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A Meshless Regularized Integral Equation Method for Laplace Equation in
Arbitrary Interior or Exterior Plane Domains

Chein-Shan Liu1

Abstract: A new meshless regularized integral
equation method (MRIEM) is developed to solve
the interior and exterior Dirichlet problems for the
two-dimensional Laplace equation, which con-
sists of three parts: Fourier series expansion, the
second kind Fredholm integral equation and an
analytically regularized solution of the unknown
boundary condition on an artificial circle. We find
that the new method is powerful even for the prob-
lem with complex boundary shape and with ran-
dom noise disturbing the boundary data.
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1 Introduction

The Dirichlet problem of Laplace equation in
plane domain is a classical one. Although ana-
lytical solutions have been found for some simple
domain with contour like as circle, ellipse, rectan-
gle, etc., in general, for a given plane domain the
finding of analytical solutions is not an easy task.

Indeed, the explicit analytical solutions are ex-
ceptions, and if one were to choose an arbitrary
shape of the domain, the geometric complexity
commences and then typically the numerical so-
lution would be required.

Between analytical solutions and numerical solu-
tions for solving the boundary value problems of
partial differential equations, there have appeared
many semi-analytical solutions in the past several
decades. The main reasons for such development
could be attributed to that even the most powerful
analytical methods are extremely tedious for com-
plicated domain problem, and that even one has an
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analytical solution at hand, its numerical results
maybe hardly produced. The new method which
will be developed here to calculate the Laplace
problem in complicated domain is just of this
semi-analytical type method. It is in essence an
approximation method aiming to find a relatively
simple formula for the solution and, at the same
time to reatin the main feature of exact solution.

The most widely used numerical methods are fi-
nite difference method, finite element method and
boundary element method (BEM). Despite the
popularity of BEM, there are pitfalls to hamper its
efficient implementation. To name a few, Lesnic,
Elliott and Ingham (1998) have found that the
BEM is weak to against the boundary data distur-
bance which produces unstable solution. Chen,
Lin and Chen (2005) have found that the degen-
erate scale problem and rank deficiency problem
may occur for the BEM used in the Laplace equa-
tion. The other drawbacks are the requirement
of mesh and evaluation of singular integrals, and
slow convergence.

For a complicated shape of the domain the above
mentioned methods usually require a large num-
ber of nodes and elements to match the geometri-
cal shape. In order to overcome these difficulties,
the meshless numerical methods were proposed,
which are meshes free and only boundary nodes
are necessary.

Recently, the meshless local boundary integral
equation (LBIE) method [Atluri, Kim and Cho
(1999)], and the meshless local Petrov-Galerkin
(MLPG) method [Atluri and Shen (2002)] are
proposed. Both methods use local weak forms
and the integrals can be easily evaluated over reg-
ularly shaped domains, like as circles in 2D prob-
lems and spheres in 3D problems.

In this paper we are going to propose a new
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meshless method to treat the Dirichlet problem
of Laplace equation in the interior or exterior do-
main:

Δu(X) = 0, X ∈ Ω or X ∈ R
2/Ω, (1)

u(P) = h(P), P ∈ Γ, (2)

where Ω is a simply connected region in R
2 with

a contour Γ.

It is known that a standard tool to treat the Dirich-
let problem is the boundary integral equation
[Atkinson (1997); Kress (1989)]. It represents u
as a double layer potential:

u(X) =
∫

Γ
ρ(Y )

∂
∂nY

log |X −Y |dSY , X ∈ Ω, (3)

in which nY is the unit normal at Y ∈ Γ. The den-
sity function ρ satisfies

πρ(X)+
∫

Γ
ρ(Y )

∂
∂nY

log |X −Y |dSY = h(X),

X ∈ Γ. (4)

If we can parameterize the contour Γ by r(t) =
(x(t),y(t)), t ∈ [0,2π ], we can obtain

πρ(t)+
∫ 2π

0
ρ(s)K(t, s)ds = h(t), 0 ≤ t ≤ 2π ,

(5)

where

K(t, s) =⎧⎪⎪⎨
⎪⎪⎩

y′(s)[x(s)−x(t)]−x′(s)[y(s)−y(t)]
[x(s)−x(t)]2 +[y(s)−y(t)]2

t �= s,

y′′(t)x′(t)−x′′(t)y′(t)
2[x′(t)2 +y′(t)2]

t = s.

(6)

Even the above formulations seem well to intro-
duce a second kind Fredholm integral equation to
solve the Dirichlet problem, the kernel function
requiring the problem contour to be twicely differ-
entiable is a rather stringent restriction in the use
of engineering applications. Moreover, the kernel
function is not separable, which may introduce
certain difficulty to solve the layer density, and

also the solution in terms of double layer poten-
tial may include a weak singularity when the field
point approaches the boundary. All that makes the
computation by using this boundary integral for-
mulation ineffective.

In order to overcome these difficult problems, var-
ious numerical methods for solving the Laplace
equation are rapidly developed in the last three
decades. Recently, Young, Chen and Lee (2005)
have proposed a novel meshless method for solv-
ing the Laplace equation in arbitrary domain
through a rather complicated desingularization
technique, Chen, Shen and Chen (2006) utilized
the null-field method to calculate the torsion prob-
lem with many holes, and in the recent papers by
author [Liu (2007a, 2007b, 2007c)], the Laplace
equation is solved by the Fredholm integral equa-
tion method for the elastic torsion problem and in
the doubly connected domain by using the mod-
ified indirect Trefftz method and the method of
MRIEM.

The other sections of the present paper are ar-
ranged as follows. In Section 2 we derive the first
kind Fredholm intergral equation along a given ar-
tificial circle. In Section 3 we consider a direct
regularization of the first kind Fredholm intergral
equation. Then we derive a two-point boundary
value problem, which helps us to derive a semi-
analytical solution of the second kind Fredholm
intergral equation in Section 4. In Section 5 we
use some examples to test the new method, and
then, we give some remarkable conclusions in
Section 6.

2 The Fredholm integral equation

In this paper we consider a new meshless method
to solve the Dirichlet problem which consists of
the Laplace equation and the Dirichlet boundary
condition on a non-circular boundary:

Δu = urr +
1
r

ur +
1
r2 uθθ = 0, r < ρ or r > ρ ,

0 ≤ θ ≤ 2π , (7)

u(ρ ,θ ) = h(θ ), 0 ≤ θ ≤ 2π , (8)

where h(θ ) is a given function, and r = ρ(θ ) is
a given contour describing the boundary shape of
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the interior or exterior domain. The contour Γ in
the polar coordinates is given by Γ = {(r,θ )|r =
ρ(θ ), 0 ≤ θ ≤ 2π}.

We replace Eq. (8) by the following boundary
condition:

u(R0,θ ) = f (θ ), 0 ≤ θ ≤ 2π , (9)

where f (θ ) is an unknown function to be deter-
mined, and R0 is a given positive constant, such
that the disk D = {(r,θ )|r≤ R0, 0 ≤ θ ≤ 2π} can
cover Ω for the interior problem, or it is inside in
the complement of Ω, that is, D ∈ R

2/Ω for the
exterior problem. Specifically, we may let

R0 ≥ ρmax = max
θ∈[0,2π]

ρ(θ ) (interior problem),

(10)

R0 ≤ ρmin = min
θ∈[0,2π]

ρ(θ ) (exterior problem).

(11)

Because R0 is uniquely determined by the contour
of the considered problem by Eq. (10) or Eq. (11),
we do not worry how to choose R0.

The above basic idea is to replace the original
boundary condition (8) on a complicated contour
by a simpler boundary condition (9) on a speci-
fied circle. However, the price we should pay is
that we require to derive a new equation to solve
f (θ ). If this task can be finished and if the func-
tion f (θ ) is available, then the advantage of this
replacement is that we have a closed-form solu-
tion in terms of the Poisson integral:

u(r,θ ) =

± 1
2π

∫ 2π

0

r2 −R2
0

R2
0−2R0r cos(θ −ξ )+ r2

f (ξ )dξ .

(12)

Here, R0 can be viewed as the radius of an artifi-
cial circle, and f (θ ) is an unknown function to be
determined on this artificial circle. In the above,
the positive sign is used for the exterior problem,
and conversely the minus sign is used for the in-
terior problem.

By utilizing the technique of separation of vari-
ables we can write a Fourier series expansion of

u(r,θ ) satisfying Eqs. (7) and (9):

u(r,θ ) = a0 +
∞

∑
k=1

[
ak

(
R0

r

)±k

coskθ

+ bk

(
R0

r

)±k

sinkθ

]
, (13)

where

a0 =
1

2π

∫ 2π

0
f (ξ )dξ , (14)

ak =
1
π

∫ 2π

0
f (ξ )coskξdξ , (15)

bk =
1
π

∫ 2π

0
f (ξ ) sinkξdξ . (16)

Similarly, in Eq. (13) the positive sign before k is
used for the exterior problem, and conversely the
minus sign before k is used for the interior prob-
lem.

By imposing the condition (8) on Eq. (13) we ob-
tain

a0+
∞

∑
k=1

[
ak

(
R0

ρ

)±k

coskθ +bk

(
R0

ρ

)±k

sinkθ

]

= h(θ ). (17)

Substituting Eqs. (14)-(16) into Eq. (17) leads to
the first kind Fredholm integral equation:

∫ 2π

0
K(θ ,ξ ) f (ξ )dξ = h(θ ), (18)

where

K(θ ,ξ ) =
1

2π
+

1
π

∞

∑
k=1

{
Bk(θ ) [coskθ coskξ

+sinkθ sinkξ ]
}

(19)

is a kernel function, and

B(θ ) :=
(

R0

ρ(θ )

)±1

. (20)

Our starting point in Eq. (13) is quite similar to
the Trefftz method; however, the Trefftz method
is designed to satisfy the governing equation and
leaves the unknown coefficients determined by
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satisfying the boundary conditions in some man-
ners as by means of the collocation, the least
square or the Galerkin method, etc. [Kita and
Kamiya (1995)]. Huang and Shaw (1995) have
derived an integral representation of the Tre-
fftz method on the so-called embedding surface.
However, as remarked by Huang and Shaw (1995)
their method is simply an alternative derivation of
the Trefftz method. On the other hand, the method
of fundamental solutions (MFS), also called the
F-Trefftz method, utilizes the fundamental solu-
tions as basis functions to expand the solution. In
spite of the apparent differences between the Tr-
efftz method and the MFS, Chen, Wu, Lee and
Chen (2007) have proved the equivalence of these
two methods for Laplace and biharmonic equa-
tions.

Basically, these methods are of the too-early dis-
cretized methods, of which the governing equa-
tions are discretized into a linear equations sys-
tem in a rather earlier stage, and not to be con-
tinued into the integral equation as we have done
in this paper. Therefore, some inherent draw-
backs of these methods can be avoided here by
the new method, which we would provide a semi-
analytical solution of the unknown data on the ar-
tifical circle in the next two sections. On the other
hand, the usual ill-conditionings appeared in the
Trefftz mathod and the MFS can also be largely
improved by our method, as to be shown in Sec-
tion 5 for the derived linear equations system by
numerical examples.

3 Two-point boundary value problem

In order to obtain f (θ ) we have to solve the first
kind Fredholm integral equation (18). However
this integral equation is known to be ill-posed. We
assume that there exists a regularized parameter
α , such that Eq. (18) can be regularized by

α f (θ )+
∫ 2π

0
K(θ ,ξ ) f (ξ )dξ = h(θ ), (21)

which is known as one of the second type Fred-
holm integral equation. The above regularization
method to obtain a regularized solution by solving
the singularly perturbed operator equation is usu-
ally called the Lavrentiev regularization method

[Lavrentiev (1967)].

Up to this point we can remark the differences
between Eqs. (21) and (5). In Eq. (5) the kernel
function requires the contour curve to be twicely
differentiable, which is however a rather stringent
constraint. But in Eq. (21) the kernel function is
well-defined for all contour curves. The kernel
function in Eq. (6) is not separable, but the kernel
function in Eq. (19) is termwise separable, which
makes an easier solution of the integral equation
(21) than Eq. (5).

Our method is different from other boundary-type
solution procedures, including the BEM, the Tr-
efftz method, the MSF, as well as different type
meshless methods. The new method is more easy
to handle because it is an integral equation on a
given artificial circle, instead of on the contour Γ.
As we know in the open literature there has no re-
port to connect the Laplace problem to this type
integral equation. About the existence of solution
of Eq. (21), Liu (2007a) has given a rigorous proof
by using the Fredholm integral theorem.

We assume that the kernel function can be approx-
imated by m terms with

K(θ ,ξ ) =
1

2π
+

1
π

m

∑
k=1

{
Bk(θ ) [coskθ coskξ

+sinkθ sinkξ ]
}

. (22)

This assumption is for the convenience of our
derivation but is not an essential one. Moreover,
the numerical solutions are usually dominated by
the first few leading terms.

From Eq. (22) we observe

K(θ ,ξ ) = P(θ ) ·Q(ξ ), (23)

where P and Q are 2m+1-vectors given by

P :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
Bcosθ
Bsinθ

B2 cos2θ
B2 sin2θ

...
Bm cosmθ
Bm sinmθ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Q :=
1
π

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2

cosξ
sinξ

cos2ξ
sin2ξ

...
cosmξ
sinmξ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (24)



A Meshless Regularized Integral Equation Method 103

The dot between P and Q denotes the inner prod-
uct, which is sometimes written as PTQ, where
the superscript T signifies the transpose.

With the aid of Eq. (23), Eq. (21) can be decom-
posed as

α f (θ )+
∫ θ

0
PT(θ )Q(ξ ) f (ξ )dξ

+
∫ 2π

θ
PT(θ )Q(ξ ) f (ξ )dξ = h(θ ). (25)

Let us define

u1(θ ) :=
∫ θ

0
f (ξ )Q(ξ )dξ , (26)

u2(θ ) :=
∫ θ

2π
f (ξ )Q(ξ )dξ , (27)

and then Eq. (25) can be expressed as

α f (θ )+PT(θ )[u1(θ )−u2(θ )] = h(θ ). (28)

Taking the differentials of Eqs. (26) and (27) with
respect to θ we obtain

u′
1(θ ) = Q(θ ) f (θ ), (29)

u′
2(θ ) = Q(θ ) f (θ ). (30)

Inserting Eq. (28) for f (θ ) into the above two
equations we obtain

αu′
1(θ ) =

Q(θ )PT(θ )[u2(θ )−u1(θ )]+h(θ )Q(θ ), (31)

αu′
2(θ ) =

Q(θ )PT(θ )[u2(θ )−u1(θ )]+h(θ )Q(θ ), (32)

u1(0) = 0, u2(2π) = 0, (33)

where the last two conditions follow from
Eqs. (26) and (27) immediately. The above equa-
tions constitute a two-point boundary value prob-
lem.

4 Semi-analytical solution

In this section we will find a semi-analytical so-
lution of f (θ ). From Eqs. (29) and (30) it can be
seen that u′

1 = u′
2, which means that

u1 = u2 +c, (34)

where c is a constant vector to be determined. By
using the final condition in Eq. (33) we find that

u1(2π) = u2(2π)+c = c. (35)

From Eqs. (26) and (35) it follows that

c =
∫ 2π

0
f (ξ )Q(ξ )dξ . (36)

The mathematical meaning of c is that it is a
vector of the Fourier coefficients of the unknown
function f (θ ).

Substituting Eq. (34) into Eq. (31) we have

αu′
1(θ ) = −Q(θ )PT(θ )c+h(θ )Q(θ ). (37)

Integrating and using the initial condition in
Eq. (33) it follows that

u1(θ ) =
−1
α

∫ θ

0
Q(ξ )PT(ξ )dξc

+
1
α

∫ θ

0
h(ξ )Q(ξ )dξ . (38)

Taking θ = 2π in the above equation and impos-
ing the condition (35) one obtains a linear equa-
tion for c:

Rc = d, (39)

where

R := αI2m+1 +
∫ 2π

0
Q(ξ )PT(ξ )dξ , (40)

d :=
∫ 2π

0
h(ξ )Q(ξ )dξ . (41)

Corresponding to c, d is a vector of the Fourier
coefficients of the given boundary function h(θ ).

Then, the conjugate gradient method is used to
solve the following normal equation for c:

Ac = b, (42)

where

A := RTR, b := RT
∫ 2π

0
h(ξ )Q(ξ )dξ . (43)

Eq. (36) indicates that c is a vector of the Fourier
coefficients of the function f (θ ), and then we can
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express the solution of u in terms of c explicitly
by

u(r,θ ) = c1 +
m

∑
k=1

[
c2k

(
R0

r

)±k

coskθ

+c2k+1

(
R0

r

)±k

sinkθ

]
, (44)

where (c1, . . .,c2m+1) are the components of c.
Because in these processes we do not require any
domain or surface meshing, the new meshless
method would be very convenient for engineer-
ing applications in the computation ofs complex
boundary shape problems.

On the other hand, from Eqs. (28) and (34) we
have

α f (θ ) = h(θ )−P(θ ) · c. (45)

Inserting the solved c into the above equation we
obtain a semi-analytical solution of the second
kind Fredholm integral equation (21) .

For the later use in numerical example we con-
sider a special case with the boundary curve be-
ing a circle, that is, ρ = ρ0 with ρ0 a give posi-
tive constant number. For this case we can select
the artificial circle to be the same circle, such that
R0 = ρ0 and B = 1 by Eq. (20). For this case P
and Q are orthogonal, and thus we have

c =
1

1+α
d (46)

by Eqs. (39) and (40). Thus, the solution of u can
be simplified to

u(r,θ ) =
d1

1+α
+

m

∑
k=1

[
d2k

1+α

(
R0

r

)±k

coskθ

+
d2k+1

1+α

(
R0

r

)±k

sinkθ

]
, (47)

where (d1, . . . ,d2m+1) are the components of d.

5 Numerical examples

Before embarking the numerical study of the new
method, we are concerned with the stability of

MRIEM, in the case when the boundary data are
contaminated by random noise, which is inves-
tigated by adding the different levels of random
noise on the boundary data. We use the function
RANDOM−NUMBER given in Fortran to gen-
erate the noisy data R(i), where R(i) are random
numbers in [−1,1]. Hence we use the simulated
noisy data given by

ĥ(θi) = h(θi)+εR(i), (48)

where θi = 2iπ/nb, i = 0,1, . . .,nb, and ε is de-
fined as

ε = max|h(θ )|× s
100

, (49)

where s is the percentage of additive noise on the
data.

5.1 Example 1 (exterior problem)

In this example we investigate a discontinuous
boundary condition on the unit circle:

h(θ ) =

{
1 0 ≤ θ < π ,

−1 π ≤ θ < 2π .
(50)

For this example an analytical solution is given by

u(x,y) =
2
π

arctan

(
2y

x2 +y2 −1

)
. (51)

We have applied the new method in Eq. (47) to
this example by fixing R0 = 1, m = 20 and α =
10−10. In Fig. 1(a) we compare the exact solution
with numerical solutions with s = 0,5 along a cir-
cle with radius 2.5. It can be seen that the numer-
ical solutions are very close to the exact solution.
Furthermore, the numerical errors were plotted in
Fig. 1(b), of which it can be seen that the present
method is very robust to against the noise, whose
level was taken up to 5% (s = 5), and the numer-
ical error is still smaller than 0.02. In Fig. 1(c)
we also compare the numerical and exact contour
levels of u = −0.3,−0.2,−0.1,0.2,0.3,0.4. The
differences of numerical and exact results are very
small.
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Figure 1: For Example 1 the comparisons of exact solution and numerical solutions with noise s = 0,5
are made in (a), the numerical errors are plotted in (b), and in (c) several contour levels of potential are
compared.

5.2 Example 2 (exterior problem)

In this example we consider a complex epitro-
choid boundary shape

ρ(θ ) =
√

(a+b)2 +1−2(a+b)cos(aθ/b),

(52)

x(θ ) = ρ cosθ , y(θ ) = ρ sinθ (53)

with a = 3 and b = 1. It is known that the solution
of Eq. (42) controls the accuracy of numerical so-
lution. In order to identify its well-posedness we
plot the condition number of A with respect to m

and R0 in Fig. 2, which is defined by

Cond(A) = ‖A‖‖A−1‖. (54)

The norm for A is the Frobenius norm. When m
increases the condition number also increases as
shown in Fig. 2(a); however, even with m = 30 the
condition number is still smaller than 300. The
condition number decreases with respect to R0 as
shown in Fig. 2(b), which indicates that for this
case with R0 = ρmin = 3 the condition number get-
ting the smallest value.
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Figure 2: For Example 2 we plotting the condition
number with respect to m in (a) and R0 in (b).

The analytical solution is supposed to be

u(x,y) = exp

(
x

x2 +y2

)
cos

(
y

x2 +y2

)
, (55)

and thus the exact boundary data can be easily
derived by inserting Eqs. (52) and (53) into the
above equation.

We have applied the new method to this example
by fixing R0 = ρmin = 3, m = 20 and α = 10−5. In
Fig. 3 we compare the exact solution with numer-
ical solution along a circle with radius 10. It can
be seen that the numerical solution is almost co-
incident with the exact solution, of which the L2

error is about 5.02×10−4. Also we are imposed
a random noise with intensity σ = 0.003 by

ĥ(θi) = h(θi)[1+σR(i)] (56)

on the exact boundary data, of which the numeri-
cal solution was shown in the same figure by the
dashed-dotted line. The new method is robust to
against the disturbance on the boundary data.
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1.2

u

0 1 2 3 4 5 6 7

Exact

Numerical without noise

Numerical with noise

Figure 3: Comparing the exact solution and nu-
merical solutions with and without noise for Ex-
ample 2.

5.3 Example 3 (interior problem)

In this example we consider another epitrochoid
boundary shape with a = 4 and b = 1; see Fig. 4.
For this example we also investigate the condition
number. When m increases the condition num-
ber also increases as shown in Fig. 5(a); however,
even with m = 30 the condition number is still
smaller than 100. The condition number increases
with respect to R0 as shown in Fig. 5(b), which in-
dicates that for this case with R0 = ρmax = 6 the
condition number getting the smallest value.

The analytical solution is supposed to be

u(x,y) = x2 −y2, (57)

and then the exact boundary data can be easily
derived by inserting Eqs. (52) and (53) into the
above equation.

In the numerical computation we have fixed R0 =
ρmax = 6, m = 5 and α = 10−15. In Fig. 4 we
compare the contour levels of potential u = −4
and u = 2 for exact solutions and numerical so-
lutions. It can be seen that the numerical results
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Figure 4: Comparing the exact and numerical
contour levels of potential for Example 3.
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Figure 5: For Example 3 we plotting the condition
number with respect to m in (a) and R0 in (b).

are almost coincident with the exact ones. The ac-
curcay of the numerical solutions are found to be
good with the L2 error about 1.36×10−13.

5.4 Example 4 (interior problem)

For this example the solution domain is a simple
disk with a radius equal to 2. To illustrate the ac-
curacy and stability of the new method we con-
sider the following analytical solution [Lesnic, El-
liott and Ingham (1998); Jin (2004)]:

u(x,y) = cosxcoshy+ sinxsinhy. (58)

The exact boundary data can be easily derived by
inserting x = 2cosθ and y = 2sinθ into the above
equation.

In the numerical computation by using Eq. (47)
we have fixed R0 = 2, m = 20 and α = 10−6. In
Fig. 6(a) we compare the exact solution with nu-
merical solution along a circle with radius 1. It
can be seen that the numerical solution is very
close to the exact solution, of which the L2 er-
ror is about 1.5× 10−4 and the pointwise abso-
lute error is plotted in Fig. 6(b). Also we are im-
posed a random noise with intensity 1% (s = 1)
on the exact boundary data, of which the numeri-
cal solution was shown in the same figure by the
dashed-dotted line. Even under a large noise the
numerical error is still in the order of 10−3. There-
fore, we can say that the new method is robust to
against the disturbance.

6 Conclusions

In this paper we have proposed a new mesh-
less method to calculate the solutions of Laplace
equation in arbitrary interior or exterior plane do-
mains. It was demonstrated that in a regular-
ized sense we can find a semi-analytical solution
of the boundary condition on an artificial circle,
which requires only a few integrals on the cir-
cle. The numerical examples reveal that the ef-
fectiveness and the accuracy of the new method
are fairly good. Even under a large noise on the
boundary data, the numerical solutions are also
stable and accurate without needing extra treat-
ment. The robustness of the present method of
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Figure 6: For Example 4 (a) comparing the exact solution and numerical solutions with and without noise,
and (b) displaying the numerical errors.

MRIEM comes from the well-posedness of its lin-
ear equations system to determine the Fourier co-
efficients of unknown boundary function defined
on an artifical circle. When directly using these
Fourier coefficients in the solution of Laplace
problem as shown by Eq. (44), the computational
cost can be saved much, which only requires to
solve a linear equations system with moderate di-
mension, and the condition number is very small
as compared with the traditional Trefftz method
and the method of fundamental solutions. Speak-
ing conclusively, the new method of MRIEM
possesses several advantages than the conven-
tional boundary-type solution methods, includ-

ing mesh-free, singularity-free, non-illposedness,
semi-analyticity, efficiency, accuracy and stabil-
ity.
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