unique shape parameter value. The range of shape
parameters cx and cy in this case is between 5 and
20 and the variation of values in different subdo-
mains is large.

For more scattered grid nodes the solution can not
be obtained by any shape parameter value. With
the optimization proposed in this work the stabil-
ity of the solution is provided also for larger dis-
placements for the same seed number.

Figure 11: 30×30 with random δ = 45% grid.

Maximal relative errors for three different grid
densities are presented in Tables 1-3. Tabulated
results are given for larger spectra of shape pa-
rameters and for different grid densities, 20×20,
30×30, and 40×40, respectively. Errors marked
bold are the smallest.
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Table 1: Maximal relative errors (in %) on 20×20
random grid as a function of fixed c, one paramet-
ric (1P) and two parametric (2P) optimization.

c 0% 25% 35% 45%
5 16.210 24.015 27.831 26.643
7 11.015 18.540 23.032 23.885
8 9.665 16.936 21.570 -
9 8.806 15.797 20.486 -
10 8.266 14.957 19.632 -
11 7.930 14.301 19.454 -
15 7.474 13.320 24.771 -
20 7.419 12.553 - -
1P 7.631 14.444 21.023 22.583
2P 7.631 14.032 20.398 22.358

The tendency of shape parameter c to be smaller
for a larger degree of non-uniformity is clearly
seen. The solution in this case is obtained for the
fixed shape parameter value c ranging between 5
and 7, which is the range given in the literature.
Similar behavior is observed for the finer 30×30
grid in Table 2.

Table 2: Maximal relative errors (in %) on 30×30
random grid as a function of fixed c, one paramet-
ric (1P) and two parametric (2P) optimization.

c 0% 25% 35% 45%
5 5.997 8.680 9.817 -
7 3.739 6.642 8.373 34.310
8 3.157 6.602 8.056 13.580
9 2.790 6.274 7.852 9.442
10 2.557 6.021 7.530 10.910
11 2.421 5.856 7.639 -
15 2.227 5.444 9.560 -
20 2.202 5.215 - -
1P 2.299 5.708 7.462 8.862
2P 2.299 5.555 7.256 8.952

The best stability is assured for c around 10. For
the even finer 40 × 40 grid the range of valid
parameters is narrowed down. Here results are
presented only for up to δ = 35%, because for
δ = 45% the simulation diverged for all cases due
to the larger probability of achieving the given
theoretical limit δsep.

Table 3: Maximal relative errors (in %) on 40×40
random grid as a function of fixed c, one paramet-
ric (1P) and two parametric (2P) optimization.

c 0% 25% 35%
5 2.459 3.895 3.916
7 1.237 2.779 3.135
8 1.189 2.474 3.135
9 1.161 2.275 3.194
10 1.145 2.153 3.366
11 1.136 2.084 -
15 1.127 2.094 -
20 1.144 2.172 -
1P 1.138 1.976 3.034
2P 1.138 1.891 3.418

Example 5: Stretched non-uniform grid (χ =
1.3) This more realistic node arrangement can
be found more frequently in practice. Similar re-
fined non-uniform grids are obtained for exam-
ple with Delaney triangulation in Finite Element
Method (FEM), weith remeshing of grids, etc. Er-
rors are again smaller for larger values of c as
observed in Example 1 and Example 2, but for
larger values than 10 the simulation diverges (Fig-
ure 12), which is similar to critical values in Ex-
ample 3 and Example 4. The variation of parame-

Figure 12: Regular stretched non-uniform 30×30
grid with stretching factor χ = 1.3.

ters can be presented graphically. Figure 13 repre-
sents the spatial distribution of shape parameters
cx and cy.
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Figure 13: Shape parameter values c for one para-
metric optimization (top), and two parametric cx

(center) and cy (bottom).

The parameters are symmetrical with respect to
the x and y axis and range from 7.5 to 18.5. Sim-
ilar results are obtained by using one parametric
optimization.

Statistical comparison: For the sake of com-
parison, the results in Tables 1-3 are calculated on
the node distribution with the same seed number,
which determines the sequence of quasi-random
numbers. As a consequence the node distribution
is the same, only the displacement is bigger for
larger δ values. For real comparison several runs
have to be performed with random seed number
and same δ parameter. Naturally maximal over-
all error will vary from one node distribution to
another. In Table 4 results are presented for 100
runs and are given in terms of average error, stan-
dard error deviation and percentage of diverged
runs for fixed c as well as for one and two para-
metric optimization. Maximal errors over 10%
are excluded from the calculation of average er-
ror and standard deviation and are treated as di-
verged and listed separately as diverged. Parame-
ter c for δ = 25% is set to 15 as a balance between
accuracy and reasonable stability (number of con-
verged results). For δ = 35% the shape parameter
c is fixed to 10.

Table 4: Average overall maximal error, standard
deviation and number of diverged simulations as
a function of fixed c, one parametric (1P) and two
parametric (2P) optimization.

avg. std. dev. % div-
error erged

c=15 4.63 0.54 0
grid 1P 4.89 0.41 0

δ= 30×30 2P 4.75 0.36 0
25% c=15 1.97 0.26 2

grid 1P 1.95 0.15 0
40×40 2P 1.90 0.14 0

c=10 6.65 0.85 14
grid 1P 6.60 0.83 4

δ = 30×30 2P 6.57 0.77 3
35% c=10 3.30 0.83 15

grid 1P 3.21 0.84 6
40×40 2P 3.13 0.93 6

Table 4 clearly shows that stability (number of
converged runs) of the optimized weight function
is greatly improved with the optimization. Al-
though the average errors are sometimes just a lit-
tle bit bigger in case of optimized parameters than
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for the fixed parameter, optimized shape parame-
ters still give smaller standard deviation. While
for δ = 25% and grid density 30 × 30 the op-
timized and non-optimized solutions have 100%
convergence of calculations, on the finer 40×40
grid the non-optimized solution diverged in 2%
of cases. For c = 20 (which showed the best ac-
curacy for the same conditions in Table 2) on the
30× 30 grid, the simulation diverged in 14% of
cases.

With strongly non-uniform grids (δ = 35%) the
differences in the number of converged simula-
tions is much larger for both grid densities. In the
case of the 30×30 grid there are almost 4 times
more converged results in the case of optimized
shape parameters and in the case of the 40×40
grid more than 2 times.

The difference in the number of converged results
between one parametric and two parametric opti-
mization is negligible. However, the average ac-
curacy and standard deviation is smaller in case of
two parametric optimization. Optimization time,
naturally, increases with the number of the opti-
mization degree of freedom as shown in Table 5.
The time for 100 calculation nodes and one para-
metric optimization is taken as reference time tre f

and all others are calculated as

ηt =
t

tre f
, (20)

Table 5: Relative optimization time for one para-
metric (1P) and two parametric optimization (2P).

Number of nodes 1P 2P
100 1.00 2.65
400 3.66 11.54
900 8.13 26.38
1600 15.48 49.33
2500 27.61 84.39
10000 173.62 404.47

5 Conclusions

In this work an idea about finding the optimal
value of weight function shape parameters for
non-uniform grids is presented. Numerical re-
alization is made and tested on one meshless

method (DAM) and one time dependent PDE. The
idea developed in this work is original from two
standpoints. First, the optimization procedure is
set locally on each subdomain nΩ. Therefore each
node is optimized separately by the same local
reference quality function according to the spe-
cific node distribution in nΩ. Second, this idea
is extended to two parametric optimization for ra-
dially nonsymmetric weight function. The most
difficult problem is to find the appropriate refer-
ence quality and object function. The object func-
tion is in this work constructed intuitively and in
great part on an experimental basis. The main
conclusions, however, are very important. First,
the reference quality function should be tested lo-
cally for each domain of influence or support, and
second, the defined object function using the sec-
ond derivatives is good indicator for testing. This
statement may not be valid for some meshless
numerical methods such as Indirect Radial Basis
Function Network Method [Mai-Cao and Tran-
Cong (2003), Mai-Cao and Tran-Cong (2005)]
due to its unique property that second derivatives
are better approximated as lower order deriva-
tives. Optimization algorithm, as well as the refer-
ence quality function and the object function used
in this work may not be the most optimal but they
give promising results and the whole procedure is
quite robust and easy to code.

In presented examples it was shown that the fixed
values of shape parameters are far from being
optimal but they rather range from larger values
for uniform grids to lower values for increasingly
non-uniform grids. In this work one and two para-
metric weight functions are used. The difference
between one and two parametric weight functions
in terms of accuracy of the calculations and sta-
bility of the simulation is small. Optimization
time, however, increases considerably with the
optimization degree level, but it can be reduced
by tabulated object function values.

The same idea can be applied to any MLS based
meshless method most probably with different
reference quality and object functions.



Weight Function Shape Parameter Optimization in Meshless Methods for Non-uniform Grids 67

References

Atluri, S. N. (2004): The Meshless Methods
(MLPG) for Domain & BIE Discretizations. Tech
Science Press.

Atluri, S. N.; Shen, S. (2002): The Meshless
Local Petrov-Galerkin (MLPG) Method. Tech
Science Press.

Belytscko, T.; Krongauz, Y.; Fleming, M.; Or-
gan, D.; Liu, W. K. (1996): Smoothing
and acceleration computations in the element free
galerkin method. Computational Methods in Ap-
plied Mathematics, vol. 74, pp. 116–126.

Couturier, S.; Sadat, H. (1999): Melting driven
by natural convection: A comparison exercise.
International Journal of Thermal Sciences, vol.
38, pp. 5–26.

Fortran (2003): Compaq Visual Fortran 6.6,
2003.

Golberg, M. A.; Chen, C. S.; Karur, S. R.
(1996): Improved multiquadric approximation
for partial differential equations. Engineering
Analysis with Boundary Elements, vol. 18, pp. 9–
17.

Kansa, E. J. (1990): Multiquadrics - a scat-
tered data approximation scheme with application
to computational fluid dynamics-i. Computers &
Mathematics with Applications, vol. 19, pp. 127–
145.

Kansa, E. J.; Hon, Y. C. (2000): Circumventing
the ill-conditioning problem with multiquadric ra-
dial basis functions: Applications to elliptic par-
tial differential equations. Computers & Mathe-
matics with Applications, vol. 39, pp. 123–137.

Lazzaro, D.; Montefusco, L. B. (2002): Radial
basis functions for the multivariate interpolation
of large scattered data sets. Journal of Compu-
tational and Applied Mathematics, vol. 140, pp.
521–636.

Liu, G. (2003): Mesh Free Methods: Moving
Beyond the Finite Element Method. CRC Press,
London, New York.

Mai-Cao, L.; Tran-Cong, T. (2003): Solving of
Time-dependent {PDE}s with Meshless IRBFN-
based Method.

Mai-Cao, L.; Tran-Cong, T. (2005): A mesh-
less IRBFN-based method for transient problems.
CMES: Computer Modeling in Engineering &
Science, vol. 7, no. 2, pp. 149–171.

Nayroles, B.; Touzot, G.; Villon, P. (1991):
L’approximation diffuse. Mécanique des Milieux
Continus, vol. 2, pp. 293–296.

Nie, Y. F.; Atluri, S. N.; Zou, C. W. (2006): The
optimal radius of the support of radial weights
used in moving least squares approximation.
CMES: Computer Modeling in Engineering &
Science, vol. 12, no. 2, pp. 137–147.

Perko, J. (2005): Modelling of Transport
Phenomena by the Diffuse Approximate Method.
Doctoral dissertation, School of Applied Sci-
ences, Nova Gorica Polytechnic, 2005.

Perko, J.; Šarler, B.; Rek, Z. (2000): Conver-
gence study of dual reciprocity BEM for Navier-
Stokes equations. Zeitschrift fűr Angewandte
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