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On the Efficiency of the Parallel-in-Time Finite Volume Calculation of the
Unsteady Navier-Stokes Equations

J. M. F. Trindade1 and J. C. F. Pereira2

Abstract: In this paper, we discuss the ef-
ficiency and speed-up of parallel-in-time calcu-
lations of the unsteady incompressible Navier-
Stokes equations in a PC-cluster. The parallel-
in-time method is based on the alternate use of
coarse global sequential solvers with fine local
parallel ones in an iterative predictor-corrector
fashion. Therefore, the efficiency of parallel
calculations is strongly dependent on the num-
ber of iterations required for convergence. The
one-dimensional scalar transport equation and the
two-dimensional incompressible unsteady form
of the Navier-Stokes equations were used to con-
duct numerical experiments to derive some con-
clusions concerning the accuracy and conver-
gence of the iterative method. A simple perfor-
mance model is proposed to estimate the effi-
ciency of the parallel calculations as a function
of the most relevant parameters that contribute to
the computing time required to perform a parallel-
in-time calculation. Among them, we have ana-
lyzed the influence of the number of processors,
the number of iterations in the parallel-in-time al-
gorithm and the influence of the coarse to fine
time-grid step size ratio. The good agreement be-
tween the obtained parallel efficiency and the val-
ues estimated by the proposed performance model
allows to conclude that parallel-in-time efficiency
is quantitatively different from the parallel effi-
ciency of the space domain decomposition, re-
garding the number of processors available for a
fixed problem dimension. A significant speed-up
is possible when the temporal scale of the prob-
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lem is large and enough processors are available.
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1 Introduction

The parallelism in the time direction is not com-
mon in Computational Fluid Dynamics. Parabolic
and hyperbolic differential equations are usually
solved numerically by algorithms that are sequen-
tial in time, see e.g. the simulations reported by
Nicolás and Bermúdez (2004) and Shu, Ding, and
Yeo (2005). Space domain splitting and the al-
location of each sub-domain to a processor is the
methodology usually used to perform the paral-
lel computation of the governing fluid flow equa-
tions, see e.g. Grimaldi, Pascazio, and Napolitano
(2006). At each time step, the processors need to
exchange boundary variable values with proces-
sors holding adjacent sub-domains. For a fixed
space sized problem, in a distributed memory par-
allel computer the communication/computation
ratio increases with the number of processors
yielding a decrease on the parallel efficiency. It
is believed that in the near future massive par-
allel computer systems will increase the number
of processors available allowing new boundaries
to the problems dimension. Consequently, time
and hybrid (space and time) domain decomposi-
tion methods will have a high potential applica-
tion to reduce the computing time that nowadays
is only achieved with the standard spatial domain
decomposition technique. This will have a posi-
tive impact on the solution of partial differential
equations that CFD deals with but also in other
areas of computer modeling of engineering and
science.
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Lions, Maday, and Turinici (2001) presented a
new approach to parallelize across the time do-
main of the problem under consideration. Bal
and Maday (2002) introduced some changes on
the original algorithm in order to obtain better
stability and efficiency. The application of the
algorithm has been performed for simulation of
several kinds of science and engineering prob-
lems [Baffico, Bernard, Maday, Turinici, and
Zerah (2002); Maday and Turinici (2003); Farhat
and Chandesris (2003)]. Previous application of
the parallel-in-time method for the solution of
the unsteady incompressible Navier-Stokes equa-
tions indicates that for long time simulations this
method can be a promising technique [Trindade
and Pereira (2004)]. However, parallel-in-time
solution of non-linear fluid flow equations is still
in the beginning and many theoretical, numeri-
cal and practical topics need to be investigated.
Among others, the robustness, the efficiency and
the solution accuracy need to be considered for
non-linear complex unsteady flows. Parallel-in-
time Navier-Stokes solutions were addressed by
Trindade and Pereira (2006) providing some guid-
ance to the appropriate choice of the numerical
schemes.

The prediction of the theoretical parallel effi-
ciency or speed-up is relevant to decide when to
use parallel-in-time for a specific problem solu-
tion. The purpose of the present work is to present
a simplified performance model for the parallel-
in-time method. This model takes into account
several parameters that contribute to the comput-
ing time required to perform a parallel-in-time
calculation. Another important issue related with
the performance of the parallel-in-time method is
the time spent by the communication tasks re-
quired by the algorithm. The performance model
is validated with solutions of the parabolic un-
steady Navier-Stokes equations. A finite volume
approach is used for discretization of the Navier-
Stokes equations. The numerical simulation of
flow past a two-dimensional square cylinder be-
tween parallel walls at a Reynolds number of 500
was selected to illustrate and analyze the proper-
ties of the parallel-in-time method through numer-
ical experiments. The comparison of the observed

parallel-in-time performance for the solution of
a complex unsteady incompressible flow problem
on a PC-cluster with the performance model pre-
diction will allow to verify the effect of the com-
munication time on the parallel-in-time simula-
tion efficiency.

In Section 2, we briefly describe the numerical
parallel-in-time method. Numerical experiments
allow to analyze the convergence of the parallel-
in-time algorithm in Section 3. The presentation
of a simplified performance model and validation
through numerical experiments is included in Sec-
tion 4 and in the last Section summarizing conclu-
sions are provided.

2 Numerical method

For an incompressible Newtonian fluid and un-
steady flow, the governing continuity and Navier-
Stokes equations are integrated in each finite con-
trol volume and after application of Gauss theo-
rem read as:∫

S
v.ndS = 0, (1)

∂
∂ t

∫
Ω

ui dΩ+
∫

S
uiv . ndS

=
∫

S
γ grad ui . ndS− 1

ρ

∫
S

p i . ndS (2)

where Ω is the volume and S is the surface of
an arbitrary control volume, n is the unit vector
normal to S and directed outwards, v is the ve-
locity vector, ui are the Cartesian velocity com-
ponents, ρ is the density, γ is the viscosity and
p is the pressure. Let us assume that an accu-
rate enough spatial discretization is selected. Fur-
ther details of the spatial discretization will be
provided in Section 3. The parallel-in-time algo-
rithm [Bal and Maday (2002)] is based on the it-
erative use of coarse global sequential solvers (or
integrators) with fine local parallel ones, allow-
ing the time domain decomposition and the prop-
agation of solution jumps on a coarse time-grid.
The scheme combines a very precise simulation
run on parallel over a set of non-overlapping time
intervals with a coarse simulation over the entire
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Figure 1: Parallel-in-time solver schematic diagram.

time-span. The diagram in Fig. 1 describes the
parallel-in-time methodology. The time variable
is represented in abscissas and in ordinates the
computing time. Firstly, the time domain [0,T ] of
the problem under consideration is decomposed
into a sequence of P (number of processors) sub-
domains of size Δt dictating the coarse time-grid
resolution. The integrator in the coarse time-grid
employs the time-step Δt and the integrator on the
finer time-grid uses a smaller interval given by
δ t = T/M, for some integer M. The initial and
successive variable fields at ti = i× Δt, where i
is the processor number, are denoted by u0 and
u1,...,uP respectively. The solution starts with the
initialization of the variables from a sequential
coarse time grid calculation and proceeds with an
iterative procedure up to the fulfillment of a pre-
scribed convergence criterion:

(i) Initialisation

A coarse time-grid approximation is ob-
tained sequentially. Each processor solves

the spatial field for a single time-step, Δt,

u0
i = GΔt(u0

i−1)

u0
0 = u0,

(3)

for all processors, i = 1,2, ..,P.

The operator GΔt corresponds to the solution
of a time step Δt. The coarse time-grid step
size can also be constrained by the numerical
scheme selected for the operator G. The se-
quential solution obtained in each processor
corresponds to a coarse grain solution that
requires correction, provided by the iterative
scheme that follows.

(ii) Iterative Procedure

Each processor uses the previously calcu-
lated initial approximation to start an itera-
tive procedure using the finer time-grid,

yk
i = Fδt(uk−1

i−1 )

uk
0 = u0,

(4)
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for 1 ≤ i ≤ P and k ≥ 1. The operator Fδt

denotes the parallel solution in P processors
of M/P time increments from ti−1 to ti.

Completed the parallel solution on the finer
time-grid, the solution jumps at each ti are
calculated in parallel according to the differ-
ence between the new solution calculated on
the finer time-grid and the solution on the
coarse time-grid at the previous iteration,

Sk
i = yk

i −uk−1
i . (5)

Finally, a new sequential solution is calcu-
lated. For 1 ≤ i ≤ P a solution is predicted
using the coarse time-grid solver,

ũk
i = GΔt(uk

i−1) (6)

corrected by the solution jumps,

uk
i = ũk

i +
k

∑
l=1

Sl
i (7)

and communicated to the processor that is
assigned to the next time-step.

3 The accuracy of the parallel-in-time nu-
merical scheme

The accuracy of the iterative algorithm for lin-
ear parabolic differential equations was addressed
by Lions, Maday, and Turinici (2001) and Bal
and Maday (2002) considering the exact form of
the solution on the fine time-grid but, that corre-
sponds to a simplification in the model. The iter-
ative scheme is ideally of order m× (k + 1), be-
ing m the accuracy order of the numerical scheme
considered and k the iteration number. It is im-
portant to analyze how the iterative numerical
scheme behaves with some spatial and temporal
discretization schemes commonly used for the so-
lution of the Navier-Stokes equations.

For this purpose, the one-dimensional scalar
transport equation

∂φ
∂ t

+u
∂φ
∂x

−α
∂ 2φ
∂x2 = 0 (8)

is applied to solve the propagating scalar pulse
problem and analyze the accuracy of the parallel-
in-time method. The problem consists of the one-
dimensional domain from x = 0 to x = 2, through
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Figure 2: Initial condition (t = 0) and the iterative
approximation to the exact solution at t = 0

which fluid velocity is u = 0.25. The diffusiv-
ity was set to 10−3. The initial conditions cor-
respond to a Gaussian wave pulse with peak am-
plitude unity

φ (x,0) = e−(x−u)2/4α (9)

considered centered at x = 0.25, see Fig. 2.

The time dependent solution for this problem [Yu
and Heinrich (1986)],

φ (x, t) =
1√

1+ t
e−(x−u(1+t))2/4α(1+t) , (10)

allows to evaluate the error of numerical solution.
The time domain considered for this purpose is
T equal to 2. The numerical temporal discretiza-
tion schemes considered range from first-order to
fourth-order accurate. Spatial discretization of
first, second and fourth-order accuracy was used
together with the temporal discretization schemes
to provide a stable formulation for the finite dif-
ferences analog of Eq. 8. The first-order up-
wind spatial discretization is used together with
the first-order temporal schemes (implicit and
explicit Euler). For the second-order temporal
schemes (Adams-Bashforth, Crank-Nicolson and
three-level implicit) the second-order central dif-
ferences is used for the spatial discretization and
the fourth-order Runge-Kutta explicit scheme is
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used together with the fourth-order central differ-
ences scheme.

The numerical tests were conducted considering
spatial meshes ranging from nx = 50 to nx =
1600 mesh nodes keeping CFL number constant.
Therefore, the number of processors used for the
calculations depends on the spatial mesh and P =
nx/2 yields to a CFL number of 5 × 10−1 and
5×10−2 on the coarse and fine time-grids respec-
tively. The parameter M, number of time-steps on
the finer time-grid, was set to 10×P to obtain the
accurate solution on the finer time-grid required
by the iterative procedure. The parallel-in-time
calculations were performed in a single processor
accordingly with the described algorithm simulat-
ing the required number of processors (up to 800).

Firstly, sequential solutions were performed to
evaluate the accuracy of each numerical scheme
on the finer time-grid. Fig. 3 shows the depen-
dency of the L2 norm of the error on the mesh
size for several temporal schemes including also
the first, second and fourth order slopes. The
Figure shows that only the second and fourth-
order numerical schemes are within the conver-
gence asymptotic region of the discretization.

The dependency of the L2 norm of the error on
the spatial discretization and number of itera-
tions performed is indicated in the Fig. 4-6 for
different pairs of numerical schemes considered
for the coarse and fine time-grid temporal evolu-
tion. Among the schemes tested, the fourth-order
Runge-Kutta scheme is the best candidate for the
fine time-grid integrator. Fig. 2 displays the ini-
tial condition (t = 0) and also the evolution of the
solution during the iterative procedure when the
first order implicit Euler scheme is used for the
temporal evolution on the coarse time-grid. The
evolution of the error on the spatial discretization,
plotted in Fig. 4, shows that the order of accuracy
increases with the number of iterations but does
not reach the formal convergence order (k+1) be-
cause the first-order scheme is not in the conver-
gence asymptotic region.

It is possible to detect the same behavior for the
second-order accurate Crank-Nicolson scheme
for the coarse time-grid solution. However, after
the second/third iteration, depending on the dis-

cretization, no further improvement on the accu-
racy of the solution is obtained because the accu-
racy of the fine time-grid solution is already ac-
quired, see Fig. 5.

The second-order accurate Adams-Bashforth ex-
plicit scheme is also a good candidate for the nu-
merical scheme to use for the fine time-grid so-
lution because, although only second-order accu-
rate, is computationally less expensive than the
Runge-Kutta scheme. For the problem under
consideration, the convergence is achieved after
four iterations when the Adams-Bashforth is used
together with the implicit Euler scheme on the
coarse time-grid, see Fig. 6.

The selection of the numerical schemes for the
temporal evolution on each time-grid, besides the
stability constrains, should be made considering
that the numerical scheme for the finer time-grid
evolution should provide higher order of conver-
gence than the one used in the coarse time-grid.
When using the fourth-order accurate numerical
scheme on the fine time-grid, the convergence
of the iterative parallel-in-time method requires
fewer iterations using a second-order accurate
scheme for the coarse time-grid than an uncon-
ditionally stable first-order scheme. The speed-
up obtained with the parallel-in-time method is
strongly dependent on the number of iterations
required to meet the convergence criterion. The
number of iterations to acquire the accuracy of
the fine-grid solution is obviously dependent of
the nature of numerical schemes applied. Con-
sidering the general theory related with the con-
vergence of numerical schemes, one can approx-
imate the number of iterations required for con-
vergence by the ratio between the order of ac-
curacy of the numerical schemes used for the
coarse and fine time-grids solution. This predic-
tion is clearly verified when using the second-
order accurate Crank-Nicolson and the fourth-
order Runge-Kutta schemes for the coarse and
fine time-grid solutions respectively. When us-
ing the formal first-order implicit Euler scheme
for the coarse time-grid solution one must con-
sider that the accuracy order is only 0.61 eval-
uated in the interval between Δx = 0.00125 and
Δx = 0.005 on the initial approximation. There-
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Figure 3: Dependency of sequential solution on the
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plicit Euler and fourth-order Runge-Kutta schemes
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Figure 6: Error dependency on the spatial dis-
cretization and number of iterations using the im-
plicit Euler and Adams-Bashforth schemes on the
coarse and fine time-grids respectively.

fore, the prediction of the number of iterations re-
quired to achieve the accuracy of the Runge-Kutta
or the Adams-Bashforth schemes fine time-grid
solution is 7 and 4, respectively.

4 The performance model

Besides the number of iterations required for con-
vergence, the parallel efficiency of the method
is also strongly dependent on the time spent by
the communication tasks required by the algo-
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rithm. The following is an attempt to derive
theoretically the parallel speed-up of the method
presently used, even with some simplifying as-
sumptions, in order to evaluate the potential ap-
plication of the technique for the unsteady incom-
pressible Navier-Stokes equations. The compari-
son between the performance prediction and the
speed-up effectively achieved with a PC-cluster
computation allows to verify how relevant is the
time spent on communication tasks for the effi-
ciency of the parallel-in-time method.

Fig. 1 displays two iterations of the cycle. The
computing time required to perform the first it-
eration is denoted by T1. One should note that
after the first iteration the solution at time t1 cor-
responds to the final solution at this time level.
More generally, at iteration k the solution at time
tk does not need further iterations because the fi-
nal solution is achieved. Considering the overlap
between sequential and parallel tasks indicated in
Fig. 1 and neglecting the communication time, the
total computing time of a parallel-in-time solution
using P processors, ΓP, can be predicted by

ΓP = Γseq +k
Γseq +Γ1

P
(11)

where Γseq denotes the computing time of the se-
quential solution on the coarse time-grid, Γ1 the
computing time on a single processor and k is the
number of iterations prescribed. Parallel speed-up
of a computation, defined as

S =
Γ1

ΓP
(12)

can then be predicted by

S =
Γ1

Γseq +k Γseq+Γ1

P

(13)

Considering the same computing time for one
time step on the fine and coarse time-grid, the
maximum expected speed-up that can be achieved
is approximated by

S =
M

P+k
(
1+ M

P

) (14)

where M is the number of time-steps considered
on finer time-grid. Fig. 7 shows the predicted
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Figure 7: Parallel-in-time speed-up prediction for
two iterations.

speed-up of a parallel solution, Eq. 14, as a func-
tion of the number of processors and the ratio be-
tween the coarse and the fine time-grid step sizes,
when two iterations on the parallel-in-time algo-
rithm are required to meet the convergence crite-
rion. The Figure shows that for small time-step
ratios no substantial speed-up is achieved. How-
ever, important parallel speed-up can be predicted
for high time-step ratios. Similar conclusions
could be derived considering other number of iter-
ations, k. For high time-step ratios, the speed-up
always increases with the number of processors
and is limited by P/k.

The behavior of parallel-in-time processing is
rather different from the space domain decom-
position when, for a fixed spatial dimension of
the problem, speed-up has a limit imposed by the
calculation/communication time ratio and no fur-
ther speed-up improvement can be achieved by in-
creasing the number of processors involved. The
penalty on the parallel-in-time method is inherent
to the algorithm and consequently, the efficiency
comparison of the present method with the clas-
sical spatial domain decomposition method is ad-
verse in most cases. However, despite the low ef-
ficiency obtained, important computing time re-
ductions could be accomplished if a large amount
of processors are available and a few iterations are
required to converge the solution.

The parallel-in-time method is applied for the
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numerical simulation of the laminar flow past
a two-dimensional square cylinder between par-
allel walls at the supercritical Reynolds num-
ber of 500 to evaluate the proposed performance
model. Trindade and Pereira (2004) presented
parallel-in-time simulation of similar confined
flows, although with different numerical schemes,
illustrating the application of the parallel-in-time
method to a demanding unsteady flow problem.
Flow around bluff bodies is characterized by the
onset of periodic oscillations, the von Karman
vortex street, after a critical Reynolds number,
consisting of a difficult non-linear case for the it-
erative parallel-in-time algorithm.

Equations 1 and 2 can be discretized by very many
ways, see e.g. Ferziger and Peric (1997). Al-
though not convenient for the accuracy of the so-
lution, the operators GΔt and Fδt uses the same
spatial and temporal numerical schemes to ap-
proximate the assumption of equal computing
time for one time step on the fine and coarse time-
grids.

For the purpose of this work, it is sufficient
to use a deferred correction scheme that blends
second-order central and upwind differences on
a finite volume staggered uniform spatial grid.
This blended discretization scheme, with coeffi-
cient 0.2 for the upwind contribution, removes the
oscillations produced by the central differences
schemes on the mesh Reynolds numbers consid-
ered. The temporal discretization was performed
by the implicit Crank-Nicolson scheme yielding
to Eq. 2 to appear as:

un+1−un

Δt
Ω+

[
1
2 ∑

i∈S

Cn
i +

1
2 ∑

i∈S

Cn+1
i

]

−
[

1
2 ∑

i∈S

Dn
i +

1
2 ∑

i∈S

Dn+1
i

]
= −Gn (15)

where Ci and Di stands for the convective and dif-
fusive fluxes evaluated at the time level n and n+1
and G represents the pressure source term. At
each time-step calculation, the SIMPLE method
Patankar (1980) is used to correct the velocity and
pressure fields enforcing a divergence free veloc-
ity field. One should note that the basic numerical
method considered is one among many others of

different order of accuracy that could be used to
validate the proposed performance model.

The square cylinder, of width unity, is situated
symmetrically between two walls a distance H =
4 apart. Blockage ratio is therefore 1/4 and the
channel length is equal to 24. A uniform flow was
prescribed at the inlet. At the outlet, a convective
boundary condition was used for velocity com-
ponents. No-slip conditions were prescribed at
body surfaces and at upper and lower boundaries.
The flow is impulsively started from a initial rest
condition and a constant time-step on the coarse
grid, Δt, is used. The calculation of the described
numerical experiment was performed on a PC-
cluster with 16 nodes, each one with one Pentium
IV 2.4 GHz processor and 512 Mb Ram. A 100
Mbps ethernet switch is used for the node connec-
tion. Spatial domain is discretized on a uniform
151×26 nodes grid. Stability constraints related
with the numerical method imposed a coarse grid
time-step size equal to Δt = 0.1. As the number
of processors available is insufficient to perform a
parallel-in-time calculation corresponding to the
simulation time of several shedding periods, that
would require 2000 processors for a time interval
T equal to 200, time-blocks were considered. In
this way, time-blocks with size equal to P×Δt are
solved sequentially. The fine time-grid step size is
equal to δ t = 0.01.

The temporal discretization scheme used in the
coarse time-grid was also used in the finer time-
grid. Many other options could be used, see e.g.
the schemes listed in Fig. 3. The reason why this
option was taken relies on the assumption used
in Eq. 14 in order to get close computing times
for each time-step on both time-grids. The pur-
pose of present work is to evaluate the parallel ef-
ficiency of the method and compare with the per-
formance model rather than to investigate in de-
tail the physics of self-sustained wake oscillations
that would require either better spatial resolution
or high-order spatial schemes. As a few iterations
are required for convergence, no convergence cri-
terion was applied and the number of iterations
performed was prescribed (two and three itera-
tions). Fig. 8 shows the vorticity contours after
the first and the second iteration on the parallel-in-
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b)
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Figure 8: Vorticity contours after first (a) and sec-
ond (b) iteration.

time algorithm after the establishment of the pe-
riodic flow. Very small differences are detectable
on the vorticity contours of those flow fields. The
flow field after the third iteration is virtually equal
to the one obtained after the second iteration.

Ten time-blocks, consisting each one of P time-
steps, were calculated using different number of
processors (1, 8, 10, 12, and 16) and different
coarse to fine time-grid step size ratios (10, 100,
200 and 1000). In order to avoid the influence of
the initial time steps on an impulsive start from
rest, a flow field solution after the establishment
of the periodic flow was used as the initial condi-
tion to start these calculations. The sampling fre-
quency, Δt = 0.1, was kept unchanged in all the
cases. The use of a prescribed number of time-
blocks on the comparison instead of a prescribed
time interval is necessary to allow the use of the
above mentioned cluster dimensions maintaining
the sampling frequency. Two and three itera-
tions on the parallel-in-time algorithm were con-
sidered. Fig. 9 shows the comparison between the
verified parallel efficiency of the method and pre-
dictions based on the performance model, Eq. 14.
The predicted efficiency that depends on M, P and
k was plotted only as a function of Φ = M/P2

for each number of iterations prescribed on the
parallel-in-time algorithm. Fig. 9 shows good
agreement between predicted and verified parallel
efficiency. Major deviations are verified for small
values of Φ when the computing time of the ini-
tial sequential coarse time-grid calculation gives a
more important contribution to the total comput-
ing time. For large values of Φ one should con-
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Figure 9: Comparison between predicted (lines)
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to 3 iterations) efficiency of the parallel-in-time
method for 2 and 3 iterations prescribed (Φ =
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clude that the the communication overhead does
not prevent the application of the present method
for long-term fluid flow problems.

5 Conclusions

A parallel-in-time method, based on temporal do-
main decomposition, was applied for the solution
of the unsteady incompressible Navier-Stokes
equations. To evaluate the potential efficiency
of the present method to fluid flow simulations,
the convergence of this iterative method was ana-
lyzed considering some spatial and temporal dis-
cretization schemes commonly used for that pur-
pose. The one-dimensional scalar transport equa-
tion allowed some conclusions concerning the ac-
curacy and convergence of the iterative method.
Another important issue related with the perfor-
mance of the parallel-in-time method is the time
spent by the communication tasks required by the
algorithm. A simplified performance model for
the parallel-in-time method was proposed. The
flow past a two-dimensional square cylinder be-
tween parallel walls for Reynolds number equal
to 500 was selected to analyze through numerical
experiments the influence of the communication
time on the parallel efficiency of the method. The
following conclusions could be derived:
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(i) The accuracy of the parallel-in-time solution
increases with the number of iterations
accordingly with the order of accuracy of
the numerical schemes considered for the
coarse and fine time-grids. The number of
iterations required for convergence can be
estimated by the ratio between those orders
of accuracy.

(ii) The agreement between the verified parallel
efficiency in the numerical experiments
and the one given by the theoretical model
indicates that the communication overhead
does not impose a critical limitation on the
application of the present methodology for
the unsteady incompressible Navier-Stokes
equations.

(iii) For large ratios between the coarse and fine
time-step sizes, substantial computing time
reduction can be expected.

(iv) The results suggest that the parallel-in-time
methodology is promising when the tempo-
ral scale of the problem under consideration
is large and a large amount of processors is
available.

Some issues, like the optimal choice of the numer-
ical methods for coarse and fine time-grids, need
further research to increase the robustness and ef-
ficiency of the method.
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