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A Novel Form of Reproducing Kernel Interpolation Method with
Applications to Nonlinear Mechanics

Amit Shaw1 and D Roy2

Abstract: A novel discretization strategy and
derivative reproduction based on reproducing ker-
nel (RK) particle approximations of functions are
proposed. The proposed scheme is in the form
of an RK interpolation that offers significant nu-
merical advantages over a recent version of the
strategy by Chen et al. (2003), wherein the au-
thors added a set of primitive functions to the re-
producing kernel (enrichment) functions. It was
also required that the support size of the prim-
itive function be less than the smallest distance
between two successive grid points. Since the
primitive function was required to vary from 0
to 1 within half of this support size, this poten-
tially led to considerable numerical corruption of
the algorithm. In contrast, the present version of
the interpolating strategy, which is far less prone
to such numerical ill-conditioning, linearly com-
bines two different families of RK basis functions
and determines the coefficients of the linear com-
bination using the interpolating conditions. Apart
from the interpolation scheme, a new technique
for approximating derivatives of RK basis func-
tions is also proposed. Such an approximation
is based on a direct reproduction of derivatives
within any given polynomial space. Detailed er-
ror estimates are provided and convergence stud-
ies are performed for a couple of test boundary
value problems with known exact solutions. The
proposed method is next applied to a class of one-
dimensional beam equations (Elastica and Plas-
tica) and a two-dimensional von Karman plate
equation. Some of these results are compared
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with those obtained from a few other competing
algorithms, such as the standard form of RK parti-
cle method, the interpolating RK method by Chen
et al. (2003) as well as the classical finite element
method. The relative numerical advantages of the
new method are brought out in the process.

1 The Introduction

Recently the idea of mesh free methods for nu-
merical solutions of partial differential equations
(PDE-s) has found considerable appeal amongst
researchers. These methods, unlike classical
forms of finite element methods, do not require
any mesh generation for discretizations of com-
plicated structural geometries defined over 1, 2 or
3 dimensions. In the process, several mesh-free
methods have been developed and reported over
the last two decades. In particular, mention may
be made of the diffuse element method (DEM)
(Nayrole et al. 1992), the element free Galerkin
method (EFG) (Belytschko et al. 1994, Barry
and Saigal 1999, Kaljevic and Saigal 1997, Lu
et al. 1994), the partition of unity finite element
method (PUFEM) (Babuska and Melenk 1997,
Melenk and Babuska 1996), the h − p Clouds
(Duarte and Oden 1997), the moving least-square
reproducing kernel method (MLSRK) (Liu et al.
1995a, 1995b, Liu and Belytschko 1996, Chen
et al. 1996, 1997, Jin et al. 2001, Atluri et al.
2002a, 2004a), the meshless local boundary inte-
gral equation method (LBIE) (Zhu et al. 1998),
the smooth particle hydrodynamics method (Gin-
gold and Monaghan 1977), the meshless local
Petrov–Galerkin method (MLPG) (Atluri et al.
1998, 2002b, 1999), mesh-free point collocation
methods (Aluru 2000), the point interpolation
method (Liu and Gu, 1999, 2000b, 2001a, b, c,
d), the boundary point interpolation methods (Liu
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and Gu, 2000d; Gu and Liu 2001a, b), the repro-
ducing kernel element method (Liu et al. 2004, Li
et al. 2004, Lu et al. 2004, Simkins et al. 2004)
and several others.

Mesh-free shape functions are generally not inter-
polating in most of the methods noted above and
thus it is difficult to impose essential boundary
conditions, to apply nodal loads and even to de-
rive collocation methods towards obtaining strong
solutions of the governing differential equations.
As reported in the literature, interpolating proper-
ties in mesh-free approximation may be achieved
in several ways - such as coupling of mesh-free
and finite element shape functions with a ramping
in the transition zone (Krongauz and Belytschko
1996), coupling and enrichment of finite element
and mesh-free shape functions with reproducing
conditions (Huerta and Fernandez-Mendez 2000),
hierarchical enrichment of finite element solu-
tions using a mesh-free approximation (Wagner
and Liu 2001). All these methods require an un-
derlying grid structure for construction of finite
element shape functions. Based on the idea of
coupling mesh-free and finite element shape func-
tion (Krongauz et al. 1996 and Huerta et al.
2000), Chen et al. (2003) have proposed a tech-
nique for mesh-free approximation that recovers
nodal values at designated grid points without any
finite element enrichment. This method of mesh-
free approximation is constituted of a primitive
function and an enrichment function. While the
primitive function is used to introduce the Kro-
necker delta properties, the enrichment function
is for imposing the polynomial reproducing con-
ditions. However, to satisfy the Kronecker delta
property, the support size of primitive functions
is chosen sufficiently small so it does not cover
(contain) any neighboring points. However, since
the primitive function is constrained to achieve a
value of unity within about half of this small sup-
port size (starting from zero at the support bound-
ary), it is likely to cause ill-conditioning of the
reduced (projected) system equations leading to
spurious oscillations, especially in higher deriva-
tives, in the approximated function(s).

The purpose of this paper is to propose and nu-
merically explore a new form of mesh-free, in-

terpolating functional approximations and their
derivatives through the reproducing kernel ap-
proach. In the conventional form of the repro-
ducing kernel particle method (RKPM), deriva-
tives of the moment matrix and correction func-
tions are required for the construction of deriva-
tives of shape functions. This may potentially
lead to considerable numerical errors and Gibbs’
phenomena especially in the higher order deriva-
tives. Therefore the development of efficient al-
gorithm for derivative construction of meshfree
shape functions is still an active research area.
Many authors have addressed the issue of efficient
approximations of derivatives of the meshless in-
terpolation functions. A meshless finite volume
method (MFVM) through MLPG mixed approach
has been proposed and numerically explored by
Atluri et al. (2004b, 2005, 2006a, 2006b), Han et
al. (2005, 2006). In the MLPG mixed approach,
both the displacement function and its derivatives
(strains, velocity, displacement gradient etc.) are
interpolated separately. Consequently, costly dif-
ferentiations of meshfree shape functions at the
quadrature points are avoided. In this study, a new
scheme for approximating derivatives of RKPM
basis functions is proposed. It is based on the
premise that the β th derivative of RKPM basis
functions will exactly reproduce the β h derivative
of an arbitrary function in the space of polynomial
Pp of degree p≥ |β |. This derivative reproduction
scheme does not require computing derivatives
of the moment matrix and correction functions.
Moreover a novel and numerically stable interpo-
lating scheme, which eases the treatment of es-
sential boundary conditions and imposed nodal
loads, is proposed in this paper. The first step
in the derivation of the interpolating form is to
make use of weighted B-splines as basis functions
to approximate a smooth function. Weights are
obtained from the polynomial reproducing con-
ditions. Then another set of non-B-spline ba-
sis functions are used to obtain the requisite cor-
rection so that the entire approximation becomes
interpolating. Owing to the variation diminish-
ing property of B-spline curves, it can reproduce
sharp layers very accurately. For constructing the
correction function, an exponential window func-
tion has been used. An analysis of the order of
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accuracy and convergence of the method is pro-
vided. The proposed algorithm is then applied
for numerical studies of a few non-linear bound-
ary value problems of typical interest in solid me-
chanics. In the process, it is numerically verified
that the present version of the derivative reproduc-
tion and interpolating strategy has a higher numer-
ical stability as compared with a few other com-
peting algorithms, such as the standard form of
RKPM and the interpolating RKPM proposed re-
cently by Chen et al. (2003).

2 The Reproducing Kernel Approximation

For purposes of a better appreciation of the al-
gorithms to be presented in the following sec-
tions, it is essential to briefly introduce the con-
cept of functional approximation through RKPM.
Let u(x), x ∈ Rn be a sufficiently smooth func-
tion defined on a simply connected open set
Ω ⊂ Rn with Lipschitz continuous boundary and
Pp = Pp(Ω) the vector space of the polynomi-
als of degree ≤ p on Ω where p is the high-
est degree of polynomials that can be reproduced
by the mesh-free shape functions. Dimension
of Pp is (p+n)!/p!n!. For convenience multi-
index notation is adopted throughout the paper.
Thus, defining α = (α1,α2, . . .. . .αn) (with n > 0)
to be an n-tuple of non-negative integersα j, α
is referred to as the multi-index and its length

is defined as |α | =
n
∑

i=1
αi. Then α th (Fréchet)

derivative of function u(x) can be expressed as
Dα u(x) = ∂ α1

x1
∂ α2

x2
. . . . . .∂ αn

x3
u(x). Similarly α! =

α1!α2! . . . . . .αn! and xα = xα1
1 xα2

2 . . . . . .xαn
n . Let

Ω = Ω ∪ ∂Ω be the (closed) domain of interest

discretized by a set of grid points
{
{xi}NP

i=1

}
⊂

Ω (also referred to as particles) so that one
can define the set of discretized function val-

ues
{

ui
Δ= u(xi)

}NP

i=1
. Then a continuous function

u(x) ∈ C(Ω) may be approximated as:

ua(x) =
NP

∑
i=1

C(x−xi)φai(x−xi)ui (1)

where ai ∈ R+ is called the dilation parameter as-

sociated with ith node (particle),
{

φi
Δ= φ (x−xi)

}
is a set of finitely and compactly supported basis

functions centered at xi, φa(x) = φ (x/a) is the a-
dilated basis function. C(x− xi) is presently re-
ferred to as the correction function and may ex-
pressed as:

C(x−xi) = HT (x−xi)b(x) (2)

where HT (x − xi) = {(x − xi)α}|α |≤p is a
set of monomial basis functions and b(x) =
{bα(x)}|α |≤p are coefficient functions that may be
interpreted as moving with the location of approx-
imation x. Now equation (1) may be written as:

ua(x) =
NP

∑
i=1

Ψi(x)ui (3)

Ψi(x) = HT (x−xi)b(x)φai(x−xi) (4)

The coefficient function vector b(x) is determined
from the following polynomial reproducing con-
ditions:

NP

∑
i=1

Ψi(x)xα
i = xα , |α | ≤ p (5)

⇒
NP

∑
i=1

Ψi(x)(x−xi)α = δ|α |,0, |α | ≤ p (6)

⇒
NP

∑
i=1

HT (x−xi) ·b(x)φai(x−xi)H(x−xi)

= H(0) (7)

⇒ M(x)b(x) = H(0) (8)

where,

b(x) = M−1(x)H(0) (9)

is the coefficient vector and

M(x) =
NP

∑
i=1

H(x−xi)HT (x−xi)φai(x−xi) (10)

is the moment matrix. Using equations (4) and
(9), RKPM shape function Ψi(x) may be ex-
pressed as:

Ψi(x) = HT (0)M−1(x)H(x−xi)φai(x−xi) (11)
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Derivatives of RKPM shape functions, obtained
form equation (11) may be determined as:

Ψi,xk = C,xk φai +Cφai,xk , k ∈ [1,NP] (12)

where C,xk and φai,xk are first derivatives of the cor-
rection function C and the kernel function φai re-
spectively with respect to xk. C,xk may be calcu-
lated as:

C,xk = H,xkb(x)+Hb,xk (13)

where b,xk(x) is the vector containing the xk-
derivative of the correction function coefficients
and may be obtained from the reproducing condi-
tions as:

M,xkb+Mb,xk = 0 (14)

where M,xk is the first derivatives of moment ma-
trix M(x). Similarly second order derivative of
Ψi(x) may be obtained by the following set of
equations:

M,xkxk b+2M,xkb,xk +Mb,xkxk = 0 (15a)

⇒ b,xkxk = −M−1(M,xkxkb+2M,xk b,xk) (15b)

C,xk = H,xkxk b+2H,xkb,xk +Hb,xkxk (15c)

Ψi,xkxk = C,xkxk φai +C,xk φai,xkxk +Cφai,xkxk (15d)

Still higher order derivatives of Ψi(x) may be
computed in a similar fashion. Since derivative
construction in this manner requires derivatives of
the moment matrix and correction functions, it is
numerically intensive and may potentially lead to
considerable numerical error especially in higher
order derivatives. A way to circumvent this dif-
ficulty is proposed in the next section wherein
derivatives of RKPM basis functions are shown to
be computable based on the polynomial reproduc-
tion condition within a given finite-dimensional
polynomial space.

3 A New Scheme for Derivative Reproduc-
tions

Numerically accurate and stable computation of
derivatives plays an important role in the perfor-
mance of a mesh-free collocation algorithm ap-
plied to solve any differential equation. A novel

and numerically accurate scheme for computa-
tions of derivatives of RKPM basis functions is
proposed in this section. It is based on the premise
that α th derivatives of RKPM basis functions will
exactly reproduce α th derivatives of an arbitrary
element of the space Pp of polynomials of de-
gree p ≥ |α |. Thus following Liu and Belytschko
(1997), consistency relations for derivatives of
RKPM basis functions for φ ∈ Ck(Ω) are

NP

∑
i=1

Dβ Ψi(x)(x−xi)α = (−1)|β |α!δβα ,

∀|β | ≤ k, |α | ≤ p (16)

Now, let Ψ(β)
i (x) Δ= Dβ Ψi(x) be another family of

RKPM basis functions, which exactly reproduce
β th derivatives of elements in the space Pp for
p ≥ |α | and ∀|β | ≤ k. Then equation (12) may
be written as:

NP

∑
i=1

Ψ(β)
i (x)(x−xi)α = (−1)|β |α!δβα ,

∀|β | ≤ k, |α | ≤ p (17)

⇒
NP

∑
i=1

Ψ(β)
i (x)H(x−xi) = (−1)|β |H(β)(0),

∀|β | ≤ k (18)

where H(β)(x) Δ= Dβ H(x) be the β th derivative of
monomial basis function H(x) and is given by:

H(β)(x) =
{

α!
(α −β )!

xεαβ : εαβ = (α −β )

if β ≤ |α | and 0 if β > |α |
}

(19)

It is clear from equation (19) thatH(0)(x) = H(x).
For example, in the one-dimensional case (n = 1),
one has:

H(0) = H(x) = {1, x, x2, x3 . . . . . .xp} (20a)

H(1) = {0, 1, 2x, 3x2 . . . . . . pxp−1} (20b)

H(2) = {0, 0, 2, 6x . . . . . . p(p−1)xp−2} (20c)
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Ψ(β)
i (x) may be constructed in the same way as

the RKPM basis functions. Now equation (18)
may be written as:

NP

∑
i=1

Cβ (x−xi)φai(x−xi)H(x−xi)

= (−1)|β |H(β)(0) (21)

where Ψ(β)
i = Cβ (x−xi)φai(x−xi) (22)

NP

∑
i=1

HT (x−xi)bβ (x)φai(x−xi)H(x−xi)

= (−1)|β |H(β)(0) (23)

where Cβ (x − xi) = HT (x− xi)bβ (x) is the cor-
rection function for the β th derivative reproduc-
tion and bβ (x) = {bβ

α(x)}|α |≤p is the vector of un-
known coefficients. Equation (23) may now be
written as:

M(x)bβ(x) = (−1)|β |H(β)(0) (24)

⇒ bβ (x) = (−1)|β |M−1(x)H(β)(0) (25)

From equations (21) and (25), one can write

Ψ(β)
i (x)

= (−1)|β |HT (β)(0)M−1(x)H(x−xi)φai(x−xi)
(26)

3.1 Illustrative Examples

To demonstrate the efficacy and numerical accu-
racy of the proposed scheme for derivative repro-
duction, the test function f (x) = sinx is first cho-
sen. Third and fourth derivatives of f (x) are ob-
tained via the standard RKPM and the proposed
scheme. Plots of absolute errors in these deriva-
tives through the two methods are shown in fig-
ures 1(a) and (b). It is amply clear that the abso-
lute error via the present scheme is significantly
smaller than that via the regular RKPM. For yet
another test function f (x) = exp(5x), plots of ab-
solute errors in the second and third derivatives, as
obtained through the present scheme and the re-
producing kernel interpolating (RKI) scheme by
Chen et al. (2003), are provided in figures 1(c)
and (d). The superior performance of the present
scheme is evident in these figures too.

4 A Novel Form of Reproducing Kernel In-
terpolation:

A new and improved form of reproducing kernel
interpolation scheme is developed in this section.
First polynomials up to a certain degree are repro-
duced by a set of weighted B-spline basis func-
tions. Weights are obtained from the reproduc-
tion conditions as detailed in section 2. Then a
correction vector function is introduced for recov-
ering the interpolation property of the weighted
B-spline approximations. A more detailed deriva-
tion of the proposed scheme is provided in the fol-
lowing sub-sections.

4.1 Weighted B-spline Basis Functions

A brief introduction to B-spline basis functions,
curves and surfaces is provided in Appendix I for
a ready reference. However detail descriptions of
B-splines may be available in (Piegl, and Tiller
1995). In general B-spline basis functions nei-
ther reproduce any polynomials nor do they in-
terpolate the control points. Several techniques
for shape modifications are available in the lit-
erature (Au and Yuen 1995, Juhász 1999), but
they are mostly in the context of NURBS (non-
uniform rational B-spline) curves. Moreover, in
these approaches, a constant weight is assigned
to each control point. Although these techniques
are very popular in CAD-CAM applications, the
absence of reproducing properties renders them
unsuitable for direct adaptations to mesh-free nu-
merical analysis. Presently a weight-based shape
modification of B-spline basis functions is consid-
ered. Weights are assumed to be spatially varying
functions. Accordingly the pth order weighted B-
spline basis function may be constructed as:

Ni,p(x) = Ni,p(x)wi(x) (27)

where,

wi(x) = HT (x−xi)b(x) (28)

H(x−xi)

=
{

1, (x−xi), (x−xi)2, . . .. . .(x−xi)p} (29)

b(x) = {b0(x),b1(x), . . .. . .bp(x)} (30)
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Figure 1: Plots of absolute errors in derivatives (a), (b) third and fourth derivatives via the RKPM (regu-
lar) and new derivative reproduction scheme for the target function f (x) = sinx; (c), (d) second and third
derivatives via the new RKI and RKI (Chen et al.) for the target function f (x) = e5x

Coefficient vector b(x) may be determined from
the pth order reproducing conditions:

NP

∑
i=1

Ni,p(x)xα
i = xα , |α | ≤ p (31)

Equivalently, we may write:

NP

∑
i=1

Ni,p(x)wi(x)(x−xi)α = δ|α |,0, |α | ≤ p (32)

i.e.,
NP

∑
i=1

Ni,p(x)wi(x)H(x−xi) = H(0) (33)

Substituting for wi(x) from equation (27), we
have:

NP

∑
i=1

Ni,p(x)HT (x−xi)H(x−xi)b(x) = H(0) (34)

where, b(x) = M
−1(x)H(0) (35)
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and, M(x) =
NP

∑
i=1

Ni,p(x)HT (x−xi)H(x−xi) (36)

Noting equation (27), we finally have:

Ni,p(x) = HT (0)M−1(x)H(x−xi)Ni,p(x) (37)

4.2 The Corrected RK Interpolation Function

Note that the weighted B-spline basis functions,
obtained so far, are not interpolating. Towards
bringing in the interpolation property, we intro-
duce a vector of correction functions,{Ci(x)}, and
thus modify the RK shape function as:

Ψi(x) =
1

αi(x)+βi(x)
[αi(x)Ni,p(x)+βi(x)Ci(x)]

(38)

The correction function Ci(x) must satisfy the re-
producing condition given in equation (9) and it is
presently written as:

Ci = H(x−xi)b(x)φai(x−xi) (39)

The coefficient vector b(x) is obtained, as usual,
from the reproducing condition given in equa-
tion (9). Any non-negative function with a com-
pact support (barring the p-th order B-spline func-
tion Ni,p(x)) may be taken as the window func-
tion φa(x−xi) to construct Ci(x). Functions αi(x)
and βi(x) in equation (38) are the coefficients
introduced to satisfy the interpolation property.
Since Ni,p(x) and Ci(x) both are n reproducing
and linearly independent, any linear combination
Ni,p(x) and Ci(x) is also n-reproducing. Using the
normalizing conditionαi(x)+ βi(x) = 1, we write
equation (38) as:

Ψi(x) = αi(x)Ni,p(x)+(1−αi(x))Ci(x) (40)

We may make the shape functions interpolating
by first evaluating equation (40) at x j as:

Ψi(x j) = αi(x j)Ni,p(x j)+(1−αi(x j))Ci(x j) (41)

Computations of the coefficients αi(x j) from the
following equations then impose the interpolating
condition:

Ψi(x j) = αi(x j)Ni,p(x)+(1−αi(x j))Ci(x j) = δi j

(42)

i.e., αi(x j) =
δi j −Ci(x j)

Ni,p(x j)−Ci(x j)
(43)

Following the evaluation of the discrete values
αi(x j) at each nodal point, the function αi(x) may
be constructed as:

αi(x) =
NP

∑
j=1

Γ j(x)αi(x j) (44)

so that

Ψi(x j) = Ni,p(x)
NP

∑
j=1

Γ j(x)αi(x j)

+

(
1−

NP

∑
j=1

Γ j(x)αi(x j)

)
Ci(x j) (45)

where Γ j(x) is any RKPM basis function or any
interpolating function.

4.3 Dilation Parameter for the Weighted B-
spline Basis Function

A key strategy of the proposed reproducing ker-
nel interpolation (RKI) method is to take a linear
combination of two different families of RK ba-
sis functions and determine the coefficients of the
linear combination through the interpolating con-
ditions. Towards ensuring that the RKI approx-
imation interpolates the functional values at all
grid point, it is essential to have the same support
size for both the weighted B-spline basis func-
tion Ni,p(x) and the correction functionsCi(x) for
a given i. The support size of the window func-
tion φ , controlled by dilation parameter a, defines
that of an RKPM basis function. Indeed, the dila-
tion parameter a is required to dilate the window
functionφ (x) such that it covers at least (p+n)!

p!n! par-
ticles, which in turn ensures invertibility of M(x).
Since proposition 1 (see section 5) guarantees the
non-singularity of M(x) (i.e., the moment matrix
for weighted B-spline basis functionNi,p(x)), no
dilation parameter is as such needed to ensure
uniqueness of b(x). However for any other win-
dow function φ (x) (possibly used to construct the
correction function Ci(x) in equation 39) without
the local support property of B-spline functions,
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a dilation parameter is required to appropriately
modify the support size of correction functions.
Accordingly, Ni,p(x) must also be similarly di-
lated so that its support size becomes identical
with that of Ci(x). With ai ∈ R+ being the dilation
parameter associated with ith particle for a one-
dimensional kernel functionφ (x), the support ra-
dius ofCi(x), constructed usingφ (x), is alsoai. On
the other hand, support radius of Ni,p(x) is (p+1)

2 h,
where, h is a characteristic spatial step size. In or-
der to make support sizes of the two component
functions equal, the dilation parameter for Ni,p(x)
must be given by ai = 2ai

(p+1)h .

Finally, it is useful to note that the modified
RK interpolation functions possess the following
properties:

1. If Ni,p(x) ∈Ckb and Ci(x) ∈Ckc then Ψi(x) ∈
Cmin(kb,kc)

2. From the local support property of B-spline
basis functions, Ni,p(x)will always cover p+
1 points and thus M(x) in equation (36) is
always invertible.

3. Shape functions Ψi form a partition of unity,
i.e.,

NP

∑
i=1

Ψi(x) = 1 ∀x ∈ Ω

4. Shape functions Ψi possess the Kronecker
delta property, i.e,

Ψi(x j) = δi j ∀xi,x j ∈ Ω

4.4 Illustrative Examples

Towards a numerical demonstration of the above
method, we adopt B-spline basis functions with
p = 5 and also a uniform knot (nodal) distribution.
In order to construct the correction functionCi(x),
the following exponential function is adopted as
the kernel function.

φ (x) =

{
e

1
|x|2−1 if |x| ≤ 1

0 otherwise
(46)

Two constituent functions Ni,p(x) andCi(x), and
the modified RK interpolation function Ψi(x)

(which is the weighted sum of the first two con-
stituent functions) are shown respectively in fig-
ures 2(a), (b) and (c). Figures 2(a) and (b) clearly
indicate that the maxima and minima of Ci(x) are
an order of magnitude less than those of Ni,p(x).
This quite justifies the choice of the kernel func-
tion φ (x) (as in equation (46)) since Ci(x) is just
supposed to correct the errors while interpolat-
ing a given function f (x) using Ni,p(x). While
other choices for φ (x) are possible, it is worth
noting that φ (x) must be different from 5th or-
der B-spline functions for the present method to
work. As an example on how the interpolation
works, we once again choose the same couple of
elementary test functions as in figure 1, viz. a
periodic function f (x) = sin(2πx) and a mono-
tonically increasing function f (x) = e5x for x ≥ 0.
Figures 3(a, b) show the modified RK interpolant
and its two constituent functions Ni,p(x) and Ci(x)
for the two target functions. It is once more ob-
served that values of the correction component are
consistently an order less in magnitude than those
of the main approximating component through B-
splines. Moreover, both the components appear
to be consistently sharing the oscillatory or mono-
tonicity characteristics (as the case may be) of the
target functions. It is also evident that, for oscil-
latory target functions (such as the sine function),
there is a phase difference of π between the two
components.

5 Error Analysis

Let u(x) be a sufficiently smooth function defined
on a simply connected open set Ω ∈ Rn. We de-
note by Ω the closure of Ω and also by ∂Ω the
boundary of Ω. The boundary of Ω is assumed to
be of Lipschitz type. That means that the bound-
ary ∂Ω ∈ Rn−1 is a graph of a Lipschitz function
(Brener and Scott, 1994). This is done to avoid
boundaries with singularities like the cusp so that
Green’s formula for integration on the boundary
holds. By Ck

0(Ω), k > 0 we mean the set of all k-
differentiable functions on Ω which have a com-
pact support in Ω. Then for any family of discrete

distribution
{
{xi}NP

i=1

}
⊂ Ω, recall that a continu-

ous function u ∈ C(Ω) is presently being approx-
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Figure 2: One dimensional example of modified RK interpolation function (a) weighted B-spline basis
function; (b) correction functions; (c) modified RK interpolation function
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Figure 3: A demonstration of how the new RK interpolation works with target functions: (a) f (x) = sin(2πx)
and (b) f (x) = e5x

imated as:

ua(x) =
NP

∑
i=1

Ψi(x)ui (47)

where Ψi(x) is the interpolating form of RK shape
function given by:

Ψi(x) = α(xi)Ni,p(x)+(1−α(xi))Ci(x) (48)

Also recall that Ni,p(x) and Ci(x) are two different
families of RKPM basis functions and separately

satisfy the reproducing conditions as:

Np

∑
i=1

Ni,p(x)xα
i = xα (49a)

Np

∑
i=1

Ci(x)xα
i = xα (49b)

Now consider a particle distribution
{
{xi}NP

i=1

}
in

the closed domain Ω = Ω∪∂Ω and denote ΓD ⊂
∂Ω as the part of the boundary (∂Ω) with only
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Dirichlet boundary conditions prescribed. The in-
terpolating RK shape functions are given by equa-
tion (48). Then for any particle (node) x j ∈ Ω the
Kronecker delta property holds:

Ψi(x j) = δi j, 1 ≤ i ≤ NP (50)

Errors are presently estimated for the case of
quasi-uniform support sizes, i.e., ∃ two constants
c1,c2 ∈ (0,∞) such that,

c1 ≤ ai

a j
≤ c2 ∀i, j (51)

where, ai is dilation parameter associated with the
ith node. Then for such a particle distribution ∃
a typical (characteristic) support size asuch that
[Han and Meng 2001],

c̃1 ≤ ai

a
≤ c̃2 ∀i and 0 < c̃1 ≤ c̃2 < ∞ (52)

To start deriving the error estimates, some defini-
tions would prove useful.

Definition 1: A point x ∈ Ω is said to be cov-
ered by m shape functions if there are m indices
i1, . . . . . . , im such that∣∣x−xi j

∣∣< ai j , j = 1, . . . . . . ,m (53)

Definition 2: For any x ∈ Ω, a necessary condi-
tion for M(x) to be invertible is that x is covered
by at least NP = dimPp = (p+n)!

p!n! shape functions,
where p is the highest degree among the set of
monomials that can be reproduced by mesh-free
shape functions and n is the spatial dimension.

Proposition 1. The moment matrix M(x) corre-
sponding to an a-dilated B-spline basis functions
is invertible for all p ≥ 1 and a > 0.

Proof. Higher dimensional B-spline basis func-
tion may be constructed by taking the tensor prod-
uct of B-spline basis functions in one dimension
as given in the Appendix I. Because of its local
support property, one dimensional B-spline basis
function Ni,p(x) is exactly covered by p+1 points
and its n-dimensional counterpart is exactly cov-
ered by (p + 1)n points. Now the necessary con-
dition for M(x) to be invertible is that x is covered
by at least (p+n)!

p!n! shape functions. Since, one has

(p+n)!
p!n!

=
n

∏
j=1

(p+ j)
j

< (p+1)n, ∀n > 1

and
(p+1)!

p!
= (p+1), n = 1, (54)

the proposition follows.

Definition 3: The particle distribution
{
{xi}NP

i=1

}
is said to be (a, p)regular if ∃ a constant
L(c0,σ0) and integers i0, ..., ip ∈ [1,NP] such that
max
x∈Ω

∣∣∣∣M0(x)−1
∣∣∣∣

2 ≤ L(c0,σ0), where c0 and σ0

are two positive real constants satisfying the fol-
lowing conditions for any x ∈ Ω:

min
0≤ j≤p

φ
(

x−xi j

a i j

)
≥ c0 > 0 (55a)

min
0≤ j≤p

∣∣x−xi j

∣∣
ai j

≥ σ0 > 0 (55b)

Moreover,

M0(x)

=
NP

∑
i=1

φ
(

x−xi j

ai

)
H

(
x−xi j

a

)
H

(
x−xi j

a

)T

(56)

denotes the scaled moment matrix.

In particular, for multi-linear shape functions, a

particle distribution
{
{xi}NP

i=1

}
is (a,1) regular if

∃ two constants c0, c̃0 > 0 such that for any x ∈ Ω,
there are n+1 particles xi0 , . . . ,xin satisfying

min
0≤ j≤n

φ
(

x−xi j

a

)
≥ c0 > 0 (57)

and the n-simplex with the vertices xi0 , . . .,xin has
a volume larger than c̃0an. A more relevant point
to note in the present context is that if φ (x) is a p-

th order B-spline, then
{
{xi}NP

i=1

}
is (a, p) regular.

Definition 4: Given an (a, p) regular particle dis-
tribution, b̃(x) = {b0(x),ab1(x), . . . . . .,apbp(x)}T

is the unique solution of the system

M0(x)b̃(x) = H(0) (58)

and ∃ a constant c < ∞ such that

max
α :|α |≤p

a|α | ||bα ||L∞(Ω) ≤ c (59)
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5.1 Bounds on the shape functions

Now the polynomial reproducing condition based
on new RKI shape function may be written as:

NP

∑
i=1

Ψi(x)xα
i = xα , ∀α : |α | ≤ p (60)

Ψi(x) = αi(x)Ni,p(x)+(1−αi(x))Ci(x) (61)

where, Ni,p(x) and Ci(x) are two different families
of RKPM basis functions and αi(x) is the coeffi-
cient function and may be obtained as:

αi(x) =
NP

∑
j=1

Γ j(x)αi(x j) (62)

where Γ j(x) is any RKPM basis function or any
interpolating functions. Coefficient αi(x j) may be
obtained satisfying the interpolating condition as
(see section 4.2):

αi(x j) =
δi j −Ci(x j)

Ni,p(x j)−Ci(x j)
(63)

Before we bound the shape functions, we have
following remarks:

Proposition 2: For a particle distribution{
{xi}NP

i=1

}
and the choice of φ (x) and Ni,p(x) as

in equations (46) and (A-2) respectively, one has:

Ni,p(x j) �= Ci(x j) ∀ j such that x j ∈ supp(Ψi)

Proof.

Let Ni,p(x j) = Ci(x j) (64)

⇒ Ni,p(x j)−Ci(x j) = 0 (65)

Using equations (11) and (37), equation (65) may
be written as:

HT (0)M−1(x)H(x j −xi)Ni,p(x j)

−HT (0)M−1(x j)H(x j −xi)φa(x j −xi) = 0
(66)

⇒ HT (0)
[
M−1(x)Ni,p(x j)

− M−1(x j)φa(x j −xi)
]

H(x j −xi) = 0 (67)

⇒ M(x j)Ni,p(x j) = M(x j)φa(x j −xi) (68)

Pre-multiplying by HT (0) and post-multiplying
by H(0), equation (68) may be written as:

HT (0)M(x j)H(0)Ni,p(x j)

= HT (0)M(x j)H(0)φa(x j −xi) (69)

Components of moment matrices M(x j) and
M(x j) are thus given by:

Mαβ (x j) =
NP

∑
k=1

(x j −xk)α−1(x j−xk)β−1φa(x j−xk)

(70)

Mαβ (x j) =
NP

∑
k=1

(x j −xk)α−1(x j −xk)β−1Nk,p(x j)

(71)

Substituting equations (70) and (71) in (69) we
have,

M11(x j)Ni,p(x j) = M11(x j)φa(x j −xi) (72)

Ni,p(x j)
NP

∑
k=1

φa(x j −xk) = φa(x j −xi)
NP

∑
k=1

Nk,p(x j)

(73)

⇒ Ni,p(x j) = φa(x j − xi) [φa(x) and Ni,p(x) con-
stitute a partition of unity]

Since Ni,p(x) and φa(x−xi) are presently two dif-
ferent functions (given respectively by equations
A-2 and 46) with different values almost every-
where except at set of points of measure zero.
In particular, at all the grid points x j covered by
Ψi(x), one has:

Ni,p(x j) �= φa(x j −xi) (74)

This implies

Ni,p(x j)−Ci(x j) �= 0 (75)

Hence the proposition follows.

Now assuming the (a, p) regularity of particle dis-
tribution, we have the following results:

Proposition 3: For an (a, p) regular particle
distribution, coefficient function αi(x) given by
equation (62) is uniformly bounded, i.e, ∃ a con-
stant c < ∞ such that,

||αi(x)||L∞(Ω) ≤ c (76)
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Proof. From equation (62), one has:

||αi(x)||L∞(Ω) =

∣∣∣∣∣
∣∣∣∣∣

NP

∑
j=1

Γ j(x)αi(x j)

∣∣∣∣∣
∣∣∣∣∣
L∞(Ω)

(77)

⇒ ||αi(x)||L∞(Ω)

=

∣∣∣∣∣
∣∣∣∣∣

NP

∑
j=1

δi j −Ci(x j)
Ni,p(x j)−Ci(x j)

Γ j(x)

∣∣∣∣∣
∣∣∣∣∣
L∞(Ω)

(78)

⇒ ||αi(x)||L∞(Ω)

≤
NP

∑
j=1

∣∣∣∣
∣∣∣∣ δi j −Ci(x j)
Ni,p(x j)−Ci(x j)

Γ j(x)
∣∣∣∣
∣∣∣∣
L∞(Ω)

(79)

⇒ ||αi(x)||L∞(Ω)

≤
NP

∑
j=1

∣∣∣∣
∣∣∣∣ δi j −Ci(x j)
Ni,p(x j)−Ci(x j)

∣∣∣∣
∣∣∣∣
L∞(Ω)

∣∣∣∣Γ j(x)
∣∣∣∣

L∞(Ω)

(80)

⇒ ||αi(x)||L∞(Ω) ≤
NP

∑
j=1

∣∣∣∣δi j −Ci(x j)
∣∣∣∣

L∞(Ω)

·
∣∣∣∣
∣∣∣∣ 1

Ni,p(x j)−Ci(x j)

∣∣∣∣
∣∣∣∣
L∞(Ω)

∣∣∣∣Γ j(x)
∣∣∣∣

L∞(Ω) (81)

Since Ni,p(x j) − Ci(x j) is uniformly bounded

away from zero, so is
∣∣∣∣∣∣ 1

Ni,p(x j)−Ci(x j)

∣∣∣∣∣∣
L∞(Ω)

.

Moreover from [Han and Meng 2001, Theorem
4.6], one may readily show that RKPM basis
functions max

1≤ j≤NP

∣∣∣∣Γ j(x)
∣∣∣∣ ≤ ĉ for some constant

ĉ < ∞.

Hence one may write

||αi(x)||L∞(Ω) ≤ c for some constant c < ∞ (82)

Hence the proposition follows.

In the new RKI approximation as in equation (61),
Ni,p(x) and Ci(x) separately satisfy the polyno-
mial reproducing conditions as:

NP

∑
i=1

αi(x)Ni,p(x)xα
i = α(x)xα (83a)

and
NP

∑
i=1

(1−αi(x))Ci(x)xα
i = (1−α(x))xα (83b)

Equation (83) may be written as:

NP

∑
i=1

αi(x)Ni,p(x)H(x−xi) = α(x)H(0) (84a)

and
NP

∑
i=1

(1−αi(x))Ci(x)H(x−xi)α

= (1−α(x))H(0) (84b)

Equivalently one has[
NP

∑
i=1

αi(x)Ni,p(x−xi)HT (x−xi)H(x−xi)

]
b(x)

= α(x)H(0) (85a)

and[
NP

∑
i=1

(1−αi(x))φai(x−xi)HT (x−xi)H(x−xi)

]

·b1(x) = (1−α(x))H(0) (85b)

Denote scaled moment matrices corresponding to
Ni,p(x) and Ci(x) respectively as:

M0(x) =
NP

∑
i=1

αi(x)H

(
x−xi

a

)
H

(
x−xi

a

)T

·Ni,p

(
x−xi

ai

)
(86a)

MC0(x) =
NP

∑
i=1

(1−αi(x))H

(
x−xi

a

)
H

(
x−xi

a

)T

· φai(x− xi) (86b)

and b̃(x) =
(
a|α |bα(x)

)
|α |≤p and b̃c(x) =(

a|α |bcα(x)
)
|α |≤p. Then polynomial reproducing

conditions imply:

M0(x)b̃(x) = α(x)H(0)

⇒ b(x) = α(x)M0(x)−1H(0) (87a)

MC0(x)b̃c(x) = (1−α(x))H(0)

⇒ b̃c(x) = (1−α(x))MC0(x)−1H(0) (87b)
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From definition (4)

max
α :|α |≤p

∣∣∣∣b̃∣∣∣∣L∞(Ω) = max
α :|α |≤p

a|α | ∣∣∣∣bα
∣∣∣∣

L∞(Ω) ≤ c,

c < ∞ (88a)

max
α :|α |≤p

∣∣∣∣b̃c

∣∣∣∣
L∞(Ω) = max

α :|α |≤p
a|α | ||bcα ||L∞(Ω) ≤ c,

c < ∞ (88b)

for some constants c, c. Rewrite equation (61) as:

Ψi(x) = αi(x)H

(
x−xi

a

)T

b(x)Ni,p(x)

+(1−αi(x))H

(
x−xi

a

)T

bc(x)φa(x−xi)

max
1≤i≤NP

||Ψi||L∞(Ω)

= max
1≤i≤NP

∣∣∣∣∣
∣∣∣∣∣αi(x)H

(
x−xi

a

)T

b(x)Ni,p(x)

+ (1−αi(x))H

(
x−xi

a

)T

bc(x)φa(x−xi)

∣∣∣∣∣
∣∣∣∣∣
L∞(Ω)

≤ max
1≤i≤NP

∣∣∣∣∣
∣∣∣∣∣αi(x)H

(
x−xi

a

)T

b(x)Ni,p(x)

∣∣∣∣∣
∣∣∣∣∣
L∞(Ω)

+ max
1≤i≤NP

∣∣∣∣∣
∣∣∣∣∣(1−αi(x))H

(
x−xi

a

)T

bc(x)

·φa(x−xi)

∣∣∣∣∣
∣∣∣∣∣
L∞(Ω)

From equation (82), (88a) and (88b) one can read-
ily write,

max
1≤i≤NP

||Ψi||L∞(Ω) ≤ c for some c < ∞ (89)

Hence the new RKI shape functions are uniformly
bounded.

5.2 Bounds on derivatives of RKPM shape
functions

Consider equation (18) describing the novel
scheme for derivative reproduction:

NP

∑
i=1

Ψ(β)
i (x)H(x−xi) = (−1)|β |H(β)(0),

∀|β | ≤ k (90)

where Ψ(β)
i (x) is the β th derivative of RKPM

shape function Ψi(x) and is given by

Ψ(β)
i (x) = HT (x−xi)bβ(x)φai(x−xi) (91)

where bβ (x) is vector of unknown coefficients and
may be obtained from the equation

M(x)bβ(x) = (−1)|β |H(β)(0) (92)

and

M(x) =
NP

∑
i=1

H(x−xi)HT (x−xi)φai(x−xi) (93)

Now b̃β (x) =
{

a|α |+|β |bβ
α(x)

}
is the solution of

the system

M0(x)b̃β (x) = (−1)|β |H(β)(0) (94)

and Ψ(β)
i (x) is given by

Ψ(β)
i (x) = φ

(
x−xi

ai

)
∑

|α |≤p

(
x−xi

a

)α
b̃β

α

= a|β |φ
(

x−xi

ai

)
∑

|α |≤p

(
x−xi

a

)α
a|α |bβ

α (95)

As before M0(x) is the scaled moment matrix
given by equation (56). Now from equation (95),
one has the unique and bounded solution:

b̃β (x) = (−1)|β |M0(x)−1H(β)(0) (96)

According to definition (4) for an (a, p)regular
particle distribution, one may write,

max
x∈Ω

∣∣∣∣M0(x)−1
∣∣∣∣

2 ≤ L(c0,σ0) (97)

⇒ max
|α |≤p

∣∣∣∣∣∣b̃β
α

∣∣∣∣∣∣
L∞(Ω)

= max
|α |≤p

a|α |+|β |
∣∣∣∣∣∣bβ

α

∣∣∣∣∣∣
L∞(Ω)

≤ c

(98)

⇒ max
|α |≤p

a|α |
∣∣∣∣∣∣bβ

α

∣∣∣∣∣∣
L∞(Ω)

≤ c

a|β |
(99)

Then from equation (99) we immediately obtain
the following result.

Theorem 1:
If particle distribution is(a, p)regular andφ ∈
Ck(Ω) then ∃ a constant c < ∞ such that

max
1≤i≤NP

max
|β |≤k

∣∣∣∣∣∣Ψ(β)
i

∣∣∣∣∣∣
L∞(Ω)

≤ c

a|β |
(100)
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5.3 Bounds on the derivatives of new RKI
shape functions

For any multi-index β with |β | = 1, differentiat-
ing equation (61) we have:

Dβ Ψi(x) = αi(x)N
(β)
i,p (x)+α (β)

i (x)Ni,p(x)

+{1−αi(x)}C(β)
i (x)−α (β)

i (x)Ci(x)

⇒ Dβ Ψi(x) = αi(x)N(β)
i,p (x)+

{
Ni,p(x)−Ci(x)

}
·

NP

∑
j=1

Γ(β)
j (x)αi(x j)+{1−αi(x)}C(β)

i (x)

Taking the norm:

max
1≤i≤NP

max
|β |≤k

∣∣∣∣∣∣Dβ Ψi(x)
∣∣∣∣∣∣

L∞(Ω)
=
∣∣∣∣∣∣αi(x)N(β)

i,p (x)

+
{

Ni,p(x)−Ci(x)
} NP

∑
j=1

Γ(β)
j (x)αi(x j)

+ {1−αi(x)}C(β)
i (x)

∣∣∣∣∣∣
L∞(Ω

⇒

max
1≤i≤NP

max
|β |≤k

∣∣∣∣∣∣Dβ Ψi(x)
∣∣∣∣∣∣

L∞(Ω)

≤ ||αi(x)||L∞(Ω)

∣∣∣∣∣∣N(β)
i,p (x)

∣∣∣∣∣∣
L∞(Ω)

+
∣∣∣∣{Ni,p(x)−Ci(x)}∣∣∣∣L∞(Ω)

·
∣∣∣∣∣
∣∣∣∣∣

Np

∑
j=1

Γ(β)
j (x)αi(x j)

∣∣∣∣∣
∣∣∣∣∣
L∞(Ω)

+
∣∣∣∣∣∣C(β)

i (x)
∣∣∣∣∣∣

L∞(Ω)
−||αi(x)||L∞(Ω)

∣∣∣∣∣∣C(β)
i (x)

∣∣∣∣∣∣
L∞(Ω)

Then from proposition 3 and theorem 1 one may
readily write:

max
1≤i≤NP

max
|β |≤k

||DβΨi(x)||L∞(Ω) ≤
c

aβ , ∀|β | ≤ k

(101)

for some c < ∞
Hence derivatives of new RKI basis functions are
uniformly bounded.

5.4 Error estimate for mesh free approxima-
tions:

To begin with some relevant definitions are given
below [see Brenner and Scott, 1994].

Definition 5: A domain Ω is said to be star shaped
with respect to a ball B if, for all x ∈ Ω the closed
convex hull of {x}∪B is a subset ofΩ.

Definition 6: Chunkiness parameter of
Ω is defined by γ = d

ρmax
, where d is

the diameter of Ω and ρmax = sup{ρ :
Ω is star-shaped with respect to a ball of radius ρ}.

Let u∈W m+1,q(Ω), m ≥ 0, q∈ [1,∞] and m+1 >
n
q if q > 1, or m + 1 ≥ n if q = 1. Then by

Sobolev embedding theorem, u∈C(Ω) and point-
wise values of u(x) may be used. Now approxi-
mation of u(x) at any point x∗ based on new RKI
scheme may be written as:

ua(x∗) =
NP

∑
i=1

Ψi(x∗)u(x∗) (102)

In this section we will estimate error
u(x∗) − ua(x∗) in Sobolev norms. Let
p1 = min{p+1,m+1}. Now assume the
particle distribution is (a, p) regular with φ ∈ Ck.

Let Bx∗ =
{

x : |x∗ −x| < max
1≤i≤NP

ai

}
be an

open ball about x∗. We first bound the error
u(x∗)− ua(x∗) ion Sobolev norms over B ∗ ∩Ω.
Define

Ωx∗ =
{

x : |x∗ −x| < max
1≤i≤NP

2ai

}
(103)

and let

Sx∗ = {i : dist (x∗,Bx∗) < ai} (104)

Now since, ∃ a constant I0 such that for any x ∈ Ω
there are at most I0 of xi satisfying the relation
||x−xi|| < ai, i.e., each point in Ω is covered by
at most I0 shape function, card(Sx∗) is uniformly
bounded. If Ωx∗ ⊂ Ω, then Ωx∗ ∩Ω = Ωx∗ is star-

shaped with respect to Bx∗
Δ= B̃x∗ , and the chunki-

ness parameter of Ωx∗ ∩Ω is uniformly bounded.
At the boundary, where Ωx∗ �⊂ Ω, we can chose a
ball B̃x∗ of radius max

1≤i≤NP

ai/2 with x∗ at the bound-

ary such that Ωx∗ ∩Ω is star-shaped with respect
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to B̃x∗ . Again chunkiness parameter of Ωx∗ ∩Ω is
uniformly bounded with respect to B̃x∗ .

Now denote the pth
1 order remainder term as,

Rp1u(x∗) = u(x∗)−Qp1 u(x∗) (105)

where, Qp1 u(x∗) is the Taylor polynomial of de-
gree p1 − 1 of u averaged over B̃x∗ . Then the
chunkiness parameter is uniformly bounded when
the characteristic support size a is sufficiently
small. Under these conditions one may write the
following inequality using the Bramble-Hilbert
lemma [see Brenner and Scott, 1994],

||Rp1 u(x∗)||W l,q(Ωx∗∩Ω)

≤ cp1,l,γ ap1−l|u|W p1 ,q(Ωx∗∩Ω), l = 0, . . ., p1

(106)

||Rp1 u(x∗)||L∞(Ωx∗∩Ω)

≤ cp1,n,γ ,qap1−n/q|u|W p1 ,q(Ωx∗∩Ω) (107)

Now for x∗ ∈ B̃x∗ ∩Ω one may write

u(x∗)−ua(x∗) = Qp1 u(x∗)−
NP

∑
i=1

Qp1 u(xi)Ψi(x)

+Rp1 u(x∗)−
NP

∑
i=1

Rp1 u(xi)Ψi(x) (108)

By the polynomial reproduction property, one
may write,

NP

∑
i=1

Qp1u(xi)Ψi(x) = Qp1 u(x∗) (109)

Thus equation (108) becomes,

u(x∗)−ua(x∗) = Rp1 u(x∗)−
NP

∑
i=1

Rp1 u(xi)Ψi(x∗)

(110)

Since xi ∈ Ωx∗ ∩Ω for i ∈ Sx∗ ,

||u(x∗)−ua(x∗)||W l,q(Ωx∗∩Ω)

≤ ||Rp1u(x∗)||W l,q(Ωx∗∩Ω)

+ ||Rp1u(x∗)||L∞(Ωx∗∩Ω) ∑
i∈Sx∗

||Ψi||W l,q(Ωx∗∩Ω)

Since card (Sx∗) is uniformly bounded, from equa-
tion (102), (105) and (106), one may write,

||u(x∗)−ua(x∗)||W l,q(Ωx∗∩Ω)

≤ cp1,l,γ ap1−l|u|W p1 ,q(Ωx∗∩Ω),

0 ≤ l ≤ min(p1,k) ∀x∗ ∈ Ω (111)

Equivalently,

||u(x∗)−ua(x∗)||W l,q(Ω)

≤ cp1,l,γ ap1−l|u|W p1 ,q(Ωx∗∩Ω),

0 ≤ l ≤ min(p1,k) ∀x∗ ∈ Ω (112)

Convergence study:

In this section, a limited numerical study on the
convergence of the new interpolating RK method
is undertaken. Such a study helps demonstrate the
theoretical error estimate given in previous sec-
tion. For all numerical work, uniform particle
distribution with uniform support size has been
taken. As support size is proportional to spatial
step size h (i.e., the characteristic distance be-
tween the closest grid points), for u ∈ H p+1(Ω),
error estimate for mesh free interpolants may be
recast as:

||u−ua||H1(Ω) ≤ chp|u|H p+1(Ω) (113)

||u−ua||L2(Ω) ≤ chp+1|u|H p+1(Ω) (114)

For a one dimensional elliptic boundary value
problem, optimal order mesh-free error estimate
of mesh-free solution ua may be expressed as:∣∣∣∣u−uR

∣∣∣∣
H1(Ω) ≤ chp|u|H p+1(Ω) (115)

Optimal order mesh-free error estimate in L2norm
may also be expressed by Nitsche’s technique
(Brenner and Scott 1994) as:∣∣∣∣u−uR

∣∣∣∣
L2(Ω) ≤ chp+1|u|H p+1(Ω) (116)

The order of convergence is verified via two ex-
amples. For the first example following one-
dimensional boundary value problem is consid-
ered:

u,xx = ex, x ∈ [0,1] (117)
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Figure 4: Error norms in one dimensional RKI approximation to (a) the exact solution; (b) first derivative of
the exact solution
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Figure 5: Error norms in one dimensional RKI collocation: (a) mesh free solution; (b) mesh free first
derivatives

The above equation is subject to boundary condi-
tions:

u(0) = 1; u(1) = e (118)

The exact solution is readily computable as
u(x) = ex. A uniform particle distribution with
a constant value of the dilation parameter, a =
((p+1)/2)h, has been chosen. The above equa-
tion is solved using a collocation technique based
on the new RKI scheme. Correction functions

have presently been used only on the boundary
nodes to get the interpolating property. Optimal
order convergences for both mesh free interpola-
tion of the known exact solution (i.e., u(x) = ex)
and the mesh-free numerical solution through col-
location are observed. Figures (4) – (5) show
the L2 error norms of the exact and numerically
obtained solutions as well as those of their first
derivative for different formal orders p. The ob-
served orders of convergence, as obtainable from
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the slopes of the curves in the log-log scale are,
also indicated alongside the corresponding values
of the formal order.

For the second example, the following two-
dimensional boundary value problem (Poisson
equation) has been taken:

∇2u(x,y) = (x2 +y2)exy, (x,y) ∈ (1,0)× (1,0)
(119)

The above equation is subjected to the following
boundary conditions:

u(0,y) = 1, u(1,y) = ey, 0 ≤ y ≤ 1 (120)

u(x,0) = 1, u(x,1) = ex, 0 ≤ x ≤ 1 (121)

The exact solution of equation (119) is u(x,y) =
exy. A uniform particle distribution with a con-
stant dilation parameter 1.5(p + 1)h/2 has been
used. Figures (6) – (7) show the L2 error norms of
the RKI interpolation of the exact solution, RKI
collocation-based mesh-free solution and those of
their first derivative for different formal orders
p. The observed orders of convergence are also
noted alongside the formal values of p. The in-
crease in the order of convergence with increas-
ing p is evident. It may be generally observed that
a very satisfactory rate convergence is achievable
through the new RKI technique.

Numerical examples

The present section is concerned with the numer-
ical application and explorations of the proposed
method for a class of nonlinear boundary value
problems (BVP-s) of interest in solid mechan-
ics. In all the examples, a mixed reproducing ker-
nel interpolation approach (i.e., with correction
functions being used only on the boundary nodes
where Dirichlet boundary conditions are speci-
fied) are used unless otherwise specified. Expo-
nential kernel function, as given in equation (46),
is used to construct correction functions. Since
all the numerical solutions reported below are
through a collocation technique based on the new
RKI discretization strategy, such solutions must
be construed in the strong sense (as opposed to
weak solutions, as in the variational or a weighted
residual formulation).

Example 1 (Elastica)

In the first example a planar, large-deflection
(Elastica) problem of a cantilever beam of length
L subjected to a transverse, concentrated load, P,
at its free end is considered. The governing 2nd

order nonlinear ODE is given by:

d2θ
ds2 +λ 2 cosθ = 0 (122)

with λ 2 =
P
EI

(123)

where, θ , P and EI are respectively the slope,
lateral load and flexural rigidity of the beam
and s denotes the independent spatial coordinate
along the deformed longitudinal axis (deformed
centroidal axis). The new RKI shape functions
are constructed using cubic basis functions (p =
3)and uniform support size a = 2.1Δx, where Δx
is the spatial step size. The new RKI-based results
are compared with those via an exact method (i.e.,
closed-form solutions obtainable through elliptic
integral) and the commercially available finite el-
ement program ANSYS R©. The solutions are also
compared with the regular RKPM approximation.
Such comparisons are provided in Table 1. De-
flected shapes of cantilever beam at different val-
ues of PL2/EI are shown in figure (8). In figure
(9), comparisons of slope (at the free end) with
those obtained via elliptic integrals and RKPM
(regular) have been shown for different values of
the normalized load, PL2/EI.

Example 2 (Plastica)

In this example, the elasto-plastic behaviour of a
cantilever beam (figure 10) has been studied. The
equation governing large plastic deformations of
beams, known as the Plastica equation (Yu and
Johnson 1982), may be written as:

dθ
ds

=
β√

(1−2 f δp +2 f y)
, 0 ≤ s ≤ l (124)

dθ
ds

= β [1− f (y−δp)], l ≤ s ≤ 1 (125)

dx
ds

= cosθ ,
dy
ds

= sinθ (126)
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Figure 6: Error norms in two-dimensional RKI approximation to (a) the exact solution; (b) first derivatives
of the exact solution
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Figure 7: Error norms in two-dimensional RKI collocation (a) mesh free solution; (b) mesh free first deriva-
tives

Table 1: Deflection and slopes of a tip loaded cantilever beam

PL2/EI
Exact [Mattiasson 1981] RKPM (regular) RKI (New)
w/L u/L θ0 w/L u/L θ0 w/L u/L θ0

1 0.30172 0.05643 0.46135 0.30172 0.05643 0.46136 0.30172 0.05643 0.46136
2 0.49346 0.16064 0.78175 0.49348 0.16065 0.78177 0.49348 0.16064 0.78178
3 0.60325 0.25442 0.98602 0.60329 0.25444 0.98607 0.60329 0.25443 0.98607
4 0.66996 0.32894 1.12124 0.67002 0.32898 1.12132 0.67003 0.32897 1.12133
5 0.71379 0.38763 1.21537 0.71387 0.38769 1.21548 0.71388 0.38768 1.21549
6 0.74457 0.43459 1.28370 0.74467 0.43467 1.28384 0.74469 0.43466 1.28385
7 0.76737 0.47293 1.33496 0.7675 0.47303 1.33513 0.76751 0.47302 1.33515
8 0.78498 0.50483 1.37443 0.78514 0.50496 1.37463 0.78516 0.50495 1.37465
9 0.79906 0.53182 1.40547 0.79924 0.53198 1.40569 0.79926 0.53197 1.40571
10 0.81061 0.55500 1.43029 0.81082 0.55519 1.43054 0.81085 0.55517 1.43056
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Figure 8: Deflected shapes of a cantilever Elastica (subjected to a tip load) for different values of PL2/EI
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Figure 9: Variation of slope at free end with load for a cantilever beam subjected to a tip load

where, θ is the local angle of inclination, s = s∗/L
is the non-dimensional arc length, s∗ is arc length,
Lp is length of plastic region, β = MeLp/EI is the
non-dimensional parameter , δp = δ ∗

p/Lp = y(1)
is the non-dimensional deflection of point C, δ ∗

p =
y∗|s∗=Lp is the deflection of point C, l = Lp/L, x =
x∗/L and y = y∗/L are non-dimensional Cartesian
coordinates and f ≡ FLp

Me
is the non-dimensional

load parameter. Boundary conditions are:

θ (0) = y(0) = x(0) = 0 (127)

y(1) = δp or θ ′(1) = β , 0 ≤ s ≤ l (128)

where, θ ′ = dθ
ds .

Equations (124 – 126) along with boundary con-
ditions (127, 128) lead to the following bound-
ary value problem involving a non-linear second-
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order ODE:

β 2 d2θ
ds2 = − f

(
dθ
ds

)3

sinθ (129)

with θ (0) = 0 and θ ′(1) = β . Equation (129)
has been solved through a collocation new RKI
method. Cubic basis functions (p = 3) and uni-
form support size a = 2.1Δx (Δx being the spatial
step size) have been adopted for the construction
of new RKI basis functions. The results have been
compared with the results of ‘exact’ numerical in-
tegration for β = 0.1 in Table 3. Results obtained
by the proposed method are very close to the ‘ex-
act’ results.

Example 3 (von Karman plate)

Finally, a non-linear plate bending problem is
studied using the new method and the results
are compared with those already documented in
the literature. Unlike the last two examples, the
present example has up to fourth order derivatives
in the governing differential equations. The non-
linear von Karman PDE-s governing the static
equilibrium of a thin plate in the absence of body
forces may be written in terms of displacement
functions as (Chia 1980):

u,xx +d1u,yy +d2v,xy +w,x(w,xx +d1w,yy)
+ d2w,yw,xy = 0 (130)

v,xx +d1v,xx +d2u,xy +w,y(w,yy +d1w,xx)
+ d2w,xw,xy = 0 (131)

∇4w− Eh
D(1−μ2)

[(
u,x +0.5w2

,x

)
(w,xx + μw,yy)

+
(
v,y +0.5w2

,y

)
(w,yy + μw,xx)

+(1−μ)w,xy (u,y +v,x +w,xw,y)
]

=
q
D

(132)

where, ∇4w = wxxxx + 2wxxyy + w,yyyy and, d1 =
1−μ

2 , d2 = 1+μ
2 , D = Eh3

12(1−μ2)

For a simply supported rectangular plate, the
boundary conditions are:

u = v = w = 0 at x =±a
2 ; u = v = w = 0 at y =±b

2

In the above equations, μ , E and h respectively
denote the Poisson’s ratio, the modulus of elastic-
ity and the thickness of the plate. u, v, w are the
displacement functions in X , Y , Z directions re-
spectively and q denotes a uniformly distributed
lateral load. The parameters a and b are lengths
of the two sides of the rectangular plate.

The plate is discretized with 11×11 = 121 nodes
as shown in figure 11. Shape functions (regular
RKPM and new RKI) have been constructed with
p = 4 and a uniform support size with ax = 3.15Δx
and ay = 3.15Δy (Δx, Δy are the spatial step sizes
and ax, ay are the dilation parameters in X and Y
directions respectively). The transverse displace-
ment w at the centre is obtained via the new RKI
method for various intensities of uniformly dis-
tributed lateral load and the results are compared
with those of Levy (1942), ANSYS R© and RKPM
(regular). The nonlinear elastic load-deflection
curve at the center of the plate is shown in fig-
ure 12. While results via the new RKI and regu-
lar RKPM schemes match very well with Levy’s
solutions, results via ANSYS R© are a little off es-
pecially for higher values of the loading intensity.
Figure 13 reports the convergence of the central
transverse deflection with increasing number of
particles (nodes) as obtained via different meth-
ods. The new RKI method not only appears to
have the fastest convergence, it is also seen to be
predicting the response more accurately. As has
been already noted, computations of derivatives in
regular RKPM and RKI (Chen et al.) may poten-
tially lead to considerable numerical error espe-
cially when spatial step size is very small. More-
over in the interpolating version of RKPM pro-
posed by Chen et al., primitive function had to at-
tain its maximum value of unity (for interpolation
purposes) over a typically small support size and
this could very well result in an ill conditioning
of the algorithm for small spatial step sizes. To
demonstrate the effect (sensitivity) of spatial step
sizes on various methods, the von Karman plate
equation (132) is now solved with 21×21 = 441
nodes using ax = 3.15Δx and ay = 3.15Δy. Fig-
ure 14 shows the normalized central transverse
deflection as a function of the normalized load
intensity via different methods. It is clear that,
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Figure 10: (a) The elastic-plastic stress distribution across a section; (b) A vertical strut loaded by a vertical
force at its free end; (c) A vertical strut loaded by the maximum elastic bending moment and a vertical force
at its free end

Table 2: slope (α) and deflection (δ ) at the free end of the cantilever beam

f=FL/Me Exact RKPM
(regular)

RKI (New)

0 0.10000 0.10000 0.10000
1 0.10371 0.10370 0.10370
2 0.10850 0.10843 0.10843
3 0.11531 0.11503 0.11503
4 0.12775 0.12772 0.12771
4.4 0.14124 0.14110 0.14110

=FL/Me Exact RKPM
(regular)

RKI (New)

0 0.04999 0.04996 0.04996
1 0.05231 0.05228 0.05228
2 0.05537 0.05530 0.05530
3 0.05982 0.05959 0.05958
4 0.06823 0.06818 0.06818
4.4 0.07779 0.07770 0.07772

Figure 11: Domain discretization with 121 nodes

even with very small spatial and support sizes,
new RKI works very well, whereas RKPM (reg-
ular) and RKI (Chen et al.) converge to wrong
solutions.

8 Concluding Remarks

A novel form of mesh-free and interpolating func-
tional approximations and accurate computations
of derivatives is proposed based on the reproduc-
ing kernel approach. In the conventional RKPM
approach, it is required to differentiate the mo-
ment matrix and correction functions so as to

compute derivatives of shape functions. Such
an exercise is potentially fraught with the dan-
ger of being numerically error-prone especially
in higher order derivatives. This difficulty is
presently overcome through a novel scheme for
computing derivatives of RKPM basis functions.
The scheme is based on the principle that α th

derivative of RKPM basis functions will exactly
reproduce the α th derivative of space of polyno-
mial Pp of degree p≥ |α |. This derivate reproduc-
tion scheme does not require differentiations of
moment matrices and correction functions. More-
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Figure 12: Variation of central transverse deflection with load for a simply supported isotropic square plate
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Figure 13: Convergence of central deflection at pa4/Eh4 = 51.4 with number of points

over, the novelty of the interpolating mesh-free
scheme, proposed in this study, is based upon
a linear combination of two distinct families of
RK basis functions. The use of B-spline func-
tions to construct one of these families of basis
functions helps bring in the local support prop-
erty in a seamless manner. As evidenced through
derivations of the new RKI shape functions as
well as through limited numerical experimenta-
tions conducted on a few test cases, the current
version of mesh-free interpolation strategy pro-
vides a more accurate and stable computational

framework than an earlier strategy by Chen et al.
(2003). These last authors introduced the con-
cept of a primitive function to bring in the Kro-
necker delta properties in the approximation. The
approximation consisted of a summation of prim-
itive and reproducing kernel (enrichment) func-
tions and required the support size of the primitive
function to be less than the smallest distance be-
tween two successive grid points over which the
enrichment functions were defined. Accordingly,
the primitive function had to attain its maximum
value of unity (for interpolation purposes) over



92 Copyright c© 2007 Tech Science Press CMES, vol.19, no.1, pp.69-98, 2007

�

��'

��(

���

���

�

� �� ��� ��� ��� ��� .��

��
'
���

'

�
��

,�&+����'��

���������

���������	��
�

����� !����"����

Figure 14: Variation of central transverse deflection with load for a simply supported isotropic square plate
with 21×21 = 441 nodes and ax = 3.15Δx and ay = 3.15Δy

a typically small support size and this led to an
ill conditioning of the algorithm. In contrast, the
present interpolating method determines the co-
efficients of a linear combination of a couple of
distinct families of RK shape functions via the in-
terpolating conditions. In the process, the twin
objectives of polynomial reproduction and inter-
polation are together met by the two families of
basis functions and thus, unlike the approach by
Chen et al. (2003), none of these two families of
functions has to separately satisfy the Kronecker
delta property and there are no imposed restric-
tions on the support sizes.

A major usefulness of a mesh-free method is the
flexibility with which the nodal points can be
re-adjusted to accurately capture zones of sharp
gradient changes or different length scales (as in
problems with localized plastic zones). A natu-
ral framework to derive a numerical scheme for
obtaining strong solutions of such problems is to
use a mesh-free wavelet collocation technique.
Towards this, the presently developed mesh-free
shape functions may be exploited to arrive at a
suitable nesting of wavelet subspaces. In addition,

such schemes are expected to be ideally suitable
if the mechanics of the problem is modeled with
Cosserat theories which have length scales natu-
rally built into them. The authors are now in the
process of addressing some of these issues.
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Appendix A

A.1 B-spline basis functions

B-spline curves are generalization of Bézier
curves. The recursive definition (deBoor 1972
and Cox 1972) of the ith normalized B-spline ba-
sis functions of degree p (order p+1) is

Ni,0(ξ ) =

{
1 if ξi ≤ ξ ≤ ξi+1

0 otherwise
(A.1)

Ni,p(ξ ) =
ξ −ξi

ξi+1 −ξi
Ni,p−1(ξ )

+
ξi+p+1 −ξ

ξi+p+1 −ξi+1
Ni+1,p−1(ξ ),

i = 1,2,3, . . .. . .n+ p+1 (A.2)

where, Ξ = {ξ1,ξ2,ξ3 . . . . . .ξn+p+1|ξi ∈ R} is a
non-decreasing sequence of real numbers called
knot vector, p is the polynomial order and n is the
number of basis functions. In the above definition
it is assumed that 0/0 is replaced by 0. If knots
are equally spaced they are called uniform. Knots
can be repeated at the same coordinate in the para-
metric space. A knot vector is said to be open if its
first and last knot appear p+1 times. Basis func-
tions in one dimension formed from the open knot
vector are interpolatory at the ends of the para-
metric spaceΞ =

[
ξ1, ξk+p+1

]
. Although Ni,p(ξ )

is defined everywhere on the real line, it has non-
zero values only in the interval [ξi,ξi+p+1] be-
cause of its local support property. An example
of cubic basis function for a uniform knot vector
(open and closed) is presented in figure A.1.

Derivatives of B-spline basis functions

The kth derivative of B-spline basis functions in
terms of the functions Ni,p−k, . . . ,Ni+k,p−k is given
by:

N(k)
i,p =

p!
(p−k)!

k

∑
j=0

ak, jNi+ j,p−k (A.3)

with

a0,0 = 1 (A.4)

ak,0 =
ak−1,0

ξi+p−k+1 +ξi
(A.5)

ak, j =
ak−1, j −ak−1, j−1

ξi+p+ j−k+1 +ξi+ j
, j = 1, . . .,k−1

(A.6)

ak,k =
−ak−1,k−1

ξi+p+1 +ξi+k
(A.7)

Note that the denominators involving knot differ-
ences can became zero; the quotient is defined to
be zero in this case. The kth derivative of B-spline
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Figure A.1: Cubic B-spline basis function for (a) uniform knot vector Ξ ={0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9, 1.0} (b) open uniform knot vector Ξ ={0, 0, 0, 0, 0.25, 0.5, 0.75, 1.0, 1.0, 1.0, 1.0}

basis functions may also be computed as (Butter-
field, K. R. 1976):

N(k)
i,p (ξ ) =

p
p−k

·(
ξ −ξi

ξi+1 −ξi
N(k)

i,p−1(ξ )+
ξi+p+1 −ξ

ξi+p+1 −ξi+1
N(k)

i+1,p−1(ξ )
)

k = 0, . . ., p−1 (A.8)

Some important properties of B-spline basis func-
tions:

(1) The local support property: Ni,p(ξ ) = 0 if
ξ is outside the interval [ξi, ξi+p+1).

(2) In any given knot span, [ξi, ξi+1), at most
p + 1 of Ni,p(ξ ) are nonzero, namely the
functions Nj−p,p, . . .,Nj,p. For example, the
only cubic functions not zero on [ξ3,ξ4) are
N0,3, . . . ,N3,3.

(3) Non-negativity: Ni,p(ξ ) ≥ 0, ∀i, p,ξ .

(4) Partition of unity: For an arbitrary knot span

[ξi,ξi+1), one has
i

∑
j=i−p

Nj,p(ξ ) = 1, ∀ξ ∈
[ξi,ξi+1).

(5) All derivatives of Ni,p(ξ ) exist in the interior
of a knot span. At a knot, Ni,p(ξ ) is p− k
times continuously differentiable, where k is

the multiplicity of the knot. Hence, increas-
ing the degree increases continuity, and in-
creasing knot multiplicity decreases continu-
ity.

(6) Except for the case p = 0, Ni,p(ξ ) attains ex-
actly one maximum value.

A.2 B-spline curves

Using the B-spline basis function discussed in
section A.1, B-spline curves may be constructed
as:

C(ξ ) =
n

∑
i=1

Ni,p(ξ )Pi (A.9)

where, Pi are the coefficients of B-spline basis
function and called control points. In general con-
trol points are not interpolated by B-spline curves.
It defines the shape of the curves and t he polygon
formed by {Pi} is called the control polygon. An
example of cubic B-spline curve on a open uni-
form knot is shown in figure A.2.

A.2.1 Derivatives of B-spline curves

Derivatives of B-spline curve may be computed
according to the following rule.

(1) When ξ is fixed:

C(k)(ξ ) =
Np

∑
i=1

N(k)
i,p (ξ )Pi (A.10)
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Figure A.2: Cubic B-spline curve on an open uniform knot vector Ξ ={0, 0, 0, 0, 0.25, 0.5, 0.75, 1.0, 1.0,
1.0, 1.0}, basis functions are shown in figure A.1 (b)

where, C(k)(ξ ) and N(k)
i,p (ξ ) denote the kth

derivative of C(ξ ) and Ni,p(ξ ) respectively.

N(k)
i,p (ξ ) may be computed as discussed in sec-

tion A.1.1.

(2) When ξ is not fixed:
Without fixing ξ , adversatives of pth degree
B-spline curve may be computed as:

C(k)(ξ ) =
n−k

∑
i=1

Ni,p−k(ξ )P(k)
i (A.11)

with

P(k)
i =

{
Pi k = 0

p−k+1
ξi+p+1−ξi+k

(P(k−1)
i −P(k−1)

i ) k > 0

(A.12)

and

Ξ(k) = {0, . . .0,ξp+1, . . .ξn,1, . . .1} (A.13)

A few important properties of B-spline curves are
as indicated below.

(1) They have continuous derivatives of order p
– k, where k is multiplicity of knot. Hence
in the absence of any repeated knot or control
points it is p – 1 times continuously differen-
tiable.

(2) Affine invariance: any affine transformation
can be obtained by applying the transforma-
tion to the control points.

(3) Strong convex hull property: the curve is
contained in the convex hull of its control
polygon

(4) Variation diminishing property: no straight
line intersects the curve more times than it
intersects the curve’s control polygon. This
expresses the property that a B-spline curve
follows its control polygon rather closely and
does not wiggle more than its control poly-
gon.

A.3 B-splines in higher dimension

Higher dimensional B-spline basis function may
be constructed by taking the tensor product of B-
spline basis function in one dimension.

A.3.1 B-spline surface

A B-spline surface is obtained by taking a bidirec-
tional net of control points, two knot vectors and
the products of the univariate B-spline function

S(ξ ,η) =
NPξ

∑
i=1

NPη

∑
j=1

Ni,p(ξ )Nj,q(η)Pi j (A.14)

where Ni,p(ξ ) and Nj,q(η) are two different
set of one dimensional B-spline basis func-
tion of order p and q and defined on the
knot vectors Ξ = {ξ1,ξ2,ξ3 . . . . . .ξn+p+1|ξi ∈ R}
and Ξ =

{
η1,η2,η3 . . . . . .ηn+q+1|ηi ∈ R

}
respec-

tively. Noting that {Pi j}, i = 1,2, . . .NPξ , j =
1,2, . . .NPη is the control net.
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A.3.2 B-spline solids

B-spline solids are defined in analogous fashion to
B-spline surfaces. Given a control net {Pi jk}, i =
1,2, ...NPξ , j = 1,2, . . .NPη , j = 1,2, . . .NPς and
knot vectors Ξ = {ξ1,ξ2,ξ3 . . .ξn+p+1|ξi ∈ R},
Ξ =

{
η1,η2,η3 . . . . . .ηn+q+1|ηi ∈ R

}
and Ξ̃ =

{ς1,ς2,ς3 . . . . . .ςn+r+1|ςi ∈ R} , a B-spline solid is
defined as:

S(ξ ,η,ς) =
NPξ

∑
i=1

NPη

∑
j=1

NPς

∑
k=1

Ni,p(ξ )Nj,q(η)Nj,r(ς)Pi jk

(A.15)


