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A MRIEM for Solving the Laplace Equation in the Doubly-Connected
Domain

Chein-Shan Liu1

Abstract: A new method is developed to solve
the Dirichlet problems for the two-dimensional
Laplace equation in the doubly-connected do-
mains, namely the meshless regularized integral
equations method (MRIEM), which consists of
three portions: Fourier series expansion, the Fred-
holm integral equations, and linear equations to
determine the unknown boundary conditions on
artificial circles. The boundary integral equations
on artificial circles are singular-free and the ker-
nels are degenerate. When boundary-type meth-
ods are inefficient to treat the problems with com-
plicated domains, the new method can be appli-
cable for such problems. The new method by us-
ing the Fourier series and the Fourier coefficients
can be adopted easily to derive the meshless nu-
merical method. Several numerical examples are
tested showing that the new method is powerful.
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1 Introduction

Numerical methods are required inevitably to
solve the engineering problems in complicated
domains, since in these situations the analytical
solutions are usually not available. Numerical
methods used widely are finite difference method
(FDM), finite element method (FEM) and bound-
ary element method (BEM). Because the BEM
can reduce the dimensionality of the considered
problems, it has become an efficient alternative
calculational tool to replace the domain-based
FDM and FEM. However, there are pitfalls to
hamper its efficient implementation. The major
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disadvantage of BEM is its singularities: weak
singularity of kernel function, Cauchy principal
value singularity and hypersingularity.

For a complicated shape of the domain those
methods usually require a large number of nodes
and elements to match the geometrical shape. In
order to overcome these difficulties, Atluri, Kim
and Cho (1999) have proposed the meshless local
boundary integral equation (LBIE) method, and
Atluri and Shen (2002) have proposed the mesh-
less local Petrov-Galerkin (MLPG) method. Both
methods use local weak forms, and the integrals
can be easily evaluated over regularly shaped do-
mains, like as circles in 2D problems and spheres
in 3D problems.

Algorithms based on discretization of integral
equations are often attractive for problems with
complicated domains because of the reduced
complexity of discretization when compared with
competive approaches such as FDM and FEM.
For this reason there were many researchers de-
voted to overcome the difficulties arised from the
perplexing singularities in the boundary integral
equations. At the first, Landweber and Macagno
(1969) have proposed method to get rid of the sin-
gularity by substracting a function from the in-
tegrand so that the kernel becomes non-singular,
and then adding back an accurate integration of
the function to the integral equation. This method
was modified and referred to as the non-singular
boundary integral method by Hwang and Hwang
(1998) and Fan and Young (2002), or the desin-
gularized boundary integral method by Chuang
(1999).

Then, another way to avoid the singularity was
proposed by Cao, Schultz and Beck (1991), Lalli
(1997) and Zhang, Ywo, Khoo and Chong (1999),
which moves the computing nodes away from
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the boundary and outside the real domain of the
problem. Even, this new approach can overcome
the difficulties of singular integrals, it has an-
other problem of the ill-posedness due to the ap-
pearence of the first-kind Fredholm integral equa-
tions. Conversely, Young (1999), Young, Chen
and Lee (2005) and Young, Hwang, Tsai and Lu
(2005) have applied the desingularized boundary
integral equation method to the potential prob-
lems. In these approaches the source points are
located in the real boundary, and they regularized
the singular integrals by using the Gauss’ flux the-
orem and other property derived from the poten-
tial theory.

Our starting point is similar to the Trefftz method.
However, when our method basing on the sep-
aration of variables technique requires to meet
both the specific geometry and boundary condi-
tions, the Trefftz method just satisfies the gov-
erning equation and the unknown coefficients are
determined by satisfying the boundary conditions
in some manners as by means of the collocation,
the least square or the Galerkin method; see, e.g.,
Kita and Kamiya (1995). Huang and Shaw (1995)
have derived an integral representation of the Tr-
efftz method on the so-called embedding surface.
However, as remarked by Huang and Shaw (1995)
their method is simply an alternative derivation of
the Trefftz method.

On the other hand, the method of fundamen-
tal solutions (MFS) approximates the solution by
a linear combination of fundamental solutions
with singularities, as the source points located
on a fictious boundary outside the domain of the
problem; see, e.g., Fairweather and Karageorghis
(1998). Because the MFS is an inherently mesh-
less boundary method and has exponential con-
vergence property for smooth solutions, it has
been used extensively for solving the Laplace
equation; see, e.g., Saavedra and Power (2003).
Although the MFS can avoid the difficulities as-
sociated with BEM, it still has the problem that
the resulting linear equations system may become
highly ill-conditioned when the number of source
points is increased [Golberg and Chen (1996)].

Basically, those methods discretized the govern-
ing equations into a linear equations system in an

earlier stage, and not to be continued into a fur-
ther stage by deriving integral equations as we
will do in this paper. Therefore, in doing so
many inherent drawbacks of those methods can
be avoided here by the new method, from which
we could provide a semi-analytical solution of the
unknown functions on the artifical circles. The
semi-analytical method is in essence an approxi-
mation method aiming to find a relatively simple
formula for the solution and, at the same time to
reatin the main feature of exact solution.

An improved method than the MFS is the so-
called boundary knot method [Chen and Tanaka
(2002); Jin and Chen (2006)] or the boundary
collocation method [Chen, Chang, Chen and Lin
(2002); Chen, Chang, Chen and Chen (2002)]. In-
stead of the singular fundamental solutions, those
methods employed the non-singular kernels to
evaluate the homogeneous solutions. However, as
pointed out by Young, Chen and Lee (2005) the
introduction of non-singular kernels as the radial
basis functions may jeopardize the accuracy of so-
lutions as compared with the MFS.

This paper will formulate the Laplace equation
in the doubly-connected domain by a meshless
regularized integral equations method (MRIEM).
These integral equations are singular-free and
the kernels are degenerate. Moreover, the
new method is also applicable to the problem
with non-smooth boundary curves, even many
boundary-type methods are inefficient for such
cases. Owing to these good properties the new
method using the Fourier series and the Fourier
coefficients can be easily used to derive the mesh-
less numerical method of the semi-analytical type.

We divide this paper into two main parts. In Part
one, we propose a novel integral equation with-
out singularity to treat the Laplace equation in
the doubly-connected domain with outer bound-
ary being a circle whilst the inner boundary is al-
lowing to be any simple closed curve. This part
includes six sections which are arranged as fol-
lows. In Section 2 we derive the first kind Fred-
holm intergral equation along a given artificial cir-
cle. In Section 3 we consider a Nyström approxi-
mate solution of the second kind Fredholm inter-
gral equation. Then, we derive a two-point bound-
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ary value problem in Section 4, which helps us
to derive a semi-analytical solution of the second
kind Fredholm intergral equation in Section 5. In
Section 6 we apply the conjugate gradient method
to a normal equation to obtain the Fourier coeffi-
cients of the unknown function. In Section 7 we
use some examples to test the new method.

In Part two, we extend the results in Part one
to treat the Laplace equation in the doubly-
connected domain with both inner and outer
boundaries being allowed to be any simple closed
curves. This part includes four sections, which is
arranged as follows. In Section 8 we derive two
coupled Fredholm integral equations of the first
kind. Then we derive a two-point boundary value
problem in Section 9. In Section 10 we apply the
conjugate gradient method to the normal equation
to obtain the Fourier coefficients of the unknown
functions in two artificial circles. In Section 11
we use some examples to test the new method. Fi-
nally, some conclusions are given in Section 12.

Part one: one integral equation

2 The Fredholm integral equation

The first problem we consider is the Laplace equa-
tion equipped with the Dirichlet boundary condi-
tions at an external circle and at a simple closed
interior boundary:

Δu = urr +
1
r

ur +
1
r2 uθθ = 0, (1)

u(r1,θ ) = g(θ ), 0 ≤ θ ≤ 2π , (2)

u(r3,θ ) = h1(θ ), 0 ≤ θ ≤ 2π , (3)

where g(θ ) and h1(θ ) are given functions. Here,
(r1,θ ), 0≤ θ ≤ 2π with a constant r1 is an exter-
nal circle, and r3 = r3(θ ) < r1 is a simple curve
inside the external circle as shown in Fig. 1(a).
In the recent papers by the author [Liu (2007a,
2007b)], the Laplace equation is solved by the
Fredholm integral equation method for the elas-
tic torsion problem and in the doubly connected
domain by using the modified indirect Trefftz
method.

We temporarily replace Eq. (3) by the following
boundary condition:

u(r2,θ ) = f (θ ), 0 ≤ θ ≤ 2π , (4)

(a)

(b)
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Figure 1: Schematic drawing to show the doubly-
connected regions, where we solve the Laplace
equation by the new methods for (a) with one in-
tegral equation, and (b) with two coupled integral
equations.

where f (θ ) is an unknown function to be deter-
mined, and the inner circle (r2,θ ), 0 ≤ θ ≤ 2π
with a constant r2 < r3 is inside the domain en-
closed by r3(θ ).

Therefore, by utilizing the technique of separation
of variables we can write a series expansion of
u(r,θ ) satisfying Eqs. (1), (2) and (4):

u(r,θ ) =
1
2
(a0 +b0 lnr)+

∞

∑
k=1

[(akrk +bkr−k)coskθ +(ckrk +dkr−k) sinkθ ],

(5)
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where

a0 =
1

π(lnr1− lnr2)

·
[

lnr1

∫ 2π

0
f (ξ )dξ − lnr2

∫ 2π

0
g(ξ )dξ

]
, (6)

b0 =
1

π(lnr1− lnr2)

·
[∫ 2π

0
g(ξ )dξ −

∫ 2π

0
f (ξ )dξ

]
, (7)

ak =
ek

rk
2

∫ 2π

0
g(ξ )coskξdξ

− ek

rk
1

∫ 2π

0
f (ξ )coskξdξ , (8)

bk = ekrk
1

∫ 2π

0
f (ξ )coskξdξ

− ekrk
2

∫ 2π

0
g(ξ )coskξdξ , (9)

ck =
ek

rk
2

∫ 2π

0
g(ξ ) sinkξdξ

− ek

rk
1

∫ 2π

0
f (ξ ) sinkξdξ , (10)

dk = ekrk
1

∫ 2π

0
f (ξ ) sinkξdξ

−ekrk
2

∫ 2π

0
g(ξ ) sinkξdξ , (11)

in which

ek :=
1

π
[(

r1
r2

)k −
(

r2
r1

)k
] . (12)

By imposing the condition (3) on Eq. (5) we ob-
tain

1
2
(a0 +b0 lnr3)+

∞

∑
k=1

[(akrk
3 +bkr−k

3 )coskθ

+(ckrk
3 +dkr−k

3 ) sinkθ ] = h1(θ ). (13)

Substituting Eqs. (6)-(11) into Eq. (13) leads to a
first kind Fredholm integral equation:

∫ 2π

0
K(θ ,ξ ) f (ξ )dξ = h(θ ), (14)

where

h(θ ) := h1(θ )+
lnr2 − lnr3

2π(lnr1 − lnr2)

∫ 2π

0
g(ξ )dξ

+
∞

∑
k=1

{
Ak

(∫ 2π

0
g(ξ )coskξdξ coskθ

+
∫ 2π

0
g(ξ ) sinkξdξ sinkθ

)}
(15)

is the source function fully available after insert-
ing the give function g(θ ), and

K(θ ,ξ ) =
lnr1 − lnr3

2π(lnr1− lnr2)

+
∞

∑
k=1

{
Bk [coskθ coskξ + sinkθ sinkξ ]

}
(16)

is a kernel function. Here,

Ak := ek(r−k
3 rk

2 − rk
3r−k

2 ), (17)

Bk := ek(r−k
3 rk

1 − rk
3r−k

1 ) (18)

are both functions of θ due to the dependence of
r3 on θ .

In order to obtain f (θ ) we have to solve the first
kind Fredholm integral equation (14). We assume
that there exists a regularized parameter α , such
that Eq. (14) can be regularized by

α f (θ )+
∫ 2π

0
K(θ ,ξ ) f (ξ )dξ = h(θ ), (19)

which is known as one of the second type Fred-
holm integral equation. The above regulariza-
tion method to obtain a regularized solution by
solving the perturbed equation is usually called
the Lavrentiev regularization method [Lavrentiev
(1967)].

3 The Nyström method

In this section we first provide a numerical
method to solve Eq. (19). The range [0,2π ] is di-
vided into n−1 subintervals with Δθ = 2π/(n−
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1) and θi = (i− 1)Δθ . The numerical value of
f (θ ) at the i-th grid point is denoted by fi = f (θi),
and there are totally n unknowns f1, f2, . . . , fn.
Then, we apply the Nyström method with trape-
zoidal quadrature on the integral term in Eq. (19),
which results in

α fi +Δθ

[
1
2

Ki1 f1 +
n−1

∑
j=2

Ki j f j +
1
2

Kin fn

]
= hi,

i = 1, . . .,n, (20)

where Ki j := K(θi,θ j) and hi := h(θi).

The above system can be rearranged into a linear
equations system:

Ax = b, (21)

where

A :=Δθ

⎡
⎢⎢⎢⎣

α0 + 1
2 K11 K12 · · · 1

2 K1n
1
2K21 α0 +K22 · · · 1

2 K2n
...

...
...

...
1
2Kn1 Kn2 · · · α0 + 1

2Knn

⎤
⎥⎥⎥⎦

b :=

⎡
⎢⎢⎢⎣

h1

h2
...

hn

⎤
⎥⎥⎥⎦ ,

(22)

in which α0 = α/Δθ and x = ( f1, f2, . . . , fn)T. For
the details of solvability and the error analysis
for Nyström’s method, the readers may refer to
[Kress (1989)].

There are several methods to deal with Eq. (21).
Here, we consider an iterative method for Eq. (21)
by integrating the following equation:

ẋ = b−Ax =: f(x), (23)

until ‖ẋ‖ is smaller enough than a given criterion
with ‖ẋ‖< ε . The fixed point, i.e. f(x) = 0, of the
above equation is the solution of Eq. (21). When
t approach infinity we expect that x tends to the
solution of Eq. (21).

A nonstandard group preserving scheme (NGPS)
for Eq. (23) has been developed by Liu (2001,
2005),

xk+1 = xk +
4‖xk‖2 +2φ fk ·xk

4‖xk‖2 −φ 2‖fk‖2 φ fk, (24)

where

φ (Δt) :=
1−exp(−ρΔt)

ρ
, (25)

and ρ can be a number not smaller than the Lips-
chitz constant of Eq. (23):

L = ‖A‖ ≥ max{|λi| : i = 1,2, . . .,n}. (26)

The iteration method in Eq. (24) is unconditional
stable.

4 Two-point boundary value problem

We assume that the kernel function can be approx-
imated by m terms with

K(θ ,ξ ) =
lnr1 − lnr3

2π(lnr1− lnr2)

+
m

∑
k=1

{
Bk [coskθ coskξ + sinkθ sinkξ ]

}
. (27)

This assumption is for the convenience of our
derivation but is not essential. After we have ob-
tained an analytical solution we can let m = ∞
again. The kernel function as can be seen is
termwise separable, which is also called the de-
generate kernel [Kress (1989)].

By inspection we have

K(θ ,ξ ) = P(θ ) ·Q(ξ ), (28)

where P and Q are 2m+1-vectors given by

P :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

lnr1−lnr3
2π(lnr1−lnr2)

B1 cosθ
B1 sinθ

B2 cos2θ
B2 sin2θ

...
Bm cosmθ
Bm sinmθ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Q :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
cosξ
sinξ

cos2ξ
sin2ξ

...
cosmξ
sinmξ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (29)

and the dot between P and Q denotes the inner
product, which is sometimes written as PTQ for
convenience, where the superscript T signifies the
transpose.
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With the aid of Eq. (28), Eq. (19) can be decom-
posed as

α f (θ )+
∫ θ

0
PT(θ )Q(ξ ) f (ξ )dξ

+
∫ 2π

θ
PT(θ )Q(ξ ) f (ξ )dξ = h(θ ). (30)

Upon letting

u1(θ ) :=
∫ θ

0
Q(ξ ) f (ξ )dξ , (31)

u2(θ ) :=
∫ θ

2π
Q(ξ ) f (ξ )dξ , (32)

Eq. (30) can be expressed as

α f (θ )+PT(θ )[u1(θ )−u2(θ )] = h(θ ). (33)

Taking the differentials of Eqs. (31) and (32) with
respect to θ we obtain

u′
1(θ ) = Q(θ ) f (θ ), (34)

u′
2(θ ) = Q(θ ) f (θ ). (35)

Inserting Eq. (33) for f (θ ) into the above two
equations we obtain

αu′
1(θ ) = Q(θ )PT(θ )[u2(θ )−u1(θ )]

+h(θ )Q(θ ), u1(0) = 0, (36)

αu′
2(θ ) = Q(θ )PT(θ )[u2(θ )−u1(θ )]

+h(θ )Q(θ ), u2(2π) = 0, (37)

where the last two conditions follow from
Eqs. (31) and (32) readily. The above two equa-
tions constitute a two-point boundary value prob-
lem.

5 A semi-analytical solution

In this section we will find a solution of f (θ ).
From Eqs. (34) and (35) it can be seen that u′

1 =
u′

2, which means that

u1 = u2 +c, (38)

where c is a constant vector to be determined. By
using the final condition in Eq. (37) we find that

u1(2π) = u2(2π)+c = c. (39)

Substituting Eq. (38) into (36) we have

αu′
1(θ ) = −Q(θ )PT(θ )c+h(θ )Q(θ ),

u1(0) = 0. (40)

Integrating and using the initial condition it fol-
lows that

u1(θ ) =
−1
α

∫ θ

0
Q(ξ )PT(ξ )dξc

+
1
α

∫ θ

0
h(ξ )Q(ξ )dξ . (41)

Taking θ = 2π in the above equation and impos-
ing the condition (39) we can obtain a governing
equation for c:

(
αI2m+1 +

∫ 2π

0
Q(ξ )PT(ξ )dξ

)
c

=
∫ 2π

0
h(ξ )Q(ξ )dξ . (42)

It is straightforward to write

c =
(

αI2m+1 +
∫ 2π

0
Q(ξ )PT(ξ )dξ

)−1

·
∫ 2π

0
h(ξ )Q(ξ )dξ . (43)

On the other hand, from Eqs. (33) and (38) we
have

α f (θ ) = h(θ )−P(θ ) · c. (44)

Inserting Eq. (43) for c into the above equation we
can obtain a solution of f (θ ).

From Eqs. (31) and (39) it follows that

c =
∫ 2π

0
Q(ξ ) f (ξ )dξ . (45)

Upon reminding Eq. (29), it can be understood
that c is the vector composed of the Fourier co-
efficients of the unknown function f (θ ). Mean-
while, Eq. (43) describes the relation between the
Fourier coefficients of the boundary data on an
artifical circle and the boundary data on the real
boundaries.
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6 The conjugate gradient method

In the above we have derived Eq. (43) to calculate
c, and Eq. (44) to calculate f (θ ). An efficient
numerical procedure can be derived as follows.

Instead of Eq. (43) we consider the normal equa-
tion:

Ac = b, (46)

where

R := αI2m+1 +
∫ 2π

0
Q(ξ )PT(ξ )dξ , (47)

A := RTR, (48)

b := RT
∫ 2π

0
h(ξ )Q(ξ )dξ . (49)

The conjugate gradient method is summarized as
follows:

(i) Give an initial c0.

(ii) Calculate r0 = b−Ac0 and p1 = r0.

(iii) For k = 1,2 . . . we repeat the following cal-
culations:

ηk =
‖rk−1‖2

pT
k Apk

, (50)

ck = ck−1 +ηkpk, (51)

rk = rk−1−ηkApk, (52)

ak =
‖rk‖2

‖rk−1‖2 , (53)

pk+1 = pk +akpk. (54)

If ck converges according to a given stopping cri-
terion:

‖ck+1−ck‖ < ε , (55)

then stop; otherwise, go to step (iii).

7 Numerical test I

7.1 Example 1

In order to illustrate the performance of the new
method and compare our numerical result with

exact solution, we first consider a simple problem
with the following data:

u(r1,θ ) = g(θ ) = cos2θ , 0 ≤ θ ≤ 2π , (56)

u(r2,θ ) = f (θ ) = −cos2θ , 0 ≤ θ ≤ 2π . (57)

Then from Eqs. (6)-(11) we obtain

a2 =
πe2

r2
1

+
πe2

r2
2

, (58)

b2 = −πe2r2
1 −πe2r2

2, (59)

and the other coefficients are all zero. Therefore,
we have a closed-form solution:

u(r,θ ) = πe2

[
1
r2

1
+

1
r2

2

]
r2 cos2θ

−πe2(r2
1 + r2

2)r−2 cos2θ . (60)

When r = r3 =
√

r1r2, we have

u(r3,θ ) = h1(θ ) = 0, (61)

and from Eq. (15) it follows that

h(θ ) = πA2 cos2θ = πe2

[
r2

2

r2
3

− r2
3

r2
2

]
cos2θ . (62)

Now, we can estimate the boundary condition
f (θ ) on the circle r = r2 by the numerical method
in Section 3. For definite we let r1 = 1 and
r2 = 0.49 and hence r3 = 0.7. By applying the
numerical method we let m = 100, α = 0.01,
Δt = 0.1 and ρ = 500. Through about 150 iter-
ations the solution of f by Eq. (24) is convergent
according to a stopping criterion with ε = 0.01.
The numerical result of f and the exact one cal-
culated from Eq. (60) by inserting r = 0.49 are
compared in Fig. 2(a). Then, we can calculate the
semi-analytical numerical solution of u by Eq. (5),
where the summation is taken up to m = 100
terms, and all the coefficients are obtained from
the numerical integrations by applying a simple
trapezoidal quadrature over 100 subintervals in
the range [0,2π ]. The numerical result of u along
a circle with a radius r = r1 = 1 and the exact one
calculated from Eq. (60) by inserting r = 1 are
compared in Fig. 2(b). It can be seen that these
two curves coincide very well. In order to as-
sess the numerical accuracy, we also plotted the
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numerical error in Fig. 2(c), which is defined by
the absolute difference between numerical solu-
tion and exact solution. It gives very excellent nu-
merical solution with the error very small in the
order of 10−16.
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Figure 2: For Example 1 comparing (a) the func-
tion f (θ ) of numerical and exact, (b) the numer-
ical and exact solutions, and (c) plotting the nu-
merical error of solution.

7.2 Example 2

We consider a kite-shape cavity with the parame-
terization given by

r3 =√
(0.6cosθ +0.3cos2θ −0.2)2 +(0.6sinθ )2,

(63)

x3(θ ) = r3 cosθ , y3(θ ) = r3 sinθ , (64)

-1 0 1

x

-1

0

1

y

0 1 2 3 4 5 6 7

-11
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-3
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13

17

f

(a)

(b)

Figure 3: For Example 2 we plotting (a) the
doubly-connected region of the problem, and (b)
the function f (θ ) calculated by NGPS.

and with the boundary conditions:

u(r1,θ ) = g(θ ) = cosθ + sinθ , (65)

u(r3,θ ) = h1(θ ) = 0. (66)

The doubly-connected region with the outer cir-
cle a radius r1 = 1 and with the kite-shape inner
boundary was shown in Fig. 3(a).

Therefore, from Eq. (15) we have

h(θ ) = πA1(cosθ + sinθ )

= πe1(cosθ + sinθ )
[

r2

r3
− r3

r2

]
.

(67)

Substituting Eq. (65) for g into Eqs. (6)-(11) we
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have

a0 =
lnr1

π(lnr1− lnr2)

∫ 2π

0
f (ξ )dξ , (68)

b0 = − 1
π(lnr1 − lnr2)

∫ 2π

0
f (ξ )dξ , (69)

ak =
πek

rk
2

δk,1 − ek

rk
1

∫ 2π

0
f (ξ )coskξdξ , (70)

bk = ekrk
1

∫ 2π

0
f (ξ )coskξdξ −πekrk

2δk,1, (71)

ck =
πek

rk
2

δk,1 − ek

rk
1

∫ 2π

0
f (ξ ) sinkξdξ , (72)

dk = ekrk
1

∫ 2π

0
f (ξ ) sinkξdξ −πekrk

2δk,1. (73)

We first solve f (θ ) from Eq. (14) by the NGPS in
Section 3, whose result is shown in Fig. 3(b) un-
der the parameters r2 = 0.3, m = 100, α = 0.01,
Δt = 0.1 and ρ = 2. Through about 500 iterations
the solution of f by Eq. (24) is convergent accord-
ing to a stopping criterion with ε = 0.5. Because
there has no closed-form solution for this case, we
compare the exact b and the numerical b = Ax
in Fig. 4(a). It can be seen that these two curves
are close. Then substituting f (θ ) into the above
equations and through numerical integrations we
can obtain the coefficients required in the numer-
ical solution of u, of which a numerical solution
along a circle with a radius r = 0.9 was plotted in
Fig. 4(b).

7.3 Example 3

Let us consider an ellipse with semiaxes a and b
the inner boundary, which in the polar coordinates
is described by

r3(θ ) =
ab√

a2 sin2 θ +b2 cos2 θ
. (74)

For this example we consider the boundary con-
ditions:

g(θ ) = u(r1,θ ) =
a2b2

a2 +b2 +
a2−b2

2(a2 +b2)
r2

1 cos2θ ,

(75)

h1(θ ) = u(r3,θ ) =
a2b2

2(a2 sin2 θ +b2 cos2 θ )
, (76)
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Figure 4: For Example 2: (a) comparing the nu-
merical and exact b, and (b) plotting the numeri-
cal solution.

where r1 > a is the radius of the outer circle.

The exact solution of u is

u(r,θ ) =
a2b2

a2 +b2 +
a2 −b2

2(a2 +b2)
r2 cos2θ . (77)

From Eq. (15) we have

h(θ ) =

a2b2

2(a2 sin2 θ +b2 cos2 θ )
+

a2b2(lnr2 − lnr3)
(lnr1− lnr2)(a2 +b2)

+
π(a2−b2)A2r2

1

2(a2 +b2)
cos2θ . (78)

Substituting Eq. (75) for g into Eqs. (6)-(11) leads
to

a0 =
lnr1

π(lnr1− lnr2)

∫ 2π

0
f (ξ )dξ

− 2lnr2a2b2

(lnr1 − lnr2)(a2 +b2)
, (79)
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b0 =
2a2b2

(lnr1 − lnr2)(a2 +b2)

− 1
π(lnr1 − lnr2)

∫ 2π

0
f (ξ )dξ , (80)

ak =
πekr2

1(a2−b2)
2rk

2(a2 +b2)
δk,2− ek

rk
1

∫ 2π

0
f (ξ )coskξdξ ,

(81)

bk = ekrk
1

∫ 2π

0
f (ξ )coskξdξ

− πekrk
2r2

1(a2−b2)
2(a2 +b2)

δk,2, (82)

ck = −ek

rk
1

∫ 2π

0
f (ξ ) sinkξdξ , (83)

dk = ekrk
1

∫ 2π

0
f (ξ ) sinkξdξ . (84)

We have applied the numerical method in Sec-
tion 6 on this example. The parameters used in
this calculation are m = 10, a = 2, b = 1, r1 = 3,
r2 = 0.5 and α = 0.008, and only two iterations
are required to calculate c, which starting from
an initial c = 0. In Fig. 5(a) the function f (θ )
is plotted. In Fig. 5(b) the numerical result of
u(r,θ ) along a circle with a radius r = 2.5 is com-
pared with the exact one, which is obtained from
Eq. (77) by inserting r = 2.5. The numerical er-
ror as shown in Fig. 5(c) is in the order of 10−3

and the numerical solution is rather accurate. The
main error is due to the numerical integrations of
Eqs. (79)-(84), of which we use 150 subintervals
in the trapezoidal quadratures.

Part two: two integral equations

8 The problem in doubly-connected domain

The problem of the Laplace equation in a doubly-
connected domain as shown in Fig. 1(b) for an
example is formulated by imposing the Dirich-
let data at an exterior boundary and at an interior
boundary:

u(r3,θ ) = h3(θ ), 0 ≤ θ ≤ 2π , (85)

u(r4,θ ) = h4(θ ), 0 ≤ θ ≤ 2π , (86)
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Figure 5: For Example 3: (a) plotting the func-
tion f (θ ), (b) comparing the numerical and exact
solutions, and (c) plotting the numerical error of
solution.

where h3(θ ) and h4(θ ) are given functions, and
both r3 = r3(θ ) and r4 = r4(θ ) are simple curves
with r4 = r4(θ ) inside r3 = r3(θ ), i.e., r4(θ ) <
r3(θ ), 0 ≤ θ < 2π .

We replace Eqs. (85) and (86) by the following
boundary conditions:

u(r1,θ ) = g(θ ), 0 ≤ θ ≤ 2π , (87)

u(r2,θ ) = f (θ ), 0 ≤ θ ≤ 2π , (88)

where both g(θ ) and f (θ ) are unknown functions
to be determined, and r2 < r1 are constants. The
requirement is that the annular with radii r2 and r1

can cover the entire doubly-connected region.

By imposing conditions (85) and (86) on Eq. (5)
and utilizing Eqs. (6)-(11) we can obtain two cou-
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pled first kind Fredholm integral equations:

∫ 2π

0
K3

1 (θ ,ξ ) f (ξ )dξ −
∫ 2π

0
K3

2 (θ ,ξ )g(ξ )dξ

= h3(θ ), (89)

∫ 2π

0
K4

1 (θ ,ξ ) f (ξ )dξ −
∫ 2π

0
K4

2 (θ ,ξ )g(ξ )dξ

= h4(θ ), (90)

where

K3
1 (θ ,ξ ) =

lnr1− lnr3

2π(lnr1 − lnr2)

+
∞

∑
k=1

{
B3

k [coskθ coskξ + sinkθ sinkξ ]
}

, (91)

K3
2 (θ ,ξ ) =

lnr2− lnr3

2π(lnr1 − lnr2)

+
∞

∑
k=1

{
A3

k [coskθ coskξ + sinkθ sinkξ ]
}

, (92)

K4
1 (θ ,ξ ) =

lnr1− lnr4

2π(lnr1 − lnr2)

+
∞

∑
k=1

{
B4

k [coskθ coskξ + sinkθ sinkξ ]
}

, (93)

K4
2 (θ ,ξ ) =

lnr2− lnr4

2π(lnr1 − lnr2)

+
∞

∑
k=1

{
A4

k [coskθ coskξ + sinkθ sinkξ ]
}

(94)

are kernel functions, and

A3
k := ek(r−k

3 rk
2− rk

3r−k
2 ), (95)

B3
k := ek(r−k

3 rk
1− rk

3r−k
1 ), (96)

A4
k := ek(r−k

4 rk
2− rk

4r−k
2 ), (97)

B4
k := ek(r−k

4 rk
1− rk

4r−k
1 ) (98)

are all functions of θ due to r3(θ ) and r4(θ ).

9 Two-point boundary value problem

We assume that the kernel functions K3
1 , K3

2 , K4
1

and K4
2 can be approximated by m terms. By in-

spection we have

K3
1 (θ ,ξ ) = P1(θ ) ·Q(ξ ), (99)

K3
2 (θ ,ξ ) = P2(θ ) ·Q(ξ ), (100)

K4
1 (θ ,ξ ) = P3(θ ) ·Q(ξ ), (101)

K4
2 (θ ,ξ ) = P4(θ ) ·Q(ξ ), (102)

where Q is still defined in Eq. (29) and the others
are given by

P1 :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

lnr1−ln r3
2π(lnr1−ln r2)

B3
1 cosθ

B3
1 sinθ

B3
2 cos2θ

B3
2 sin2θ

...
B3

m cosmθ
B3

m sinmθ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, P2 :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

lnr2−lnr3
2π(lnr1−lnr2)

A3
1 cosθ

A3
1 sinθ

A3
2 cos2θ

A3
2 sin2θ

...
A3

m cosmθ
A3

m sinmθ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(103)

P3 :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

lnr1−ln r4
2π(lnr1−ln r2)

B4
1 cosθ

B4
1 sinθ

B4
2 cos2θ

B4
2 sin2θ

...
B4

m cosmθ
B4

m sinmθ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, P4 :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

lnr2−lnr4
2π(lnr1−lnr2)

A4
1 cosθ

A4
1 sinθ

A4
2 cos2θ

A4
2 sin2θ

...
A4

m cosmθ
A4

m sinmθ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(104)

The regularizations of Eqs. (89) and (90) are given
by

α f (θ )+
∫ 2π

0
K3

1 (θ ,ξ ) f (ξ )dξ

−
∫ 2π

0
K3

2 (θ ,ξ )g(ξ )dξ = h3(θ ), (105)

β g(θ )+
∫ 2π

0
K4

1 (θ ,ξ ) f (ξ )dξ

−
∫ 2π

0
K4

2 (θ ,ξ )g(ξ )dξ = h4(θ ), (106)
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where α and β can be different values.

With the aid of Eqs. (99)-(104), Eqs. (105) and
(106) can be decomposed as

α f (θ )+
∫ θ

0
PT

1 (θ )Q(ξ ) f (ξ )dξ

+
∫ 2π

θ
PT

1 (θ )Q(ξ ) f (ξ )dξ

−
∫ θ

0
PT

2 (θ )Q(ξ )g(ξ )dξ

−
∫ 2π

θ
PT

2 (θ )Q(ξ )g(ξ )dξ

=h3(θ ),

(107)

β g(θ )+
∫ θ

0
PT

3 (θ )Q(ξ ) f (ξ )dξ

+
∫ 2π

θ
PT

3 (θ )Q(ξ ) f (ξ )dξ

−
∫ θ

0
PT

4 (θ )Q(ξ )g(ξ )dξ

−
∫ 2π

θ
PT

4 (θ )Q(ξ )g(ξ )dξ

=h4(θ ).

(108)

Let us define

u1(θ ) :=
∫ θ

0
Q(ξ ) f (ξ )dξ , (109)

u2(θ ) :=
∫ θ

2π
Q(ξ ) f (ξ )dξ , (110)

u3(θ ) :=
∫ θ

0
Q(ξ )g(ξ )dξ , (111)

u4(θ ) :=
∫ θ

2π
Q(ξ )g(ξ )dξ , (112)

and Eqs. (107) and (108) can be expressed as

α f (θ )+PT
1 (θ )[u1(θ )−u2(θ )]

−PT
2 (θ )[u3(θ )−u4(θ )] = h3(θ ), (113)

β g(θ )+PT
3 (θ )[u1(θ )−u2(θ )]

−PT
4 (θ )[u3(θ )−u4(θ )] = h4(θ ). (114)

Taking the differentials of Eqs. (109)-(112) with

respect to θ we obtain

u′
1(θ ) = Q(θ ) f (θ ), (115)

u′
2(θ ) = Q(θ ) f (θ ), (116)

u′
3(θ ) = Q(θ )g(θ ), (117)

u′
4(θ ) = Q(θ )g(θ ). (118)

Inserting Eq. (113) for f (θ ) and Eq. (114) for
g(θ ) into the above four equations we obtain

αu′
1(θ ) = QPT

1 [u2(θ )−u1(θ )]

+QPT
2 [u3(θ )−u4(θ )]+h3(θ )Q, u1(0) = 0,

(119)

αu′
2(θ ) = QPT

1 [u2(θ )−u1(θ )]

+QPT
2 [u3(θ )−u4(θ )]+h3(θ )Q, u2(2π)= 0,

(120)

β u′
3(θ ) = QPT

3 [u2(θ )−u1(θ )]

+QPT
4 [u3(θ )−u4(θ )]+h4(θ )Q, u3(0) = 0,

(121)

β u′
4(θ ) = QPT

3 [u2(θ )−u1(θ )]

+QPT
4 [u3(θ )−u4(θ )]+h4(θ )Q, u4(2π)= 0.

(122)

The above four equations constitute two-point
boundary value problems.

From Eqs. (115)-(118) it can be seen that u′
1 = u′

2
and u′

3 = u′
4, which mean that

u1 = u2 +c1, u3 = u4 +c2, (123)

where c1 and c2 are constant vectors to be deter-
mined. By using the final conditions in Eqs. (120)
and (122) we find that

u1(2π) = u2(2π)+c1 = c1,

u3(2π) = u4(2π)+c2 = c2.
(124)

Substituting Eq. (123) into Eqs. (119) and (121)
we have

αu′
1(θ ) = −Q(θ )PT

1 (θ )c1 +Q(θ )PT
2 (θ )c2

+h3(θ )Q(θ ), u1(0) = 0, (125)
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β u′
3(θ ) = −Q(θ )PT

3 (θ )c1 +Q(θ )PT
4 (θ )c2

+h4(θ )Q(θ ), u3(0) = 0. (126)

Integrating the above two equations and using the
initial conditions it follows that

u1(θ ) =− 1
α

∫ θ

0
Q(ξ )PT

1 (ξ )dξc1

+
1
α

∫ θ

0
Q(ξ )PT

2 (ξ )dξc2

+
1
α

∫ θ

0
h3(ξ )Q(ξ )dξ ,

(127)

u3(θ ) =− 1
β

∫ θ

0
Q(ξ )PT

3 (ξ )dξc1

+
1
β

∫ θ

0
Q(ξ )PT

4 (ξ )dξc2

+
1
β

∫ θ

0
h4(ξ )Q(ξ )dξ .

(128)

Taking θ = 2π in the above equations and impos-
ing the condition (124) one obtains the governing
equations for c1 and c2:

R11c1 +R12c2 =
∫ 2π

0
h3(ξ )Q(ξ )dξ , (129)

R21c1 +R22c2 =
∫ 2π

0
h4(ξ )Q(ξ )dξ , (130)

where

R11 := αI2m+1 +
∫ 2π

0
Q(ξ )PT

1 (ξ )dξ , (131)

R12 := −
∫ 2π

0
Q(ξ )PT

2 (ξ )dξ , (132)

R21 :=
∫ 2π

0
Q(ξ )PT

3 (ξ )dξ , (133)

R22 := β I2m+1−
∫ 2π

0
Q(ξ )PT

4 (ξ )dξ . (134)

Eqs. (129) and (130) can be used to determine c1

and c2 by considering

[
R11 R12

R21 R22

]−1

=
[

I2m+1 −R−1
11 R12

02m+1 I2m+1

]

·
[

R−1
11 02m+1

02m+1 R−1
0

][
I2m+1 02m+1

−R21R−1
11 I2m+1

]

=
[

R−1
11 +R−1

11 R12R−1
0 R21R−1

11 −R−1
11 R12R−1

0
−R−1

0 R21R−1
11 R−1

0

]
,

(135)

where

R0 = R22−R21R−1
11 R12. (136)

When c1 and c2 are available, from Eqs. (113),
(114) and (123) we can calculate f (θ ) and g(θ )
by

α f (θ ) = h3(θ )−P1(θ ) · c1 +P2(θ ) · c2, (137)

β g(θ ) = h4(θ )−P3(θ ) · c1 +P4(θ ) · c2. (138)

From Eqs. (124), (109) and (111) it follows that

c1 =
∫ 2π

0
Q(ξ ) f (ξ )dξ , c2 =

∫ 2π

0
Q(ξ )g(ξ )dξ .

(139)

Upon reminding Eq. (29) it can be understood
that c1 is the vector composed of the Fourier co-
efficients of the unknown function f (θ ), while
c2 is the vector composed of the Fourier coef-
ficients of the unknown function g(θ ). Mean-
while, Eqs. (129) and (130) describe the relations
between the Fourier coefficients of the boundary
data on two artifical circles and the boundary data
on the real boundaries. In terms of c1 and c2 we
can write the solution directly,

u(r,θ ) =

1
2
(a0 +b0 lnr)+

m

∑
k=1

[
(akrk +bkr−k)coskθ

+(ckrk +dkr−k) sinkθ
]
, (140)

where

a0 =
1

π(lnr1− lnr2)
[c1

1 lnr1 −c1
2 lnr2], (141)

b0 =
1

π(lnr1− lnr2)
[c1

2 −c1
1], (142)

ak =
ekc2k

2

rk
2

− ekc2k
1

rk
1

, (143)

bk = ekrk
1c2k

1 −ekrk
2c2k

2 , (144)

ck =
ekc2k+1

2

rk
2

− ekc2k+1
1

rk
1

, (145)

dk = ekrk
1c2k+1

1 −ekrk
2c2k+1

2 , (146)

where ck
1 represents the k-th component of c1,

while ck
2 represents the k-th component of c2.
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10 The conjugate gradient method

In the above we have derived Eqs. (129) and (130)
to calculate c1 and c2, and Eqs. (137) and (138) to
calculate f (θ ) and g(θ ). An efficient numerical
procedure can be derived as follows.

Let

R :=
[

R11 R12

R21 R22

]
, (147)

c :=
[

c1

c2

]
, (148)

b0 :=
[ ∫ 2π

0 h3(ξ )Q(ξ )dξ∫ 2π
0 h4(ξ )Q(ξ )dξ

]
, (149)

and then Eqs. (129) and (130) can be written as

Rc = b0. (150)

Instead of Eq. (150) we consider the normal equa-
tion:

Ac = b, (151)

where

A := RTR, (152)

b := RTb0. (153)

Then, the conjugate gradient method as shown in
Section 6 is applied on the above equation (151).

11 Numerical test II

11.1 Example 4

We consider a kite-shape outer boundary with the
parameterization given by Eqs. (63) and (64). For
the inner boundary we consider an apple-shape
described by

r4 =
0.5+0.2cosθ +0.1sin2θ

1.5+0.7cosθ
, (154)

x4(θ ) = r4 cosθ , y4(θ ) = r4 sinθ . (155)

In order to test our method we consider an exact
solution

u(r,θ ) = x2 −y2 = r2 cos2θ , (156)

which however led to rather complicated bound-
ary conditions:

h3(θ ) = u(r3,θ )= [(0.6cosθ +0.3cos2θ −0.2)2

+(0.6sinθ )2]cos2θ , (157)

h4(θ ) = u(r4,θ )

=
(

0.5+0.2cosθ +0.1sin2θ
1.5+0.7cosθ

)2

cos2θ .

(158)

We solve f (θ ) and g(θ ) by the method in Sec-
tion 10, whose results are shown in Figs. 6(a) and
6(b) under the parameters r1 = maxr3 ≈ 0.849,
r2 = minr4 ≈ 0.257, m = 10 and α = β = 10−8.
Through 83 iterations with ε = 10−15 the solution
of c by Eq. (151) is obtained.
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Figure 6: For Example 4: (a) plotting the func-
tion f (θ ), (b) plotting the function g(θ ), (c) com-
paring the numerical and exact solutions, and (d)
plotting the numerical error of solution.
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Then substituting c into Eqs. (140)-(146) we can
obtain the numerical solution of u, of which a
numerical solution along a circle with a radius
r = max r4 was plotted in Fig. 6(c). The numerical
error of u is shown in Fig. 6(d), which can be seen
is smaller than 5× 10−9. It is a highly accurate
numerical solution.

Next we replace the outer boundary by an epitro-
choid boundary shape

r3(θ ) =
√

(a+b)2 +1−2(a+b)cos(aθ/b),

(159)

x3(θ ) = r3 cosθ , y3(θ ) = r3 sinθ (160)

with a = 4 and b = 1. The inner boundary is four
times large of the above kite. Under the parame-
ters r1 = maxr3 = 6, r2 = minr4 ≈ 1.028, m = 20
and α = β = 10−8 we have calculated the numer-
ical solution as compared with the exact solution
u = x2−y2 in Fig. 7(a) along a circle with a radius
r = max r4. It can be seen that the new method
leads to very accurate numerical result. Then, in
Fig. 7(b) we compared the contour levels of po-
tential u =−6,−4,2,4 for exact solutions and nu-
merical solutions. It can be seen that the numer-
ical results are almost coincident with the exact
ones.

11.2 Example 5

We consider a kite-shape outer boundary as that
used in the previous example but with its size be-
ing enlarged doubly. We consider the closed form
solution

u(r,θ ) = ex cosy = ercosθ cos(r sinθ ). (161)

The boundary conditions are very complicated for
this example.

We apply the numerical method to this case under
the parameters r1 = maxr3 ≈ 1.698, r2 = minr4 ≈
0.257, m = 10 and α = β = 10−8. Through 80
iterations the solution of c by Eq. (151) is ob-
tained by subjecting to the criterion with ε =
10−15. Then we can calculate f (θ ) and g(θ ) by
Eqs. (137) and (138), whose results are shown in
Figs. 8(a) and 8(b).
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Figure 7: For Example 4 but with different bound-
aries: (a) comparing the numerical and exact solu-
tions, and (b) comparing the numerical and exact
contour levels of u.

Then, substituting c into Eqs. (140)-(146) we can
obtain the numerical solution of u, of which a
numerical solution along a circle with a radius
r = maxr4 was plotted in Fig. 8(c), which is close
to the exact solution with the numerical error
shown in Fig. 8(d). The numerical error of u is
smaller than 3.5×10−8.

12 Conclusions

In this paper we have proposed a new meshless
method to calculate the solutions of Laplace equa-
tion in the arbitrary doubly-connected plane do-
mains. It was demonstrated that in the regularized
sense we can find the semi-analytical solutions of
the boundary conditions on artificial circles, and
thus by the Fourier series expansion we can cal-
culate the solution at any point inside the domain.
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Figure 8: For Example 5: (a) plotting the func-
tion f (θ ), (b) plotting the function g(θ ), (c) com-
paring the numerical and exact solutions, and (d)
plotting the numerical error of solution.

The numerical examples show that the effective-
ness of the new method and the accuracy is rather
good. The new method possesses several advan-
tages than the conventional boundary-type solu-
tion methods, including mesh-free, singularity-
free, non-illposedness, semi-analyticity of solu-
tion, efficiency, accuracy and stability.
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