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Molecular Mechanics Based Finite Element For Carbon Nanotube Modeling

T.C. Theodosiou1 and D.A. Saravanos2

Abstract: In this paper a new method is intro-
duced for carbon nanotube modeling combining
features of Molecular Mechanics and Finite Ele-
ment Analysis. Repetitive atomic cells are treated
as finite elements, whose internal energy is de-
termined by the semi-empirical Brenner molecu-
lar potential model; internal forces and linearized
stiffness matrices are formulated analytically in
order to gain in speed and accuracy, and the re-
sultant discrete system is formulated and solved
using the Newton-Raphson method. The pre-
sented method is validated through comparisons
to numerical and experimental results provided by
other researchers. The bending and shearing of
CNTs is also simulated.

Keyword: Carbon nanotubes, molecular mod-
eling, finite element, molecular mechanics,
nanomechanics

1 Introduction

Since their discovery by Iijima [Iijima, S. (1991)]
carbon nanotubes (CNTs) have attracted the inter-
est of many scientists all over the world for their
unique properties. CNTs and fullerenes in gen-
eral, can be considered as a carbon allotrope like
graphite and diamond. In fact, a single wall CNT
(SWCNT) can be thought as a rolled-up graphene
sheet. Carbon nanotubes exhibit outstanding me-
chanical properties with their Young modulus be-
ing around 1.2TPa [Jin and Yuan (2003)]. De-
pending on their exact atomic configuration, that
is the geometry of the graphitic lattice, CNTs may
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show metallic or semi-conducting behavior [Dres-
selhaus, Dresselhaus and Eklund (1996); White
and Mintmire (2005)]. Thus, CNTs could be
used as multifunctional materials in an extremely
wide range of applications. So far, there has been
great effort to take advantage of the combined
structural and electronic properties of the nan-
otubes, in order to engineer a new generation of
structural materials and Nano Electro Mechanical
Systems (NEMS). The former include nanocom-
posites [Liu and Chen (2003); Hernandez, Goze,
Bernier and Rubio (1998)]; while the latter in-
clude electronics and optoelectronics [Collins and
Avouris (2000); Avouris, Radosavljevic and Wind
(2005)], nano-devices [Wong, Kang, Davidson
and Huang (2006)], chemical and mechanical sen-
sors [Li, Zhao, Zhu, Rodriguez, Morante, Men-
doza, Poa and Silva (2006); Andzelm, Govind and
Maiti (2006); Mercuri and Sgamellotti (2007);
Peng, O’Keeffe, Wei, Cho, Kong, Chen, Franklin
and Dai (2001)] and electromechanical actuators
[Roth and Baughman (2002)]. However, many
challenges remain, which should be addressed for
the successful implementation of CNTs in novel
bulk materials. Among them, there is a need to
develop efficient analytical and numerical models
which can effectively describe the mechanical be-
havior of CNTs in the context of envisioned ap-
plications.

There are many works reported in the area of
CNT modeling which are extensively reviewed
by Qian, Wagner, Liu, Yu and Ruoff (2002). In
summary, there exist several classical approaches
which can be used for CNT modeling based
on ab-initio - or from first principles - meth-
ods [Sanchez-Portal, Artacho and Soler (1999)],
tight-binding methods [Goringe, Bowleryk and
Hernandez (1997)], and molecular mechanics
methods [Ercolessi (1997); Brenner, Shenderova,
Areshkin, Schall and Frankland (2002)]. The
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latter type of methods has become quite popu-
lar nowadays, since they are faster compared to
the former ones and provide adequate accuracy.
Molecular mechanics is founded on empirical or
semi-empirical models for the molecular poten-
tial and internal forces of an atomistic structure,
which are based on the Born-Oppenheimer ap-
proximation, which states that the energy of the
system can be adequately defined by the nuclei
coordinates, neglecting the electron motion. In
fact, in Molecular Mechanics Models a system is
analyzed by applying the macroscopic equations
of motion, for example Newton’s law, to the nano-
world. Several research efforts are reported in
the international literature implementing Molec-
ular Mechanics to characterize CNTs, consider-
ing several load cases, such as tension [Zhou and
Shi (2002)] and buckling [Yakobson, Brabec and
Berholc (1996); Yakobson and Smalley (1997)].
Multi-wall CNTs have been also modeled [Li and
Chou (2003)]. A main difference among most re-
ported works remains the type of empirical poten-
tial used. Even though Molecular Mechanics re-
mains the fastest classical analysis method com-
pared to ab-initio and tight-binding methods, it is
still very time-consuming and requires substantial
computing power. As a result, homogenization
techniques have been recently developed based
on extended Born rules, which treat a representa-
tive cell of atoms as an equivalent homogeneous
continuous layer and use continuum mechanics
finite element formulations for the CNT model-
ing [Xiao and Belytschko (2004); Arroyo and
Belytschko (2002); Chung and Namburu (2003);
Park, Cho, Kim, Jun and Im (2006)]. Other more
simplified approaches have been also introduced
[Li and Chou (2003)]. A summary of “Computa-
tional Nanotechnology Tools” has been published
and described by Srivastava and Atluri (2002).

Between the previously mentioned two ends of
available molecular mechanics and homogeniza-
tion methodologies, some researchers have tried
to analyze nanotubes and nanocomposites using
representative cells or volumes [Liu and Chen
(2002); Chakraborty (2007); Ling and Atluri
(2006); Chung, Namburu and Henz (2004); Nas-
dala, Ernst, Legnick and Rothert (2006)]. In

this regime, a new technique is introduced herein
which combines elements of molecular mechan-
ics with techniques from finite element analysis
methods. The present approach takes advantage
of a repetitive finite area of atoms existing in the
periodic nanotube structure, which is treated as
a finite element. Equivalent total and tangential
stiffness matrices are directly formulated for this
repetitive area, termed thereafter as “molecular fi-
nite element”, using empirical molecular poten-
tial energy approximations. This is the main dif-
ference with respect to homogenization methods
which use the energy of a repetitive area to cal-
culate equivalent properties of a fictitious contin-
uum shell, which are then used within the context
of a continuum mechanics finite element formu-
lation. The remaining of this paper describes the
molecular structure of typical CNTs and the selec-
tion of a repetitive area, for which the equivalent
total and linearized stiffness matrices are formu-
lated using the Brenner-Tersoff molecular energy
[Brenner (1990)]. The discrete non-linear equa-
tions of motion are formulated starting from the
principle of potential energy minimization, and
solved using a Newton-Raphson method. The de-
veloped molecular finite element is first used to
predict the axial stretching of CNTs. Additional
evaluation cases examine the bending and shear-
ing of CNTs.

2 Molecular Configuration

As stated previously a single-wall carbon nan-
otube (SWCNT) can be thought as a rolled-up
graphene sheet. Multi-wall CNTs (MWCNT) can
be considered as an assembly of multiple SWC-
NTs, one positioned inside another. However,
only SWCNTs are considered in this paper, and
the modeling of MWCNTs is left as a future ex-
tension of this work.

A typical graphene sheet is shown in Fig. 1. Ev-
ery lattice vector in the graphitic lattice can be de-
fined in terms of two unit vectors a, b. The chiral
vector Ch connects two crystalographically equiv-
alent sites by declaring a pair of integers (m, n) so
that,

Ch = na+mb (1)
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and its length is equal to the nanotube circumfer-
ence. The angle θ formed by the chiral vector as
shown also in Fig. 1 is called “chiral angle” or
simply “chirality” of the nanotube.

Figure 1: Graphitic lattice and primitive vectors;
chiral vector Ch and chiral angle θ

The chirality describes the arrangement of hexag-
onal cells, thus, it affects every property of the
nanotube including its mechanical and electrical
behavior [Ivchenko, E. L.; Spivak, B. (2002)].
The nanotube diameter and chirality can be ex-
pressed in terms of (n, m) as,

d =
‖Ch‖
π
=
α
√

3
π

√
n2+nm+n2 (2)

θ = tan−1

⎛⎜⎜⎜⎜⎝
√

3m
2n+m

⎞⎟⎟⎟⎟⎠ (3)

where α is the distance between two neighboring
carbon atoms. At equilibrium state, α=1.42Å ap-
proximately. Depending on the value of θ, a nan-
otube is termed “Zig-Zag” when θ = 0o, “Arm-
Chair” when θ = 30o and generally “Chiral” for
any other value of θ between 0o and 30o.

3 Molecular Potential Function

In order to model the carbon nanotube, it is im-
perative to use an admissible molecular potential
model that best describes the interactions among
carbon atoms. Numerous semi-empirical mod-
els have been developed and used from time to
time. Among them, we mention the famous sim-
ple model of Lennard-Jones pair potential [Jones

(1924)] which describes the interaction between
two covalent atoms and depends on the atomic
distance, but was found to be inadequate for
complex covalent systems like carbon nanotubes.
Significantly better potential energy representa-
tions may be provided by a “multi-atom” model,
which apply energetic penalties to any deviation
of atomic bonds and angles away from their ref-
erence values [Leach, (2001)]. Brenner first pro-
posed and latter verified by Luo, Qian, Fei, Wang
and Chen (1998) that in case of graphitic struc-
tures, like carbon nanotubes, it is not necessary
to consider all interatomic interactions. Instead,
based on the Tersoff many-body-potential [Ter-
soff (1988)], Brenner suggested that stretching
and bending terms are sufficient for reasonable
energy approximations and provided two sets of
parameter values shown in Table 1.

Table 1: Parameter sets for the Brenner Potential
model

Type I Type II
Re 1.315Å 1.39Å
De 6.325eV 6.00eV
b 1.5 2.10
S 1.29 1.22
d 0.80469 0.50
R1 1.70Å 1.70Å
R2 2.00Å 2.00Å
a0 0.011304 0.00020813
c0 19.0 330.0
d0 2.50 3.50

Both sets give the same value for the total poten-
tial and almost the same equilibrium positions,
but each one may yield different stiffness val-
ues [Zhang, Huang, Geubelle, Klein and Hwang
(2002)]. This result has been verified by our simu-
lations, as well. The Brenner potential function V
in its Abell-Tersoff formalism energy is expressed
in terms of a repulsive potential VR, an attractive
potential VA and a multi-body coupling term Bi j:

V =
∑

i

∑
j>i

[
VR

(
ri j

)
−Bi jVA

(
ri j

)]
(4)

The terms in the previous equation are further ex-
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panded as follows:

VR (r) = fc (r) · De

S −1
·e−A1 (r−Re) (5)

VA (r) = fc (r) · De ·S
S −1

·e−A2 (r−Re) (6)

Bi j =
1
2
·
(
Bi j+B ji

)
(7)

Bi j =
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k�i, j

G
(
θi jk

)
· fc (rik)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
−δ

(8)

G (θ) = α0 ·
⎡⎢⎢⎢⎢⎢⎣1+ c2

0

d2
0

− c2
0

d2
0 + (1+ cosθ)2

⎤⎥⎥⎥⎥⎥⎦ (9)

where: θi jk is the angle formed between position
vectors ri j and rik; indices i, j, k indicate three
different atoms of the graphitic lattice (Fig. 2);
and fc is an optional “cut-off” function and it may
be used to smoothly limit the interactions in Eq.
4 within a predefined range of neighboring atoms,
effectively defined by radii R1 and R2.

fc(r) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1, r < R1

0.5 ·
(
1+ cos

(
π r−R1

R2−R1

))
, R1 < r < R2

0, r > R2

(10)

Figure 2: Definition of angle Θi jk

4 Equations of Equilibrium

A variational form of the equilibrium equations
for the system of atoms in a CNT can be described
as the minimization of total molecular potential
energy Π:

min(Π) =min
(
V −FT u

)
(11)

where, V is the molecular potential of all atoms
provided by Eq. (4), F is the vector of the exter-
nally applied forces and u are the displacements
of all atoms in the nanotube. Using a Taylor ex-
pansion series, Eq. (11) can be expressed as:

Π = Π0+
∂Π

∂u
du+

1
2

duT ∂
2Π

∂u2
du+ . . . (12)

The following notations are subsequently intro-
duced,

ψψψ =
∂Π

∂u
(13)

[
K

]
=

1
2
∂2Π

∂u2
(14)

and Eq. (12) now can be written as,

Π = Π0+ψψψ
Tdu+duT

[
K

]
du (15)

Substituting the potential energy expression in
Eq. (15) into Eq. (13), the vector ψ is equal to:

ψψψ =
∂Π

∂u
= [K]u−F (16)

In the above equations, vector ψ can be considered
as the imbalance vector between the internal and
external atomic loads, [K] = ∂V/∂u as the equiva-
lent stiffness matrix of the molecular structure and[
K

]
as the linearized (tangential) stiffness matrix.

At equilibrium state, the first variation of Π di-
minishes, and a set of discrete nonlinear equa-
tions are obtained, which describe the balance be-
tween intermolecular and external forces on the
nanotube atoms:

∂Π

∂u
=ψψψ = [K]u−F = 0 (17)

There are several ways to numerically solve the
previous set of nonlinear equations and predict
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the equilibrium of the nanotube after a load incre-
ment. In this paper, a Newton-Raphson iterative
method was implemented. The Newton-Raphson
method predicts a better estimate du of the solu-
tion of either Eq. (12) or (17), by solving the fol-
lowing set of linear equations[
K

]
du = −ψψψ (18)

Eq. (18) is in fact a N ×N system of linear equa-
tions, where N is the total number of degrees of
freedom of the nanotube. Provided that [K] and
[K] are available, Eq. (18) can be solved and du
is calculated. The atomic configuration is updated
using du and the procedure is repeated until the
magnitude of the imbalance vector ψ converges to
zero. Then a new load increment is applied and a
new equilibrium state, or “snapshot”, of the nan-
otube deformation is obtained in the same manner.

5 Finite Element Approach

The governing equations and their solution pro-
cedure described in the previous section can be
directly applied for the analysis of any graphitic
system. However, if all atomic interactions are
to be considered, the assembly and solution of
Eqs. (17) and (18) become time-consuming and
intractable requiring great amounts of computing
power, because a great number of internal force
and stiffness terms needs to be calculated for each
atom. To alleviate this problem, we propose the
assembly of stiffness matrices from smaller in
size matrices corresponding to a finite area of the
atomic nanostructure. We first make the reason-
able assumption that meaningful effective atomic
interactions exist only within a region of finite ra-
dius surrounding each atom. Interestingly, the as-
sumption of a finite region of interatomic interac-
tions is consistent with the formulation of many
molecular potential models. Fig. 3 shows three
such possible finite regions in the context of the
Brenner potential. In this work the finite radius of
interatomic interactions is assumed to be limited
within the areas (1) & (2) shown in Fig. 3, which
include the stretching and bending interactions in
the Brenner potential. If the cut-off function is
omitted, the effective range of atomic interactions
will expand to include area (3), as well.

Figure 3: Effective range of the Brenner Potential:
(1) Fully effective; (2) Transitional area due to the
cut-off function; (3) Total effective range, if the
cut-off function is omitted

As a next step, we take advantage of the repetitive
atomic structure and consider the hexagonal ring
of atoms shown in Fig. 4 as the repetitive finite
area.

Figure 4: A CNT model assembled using the
molecular finite element

Based on the two previous considerations, the
area surrounded by the hexagonal ring can now
be treated as a finite area whose internal energy is
contributed solely by atoms belonging to the cell.
If Πe is the potential energy of all atoms in the
hexagonal finite area, provided by the Brenner po-
tential in Eq. (4), we can define the internal forces
and tangential stiffness matrix of the finite area, as
follows:

ψψψe =
∂Πe

∂u
(19)

[
Ke

]
=

1
2
∂2Πe

∂u2
(20)
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where, subscript e indicates the finite area. The
previous internal force vector and stiffness matri-
ces are reminiscent of those in a finite element;
hence the finite area can be considered as a spe-
cial finite element, termed thereafter as “molecu-
lar finite element”. The effect of element geom-
etry and surface curvature of the nanotube wall
are included into the element matrices through the
definition of their atomic positions. Fig. 5 shows
a resultant element with its nodes moved in order
to comply with the nanotube geometry.

Figure 5: Two different perspective views of
molecular finite element that has been adapted to
conform to the nanotube wall curvature

Subsequently, the total internal force vector [K]u
and tangential stiffness matrix are synthesized
from the contributions of the individual finite ele-
ments comprising the nanotube model. Thus, by
limiting the calculation of stiffness into the finite
area, then synthesizing the total set of governing
equations as contributions of each finite element,
we gain in model definition, assembly and solu-
tion time.

One novelty of this new “Finite Element” is that
there is no need for the assumptions used in other
successful methods, like the assumption of Pe-
riodic Boundary Conditions or the Born Rule
of Homogeneous Deformation. This makes the
method applicable to every carbon system. Addi-
tionally, the implementation of FE Analysis fea-
tures facilitates the computational solution and
parallelization of the analysis code which sub-
stantially minimizes the required solution time.
Another advantage is that this element makes fea-
sible the investigation of local effects, like defects,
without disturbing the whole system. The pres-
ence of defective rings, like pentagon-rings, can
be modeled by isolating the appropriate atoms of

the Finite Element. Alternatively, the presence of
defects in a nanotube can be modeled by modify-
ing or simply eliminating individual elements.

6 Equivalent continuum response - Postcal-
culation

After the numeric solution of the CNT response
has been completed, data is collected and post-
processed, in order to retrieve the macroscopic
equivalent mechanical response of a section of the
nanotube. As the deformation and total potential
energy of the full system is known for each load
increment, one may calculate the corresponding
measures for stress and strain. Based on the de-
formation, the “deformation gradient” [F] can be
calculated as [Xiao and Belytschko (2004); Ar-
royo and Belytschko (2002)]:

[F] =
∂u
∂U

(21)

In Eq. (21) u denotes the atomic configuration,
i.e. the Cartesian coordinates of the atoms, at any
deformed snapshot, and U denotes the initial equi-
librium configuration. Then, the Lagrange-Green
strain tensor can be calculated through the equa-
tion:

ε =
1
2

[
FTF− I

]
(22)

where [I] is the identity tensor.

The stress tensor [σ] can be found as:

σi j =
1
Ω0

∂2Π

∂ε2
i j

(23)

where,Ω0 = A0 ·t is the volume of the undeformed
nanotube, t denotes the wall thickness and A0 is
the initial equilibrium area of the nanotube sec-
tion. A reasonable estimate for t is the interlayer
distance of graphite, that is t=0.34nm. Dividing
stress by strain yields to the elastic moduli of the
nanotube. For instance the longitudinal elastic-
ity modulus and the equivalent Poisson ratio are
given by:

Exx =
σxx

εxx
and v = −εtrans

εxx
(24)

In the previous equation, εxx is the longitudinal
strain and εtrans is the strain in the transverse di-
rection at the middle of the nanotube.
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7 Validations

In order to evaluate the response of the novel finite
element, its results were validated through com-
parisons with theoretical and experimental data
obtained from the open literature on CNTs. A
prototype code was developed and run on a par-
allel processing system consisting of 8 Pentium-4
class CPUs.

In each simulation a standard procedure has been
followed, in order to obtain repeatable results.
Firstly, the Cartesian coordinates of the carbon
atoms were defined for a specific nanotube config-
uration based on Eqs 1, 2 & 3 and a finite element
CNT model is assembled using the molecular fi-
nite element presented previously. Unless other-
wise stated, in most cases a length-to-diameter ra-
tio above 5.5 has been used for reasons explained
later in this paper. Boundary conditions and loads
were applied appropriately depending on the case
studied, always a few Å away from the tube ends
in order to avoid local boundary effects. The
loads were applied incrementally using a prede-
fined number of load steps. Due to accuracy er-
rors in the initial carbon-carbon distance, some re-
laxation steps where required in order to achieve
initial equilibrium prior to loading and maximum
accuracy in the equivalent property postcalcula-
tion. Both Type-I and Type-II Brenner models
were tried in the present method, but the Type-II
model was found to lead to more accurate numer-
ical predictions, thus it was subsequently used in
all numerical results shown herein.

The method was first tested for the simple case
of calculating the equilibrium state of an un-
loaded plain graphene sheet. A graphite sheet
was modeled using approximate values for the
carbon-carbon distance. One edge of the sheet
was clamped and the relaxation of the system was
predicted. After relaxation, the equilibrium dis-
tance between neighboring carbon atoms was pre-
dicted to be 1.4201Å which is very close to the
experimentally observed value of 1.419Å.

Subsequently, several open nanotube configura-
tions were subjected to uniaxial tension in order to
estimate the equivalent Young modulus. One end
of the nanotube was clamped and the other was

loaded by forcing uniform atomic displacements
to a ring of atoms near the other end. The equiv-
alent strain and properties were calculated based
on the predicted deformation of a finite length of
the CNT atoms away from the ends (Fig. 6) to
avoid edge-effects.

Figure 6: Predicted CNT deformation subject to
axial loading. (a) Initial unloaded equilibrium
state; (b) predicted deformed shape. The approx-
imate location of points used for the postcalcu-
lation of equivalent strains and properties is also
shown.

Numerical results obtained by the present method
are compared with results reported by Jin and
Yuan (2003), who provided a list of elastic proper-
ties for several nanotube configurations based on
molecular dynamics simulations. Details about
the models of these simulations are presented in
Table 2.

Table 2: CNT model parameters

Tube Type Atoms Elements Diameter Length
(Å) (Å)

(6,6) 456 216 8.14 45.60
(7,7) 616 294 9.49 53.01
(8,8) 800 384 10.85 60.40
(9,9) 1008 486 12.20 67.79

(10,10) 1240 600 13.56 75.02

Jin and Yuan’s model configurations were repli-
cated and analyzed using the presented method
and the results are shown in Table 3. Unlike
Yuan’s model, which gives almost the same value
for E in all cases, our method predicts a decrease
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in E as the diameter of the nanotube grows; this
appears to be expected, since for an infinite radius,
the Young modulus should approach the modulus
value of graphite (approximately 1.1TPa).

The predicted numerical results, also fall within
the range of reported values obtained either by
other simulation methods or experimentally ob-
served. Grigoras, Gusev, Santos and Suter (2002)
estimated E=1.07TPa using both Molecular Dy-
namics and Monte Carlo simulations. Treacy,
Ebbesen and Gibson (1996) obtained a Young
modulus of 1.8±0.9TPa, while Krishnan, Du-
jardin, Ebbesen, Yannilos and Treacy (1998) es-
timated the stiffness of SWCNTs to be around
1.3TPa using Transmission Electron Microscopy.

Table 3: Predicted equivalent axial modulus of a
single wall nanotube

CNT configuration
Predicted
modulus
E(TPa)

(6,6) (7,7) (8,8) (9,9) (10,10)

Jin and Yuan
(2003)

1.324 1.336 1.339 1.335 1.338

Present work 1.355 1.312 1.326 1.302 1.260
Difference
(%)

2.3 1.8 0.9 2.5 5.8

It seems that the predicted values are very sensi-
tive to the potential model used and less sensitive
to the chirality of the nanotube. Variations among
various researchers may occur due to (i) the se-
lection of different modelling techniques; (ii) the
applied loading and boundary conditions; and (iii)
the implemented numerical method for the solu-
tions of Eq. 18. The selections of these three fac-
tors determine the overall accuracy and effective-
ness of the method. Nevertheless, the results ob-
tained by our simulation method are in very good
agreement with the results of other research stud-
ies, and certainly within a reasonably acceptable
range.

8 Application Cases

Apart from the simple extension cases presented
above, several more complex cases were also

modeled. Firstly, the effect of the length-to-
diameter aspect ratio (L/d) on the CNT exten-
sional response was studied. Several CNT mod-
els of the same type but of different aspect ratios
were analyzed using the described procedure. As
shown in Fig. 7, the predicted curves of the equiv-
alent stress and strain properties have significant
irregularities for small ratios, but seem to con-
verge for L/d values over 5.
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Figure 7: The equivalent stress-strain response of
a CNT subject to tension for various length-to-
diameter (L/d) ratios

The results suggest that nanotube models with ra-
tios L/d > 5 can be used to extract information
regarding equivalent tensile properties of a CNT.
It is also observed that the CNT behaves nonlin-
early, thus the equivalent tangential elastic coef-
ficients will depend on the applied stress-strain
value. The axial Young moduli values estimated
in the previous cases (Table 3) were calculated at
low strain (ε ≈ 0). Fig. 8 presents the mean value
of the energy stored in a hexagonal cell at the un-
loaded equilibrium state for several CNT types.

It seems that the higher the radius, the lower is
the energy stored in the cell, which means that the
atomic structure is more stable. This makes sense
because the lowest energy level and of course the
most stable structure should correspond to an in-
finitely large radius, this is a plain graphene sheet.

The bending of CNTs was also studied. The nan-
otube was modeled in the same way as in the
case of uniaxial tension, but the load was ap-
plied in a manner that resembles pure bending.
Selected atoms near both ends of the CNT were
displaced such that both CNT ends were counter-
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Figure 8: Effect of the CNT configuration on the
average value of energy stored in each hexagonal
cell

rotated around parallel lateral axes. The bending
load was incrementally applied until the tangen-
tial stiffness matrix became singular. The sin-
gularity of the linearized stiffness matrix can be
viewed as a probable indication of buckling insta-
bility or an atomic failure in the molecular struc-
ture of the CNT. However, what physically hap-
pens near and beyond this “critical load” exceeds
the scope of the current study and will be consid-
ered as a future extension of this work.

In order to obtain some sensitivity of the response
to defects in its molecular structure, the model
was further modified in order to represent a “de-
fective” geometry; this was done by removing
some finite elements at the middle of the CNT.
The simulation was performed again and the re-
sults were compared to the ones concerning the
undamaged nanotube. The final snapshots are
shown in Fig. 9.

Figure 9: Predicted CNT deformations subjected
to bending at the state where the tangential stiff-
ness matrix becomes singular. (a) Undamaged
CNT; (b) CNT with defects, for which singular-
ity of the tangential stiffness matrix occurs much
earlier

As expected, the critical bending load for the de-

fective CNT was found to be much less than the
critical load of the undamaged one.

Similarly, a shearing case was modeled. Trans-
verse loading was applied incrementally until the
tangential stiffness matrix became singular. At
the corresponding final load step, the expected de-
formed shape is shown in Fig. 10.

Figure 10: Deformed CNT subject to a pair of
shearing displacements

Some local buckling effects can also be observed
in this figure.

In closing, the numerical simulations illustrated
that this novel method and finite element can pre-
dict the response of SWCNTs subjected to a va-
riety of mechanical loads, both accurately and ef-
fectively, thus providing a fast and accurate tool
for nanotube modelling and extraction of CNT
properties.

9 Summary

A new method for analyzing the mechanical re-
sponse of carbon nanotubes has been described
in this paper. It combines features from exist-
ing successful methods of Molecular Mechanics
and Finite Element formulations, resulting to ef-
fective treatments of a cell of atoms as a Molec-
ular Finite Element. A great novelty of this new
method is that there is no need for assuming pe-
riodic boundary conditions or homogeneous de-
formations, thus, it can be implemented for mod-
eling CNTs of finite length, configurations with
complex geometries, or local effects in regions
where the limits of homogeneity assumptions are
exceeded.
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Validation cases have accurately predicted the ef-
fect of CNT configurations and aspect ratio (L/d)
on the CNT mechanical response and properties.
More complex loading cases, such as bending and
shearing, have been also modeled and simulated.
The effect of defects and damage on the CNT re-
sponse was also captured. The developed proto-
type code has been taking advantage of the paral-
lelization features of FEA solvers, and was used
on parallel processing systems reducing the re-
quired solution time. Future work will address the
modelling of multi wall CNTs.
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Appendix: Analytical expressions for the im-
balance vector ψ and the tangential stiffness
matrix

[
K

]
Atomic position vector of the ith atom:

ri =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ui1

ui2

ui3

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (25)

Relative atomic positions between atoms i and j:

ri j = rj− ri (26)

Norm of the relative position vector:

ri j =
∥∥∥rij

∥∥∥ (27)

Imbalance Vector ψ

∂ri j

∂uk
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
uik−u jk

ri j
, k = i

u jk−uik

ri j
, k = j

0, otherwise

(28)

∂FC

(
ri j

)
∂ri j

=⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0, r < R1

−0.5 · π
R1−R2

· sin
(
1+π · r−R1

R1−R2

)
, R1 ≤ r < R2

0, R2 ≤ r

(29)

∂FC

(
ri j

)
∂uk

=
∂FC

(
ri j

)
∂ri j

· ∂ri j

∂uk
(30)

∂VR

(
ri j

)
∂ri j

=

⎡⎢⎢⎢⎢⎢⎢⎣∂FC

(
ri j

)
∂ri j

−FC

(
ri j

)
·A1

⎤⎥⎥⎥⎥⎥⎥⎦ · De

S −1
·e−A1 ·(r−Re)

(31)

∂VA

(
ri j

)
∂ri j

=

⎡⎢⎢⎢⎢⎢⎢⎣∂FC

(
ri j

)
∂ri j

−FC

(
ri j

)
·A2

⎤⎥⎥⎥⎥⎥⎥⎦ · De ·S
S −1

·e−A2 ·(r−Re)

(32)

∂VR

(
ri j

)
∂uk

=
∂VR

(
ri j

)
∂ri j

· ∂ri j

∂uk
(33)

∂VA

(
ri j

)
∂uk

=
∂VA

(
ri j

)
∂ri j

· ∂ri j

∂uk
(34)

∂G (θ)
∂cosθ

=
2a0c0 (1+ cosθ)[
d2

0 + (1+ cosθ)2
]2

(35)

∂rij

∂uk
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−ûk, k = i

ûk, k = j

0, otherwise

(36)

∂

∂uk

(
1
ri j

)
= −∂ri j

∂uk
·
(

1
ri j

)2

(37)

∂cos
(
θi jk

)
∂um

=
1

ri j · rik
·rik · ∂rij

∂um
+

1
ri j · rik

·rij · ∂rij

∂um

+
1
rik
·rij ·rik · ∂

∂um

(
1
ri j

)
+

1
ri j
·rij ·rik · ∂

∂um

(
1
rik

)
(38)

∂G
(
θi jk

)
∂um

=
∂G

(
θi jk

)
∂cosθi jk

· ∂cosθi jk

∂um
(39)

∂Bi j

∂um
= −δ ·B1+ 1

δ

i j

·
∑
k�i, j

⎡⎢⎢⎢⎢⎢⎢⎣∂G
(
θi jk

)
∂um

·FC (rik)+G
(
θi jk

)
· ∂FC (rik)

∂um

⎤⎥⎥⎥⎥⎥⎥⎦
(40)
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∂Bi j

∂uk
= 0.5 ·

(
∂Bi j

∂uk
+
∂B ji

∂uk

)
(41)

∂V
∂uk
=

∑
i

∑
j>i

⎡⎢⎢⎢⎢⎢⎢⎣∂VR

(
ri j

)
∂uk

−Bi j ·
∂VA

(
ri j

)
∂uk

− ∂Bi j

∂uk
·VA

(
ri j
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(42)

ψψψ =
∂Π

∂u
=

∂

∂u

(
V −FT ·u

)
(43)

If a constant force field is applied on the system,
Eq. (43) may be reduced to Eq. (42), therefore

ψψψ =

∑
i

∑
j>i

⎡⎢⎢⎢⎢⎢⎢⎣∂VR

(
ri j
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∂uk
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(
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Tangential Stiffness Matrix
[
K

]

∂2FC

(
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1
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[
K

]
=

1
2
· ∂

2

∂u2

(
V −FTu

)
(55)

If a constant force field is applied on the system,
Eq. (55) may be reduced to Eq. (54) and there-
fore:

[
K

]
=

1
2
· ∂2V
∂up∂uq

(56)

In the equations above ui1, ui2, ui3 denote the co-
ordinates of the ith atom with respect to the global
Cartesian CS with axes {1,2,3}, ûk denotes the
unit vector along the k-axis of the global CS and
un is the nth degree of freedom of the total sys-
tem. The relation between the atomic coordinate
‘m’ of the ith atom and the equivalent DOF of the
total system is given by n = 3 · i+m,m = {1,2,3}


