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On the Modelling of Rate-Dependent Domain Switching in Piezoelectric
Materials under Superimposed Stresses

A. Arockiarajan1 and A. Menzel 2

Abstract: To study rate-dependent properties of
piezoelectric materials a micro-mechanically mo-
tivated model is applied in this work. The de-
veloped framework is embedded into a coupled
three-dimensional finite element setting, whereby
each element is assumed to represent one grain
and, moreover, possesses a random initialisation
of the underlying polarisation direction. Further-
more, an energy-based criterion is used for the ini-
tiation of the onset of domain switching and the
subsequent propagation of domain wall motion
during the switching process is modelled via a lin-
ear kinetics theory. The interaction between indi-
vidual grains is thereby incorporated by means of
a probabilistic approach – a purely phenomeno-
logically motivated concept. To study the overall
bulk ceramics behaviour, straightforward volume-
averaging techniques are applied. In addition,
rate-dependent properties under cyclic electrical
loading combined with mechanical loads at vari-
ous frequencies are studied, whereby use of a so-
called volume fraction concept is made. The pro-
posed model provides further insights into rate-
dependent behaviour as experimentally observed
and reported in the literature.

Keyword: piezoelectricity, rate-dependency,
linear kinetics theory, electro-mechanical loading,
coupled finite element formulation

1 Introduction

In recent years, the study and application of ad-
vanced materials plays an increasingly important
role for designing structures, intelligent systems,
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micro-electromechanical systems and so forth.
Smart materials thereby turn out to be of spe-
cial interest since they serve as elementary (lin-
ear) components such as sensors and actuators.
Electro-active ceramic materials – for instance
piezoelectrics, ferroelectrics and electrostrictors –
are nowadays widely used for these components.
An overview on common application, for instance
active damping, vibration suppression, noise con-
trol, precision positioning, and so forth is given in
Uchino (1997). Most of these applications bene-
fit from controlling large mechanical forces and
reasonable high strains according to the appli-
cation of rather high stresses and electric fields.
At high electro-mechanical loading levels, how-
ever, the electro-active ceramics of interest ex-
hibit strongly nonlinear response. Such domain
switching effects, stemming from reorientation of
the underlying polarisation directions with respect
to the applied loading directions, play a vital role
for the operation of these materials. Accordingly,
it is of cardinal importance to account for this
characteristic constitutive behaviour within sound
modelling approaches of related smart structures
and devices. Various experimental investigations
on the nonlinear response of these materials have
been reported in the literature. Commonly, such
studies are carried out on a sample specimen
which is subjected to cyclic electrical and / or me-
chanical loading and related observations are re-
ferred to the overall macroscopic behaviour. As
a key result from these elaborations, parameter
variations such as composition effects, the influ-
ence of phase change, macroscopic creep effects,
etc. can be studied for hard and soft piezoelec-
tric materials. For further details, the reader is
referred to the contributions by Cao and Evans
(1993), Hwang, Lynch, and McMeeking (1995),
Lynch (1996), Lu, Fang, Li, and Hwang (1999),
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Fang and Li (1999), Huber and Fleck (2004) as
well as to the monographs by Lupascu (2004) and
Smith (2005).

To further study the nonlinear behaviour of
piezoelectric materials, theoretical modelling ap-
proaches have been proposed which allow clas-
sification into two different categories: On the
one hand, various phenomenological or rather
macro-mechanically motivated formulations have
been developed. So-called internal state vari-
ables are thereby embedded into representative
functions and constitutive equations. By analogy
with for instance J2 plasticity, where the effects
of plastic slide are accounted for on a macro-
level rather than modelling the onset and move-
ment of dislocations on a micro-level, such ap-
proaches capture purely macroscopic response of
piezoelectric materials. Nevertheless, important
insight into the design and interpretation of ex-
periments as well as the overall behaviour of
these materials can be provided. As a side as-
pect, thermodynamic relations are commonly ful-
filled within these approaches. A comprehensive
model was developed in, e.g., Bassiouny, Ghaleb,
and Maugin (1988a,b), wherein the polarisation
serves as an internal state variable. Furthermore,
a free energy function is established which, in
addition to the polarisation, depends on strains
and temperature. Similar modelling concepts, as
based on irreversible polarisation vectors and ir-
reversible strains as internal state variables, are
reported in the literature; see for instance Lynch
and McMeeking (1994), Kamlah and Tsakmakis
(1999), Landis (2002), Elhadrouz, Zineb, and Pa-
toor (2005), or Schröder and Romanowski (2005).
On the other hand, different micro-mechanically
motivated modelling approaches have been pro-
posed. The constitutive relation of these for-
mulations often directly address physical aspects
of the material behaviour combined with energy-
based domain switching criteria. Different length
scales might thereby come into the picture and
the overall poly-crystalline response is usually in-
corporated via appropriate averaging techniques;
the reader is referred to Hwang and McMeek-
ing (1998b), Chen and Lynch (1998), Lu, Fang,
Li, and Hwang (1999) or Srivastava and Weng

(2006). Hwang and McMeeking (1998b) pro-
posed a switching criterion, wherein the sum of
work performed under mechanical and electri-
cal loading is considered as a driving force for
switching whenever a critical energy barrier is ex-
ceeded. Chen and Lynch (1998) established a
switching criterion by means of an internal vari-
able approach combined with a volume fraction
concept in order to represent the assembly of vari-
ous domains, see also the contribution by Sun and
Achuthan (2004) for an internal variable based
switching formulation. A criterion which enables
to trigger switching if the reduction in potential
energy related to a starting and an ending state ex-
ceeds a critical energy threshold was developed
by Hwang and McMeeking (1998a). Recently,
Srivastava and Weng (2006) published a dual-
phase homogenisation theory, wherein the reduc-
tion in Gibbs free energy serves as the driving
force for domain switching.

Nowadays, commercialised applications of smart
structures and materials perform under various
loading levels as well as under different loading
frequencies. Accordingly, there is a need to in-
clude rate-dependent effects into the modelling of
the non-linear response of piezoelectric materi-
als. More than fifty years ago, Merz (1954) ex-
perimentally investigated the dependency of the
electric field and the temperature on the switch-
ing time and the switching current. As a re-
sult, a reduction of the switching process time
and consequently an increase in the switching
current has been observed for increasing temper-
ature but constant electric field. Viehland and
Chen (2000) published experimental results on
frequency-dependent characteristics such as for
instance that the polarisation effect increases at
higher loading frequencies even though the elec-
tric field decreases. Detailed experimental stud-
ies have been performed by Zhou, Kamlah, and
Munz (2001), whereby a quasi-static frequency
range between 0.1 Hz to 1.0 Hz has been consid-
ered. It thereby turned out that the coercive elec-
tric field increases and that the remanent polari-
sation decreases for increasing loading frequen-
cies. A related theoretical model, by means of
exponential functions with respect to the applied
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electric field level and the loading frequency, was
developed by Landauer, Young, and Drougard
(1956). Omura, Adachi, and Ishibashi (1991) es-
tablished a formulation, wherein the delay during
the switching process is accounted for by a vis-
cosity constant which leads to a change in the
coercive field. Abeyaratne, Kim, and Knowles
(1994) developed a constitutive model for do-
main switching and nucleation effects based on
a phase transition approach motivated by a ther-
mal activation theory. Kim and Jiang (2002) pub-
lished a related finite element formulation and
proposed a domain (switching) nucleation and
propagation framework my means of a (continu-
ous) volume fraction evolution approach. For fur-
ther background information the reader is referred
to the contributions by, e.g., Janta (1971) or Arlt
(1996a,b, 1997).

The present paper deals with an energy-based
micro-mechanically motivated non-linear model
combined with a probabilistic approach. More-
over, the applied model is embedded into a three-
dimensional coupled finite element formulation.
Rate-dependency is captured via a linear kinet-
ics theory, compare Arlt (1996a,b, 1997). The
main features of the present work are: (i) do-
main switching is initiated as soon as the reduc-
tion in Gibbs free energy exceeds a critical en-
ergy barrier; (ii) interaction effects between in-
dividual grains is modelled via a phenomenolog-
ical probabilistic approach by weighting the in-
troduced energy barrier with an energy-related
polynomial factor; (iii) nucleation and propaga-
tion of domain walls during the switching pro-
cess is captured using a linear kinetics theory.
To realistically capture rate-dependencies, a limit
time parameter for domain switching is intro-
duced – a non-constant parameter which depends
on the applied electric field, mechanical stresses,
and so forth; (iv) the adopted framework is em-
bedded into a coupled finite element formula-
tion, whereby a straightforward staggered itera-
tion scheme is applied – to be specific, a se-
quence of linear problems is solved for within
each and every loading-/time step. Individual fi-
nite elements are thereby equipped with initially
random polarisation orientation; (v) the examples

investigated in this contribution extend our previ-
ous work, compare Arockiarajan, Delibas, Men-
zel, and Seemann (2006); Arockiarajan, Menzel,
Delibas, and Seemann (2006a,b), by placing em-
phasis on various loading conditions applied to a
representative specimen, namely cyclic electrical
loading at different frequencies together with su-
perimposed axial and lateral mechanical stresses.

The outline of the paper is as follows: essential
balance relations and constitutive equations are
summarised in section 2. The adopted energy-
based switching criterion is discussed in section 3
where in addition the underlying basics of the ap-
plied rate-dependent switching theory as well as
the modelling of intergranular effects by means of
a probabilistic approach are outlined. The finite-
element-based simulation technique and numeri-
cal examples are highlighted in section 4. Finally,
the paper is concluded with a short summary in
section 5.

2 Constitutive modelling

Piezoelectric materials posses a pronounced
micro-structure as represented by the under-
lying lattice structures and, moreover, exhibit
strongly temperature-depended response. While
these materials embody cubic symmetry above
the Curie temperature, the so-called paraelec-
tric phase, we are mainly interested in the
modelling of ferroelectric phases. Accordingly,
phase-transformations or rather switching effects,
which results in so-called spontaneous polarisa-
tion and spontaneous strains, come into the pic-
ture, whereby we restrict ourselves to tetragonal
symmetry. In this regard, essential balance and
constitutive equations are reviewed in the follow-
ing.

2.1 Balance equations

Consider a continuum body B represented by its
configuration B ⊂ ℜ3 with placements xxx ∈ ℜ3.
As essential degrees of freedom we consider the
electric potential φ ∈ℜ and the displacement field
uuu ∈ ℜ3. Consequently, balance of linear momen-
tum for the static case and the Gauß equation take
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the well-established format

000 = ∇ ·σσσ +bbb in B

uuu = uuup on ∂Bu

ttt = ttt p = σσσ ·nnnσ on ∂Bσ

(1)

together with

0 = ∇ ·DDD−ρ f in B

φ = φ p on ∂Bφ

−q = −qp = DDD ·nnnD on ∂BD

(2)

whereby ∂Bu ∪∂Bσ = ∂Bφ ∪∂BD = ∂B and
∂Bu ∩∂Bσ = ∂Bφ ∩∂BD = /0. Adopting stan-
dard notation, σσσ denotes the stress tensor, DDD rep-
resents the electric displacement vector, and nnnσ ,D

characterise unit normal vectors with respect to
the corresponding surfaces.

2.2 Constitutive equations

The so-called nonlinear representation of the con-
stitutive equations for σσσ and DDD account for spon-
taneous strains εεεs = ε s [3mmm⊗ mmm − III ]/2 as well
as for spontaneous polarisation PPPs = Ps mmm with
‖mmm‖= 1, namely

σσσ = C : [εεε −εεε s ]−ddd ·EEE (3)

DDD = ddd : [εεε −εεεs ]+kkk ·EEE +PPPs (4)

wherein εεε = ∇sym uuu and EEE = −∇φ denote the to-
tal strain tensor and the electric field, respectively,
compare Jaffe, Cook, and Jaffe (1971). Both, the
elastic constant C as well as the dielectric permit-
tivity kkk are assumed to reflect isotropic response
so that three material parameters must be consid-
ered – for instance the two Lamé parameters λ ,
μ and k which, by weighting the second order
identity, determines kkk. Experimental investiga-
tions reported in Hwang, Lynch, and McMeeking
(1995) show that the material symmetry should
be reflected at least by the dielectric third order
tensor ddd. Moreover, the properties of this quan-
tity might vary between different domains. Since
we are particularly interested in the modelling of
perovskite crystallites with tetragonal microstruc-
ture, the transversely isotropic representation

ddd = d33 MMM +d31
[

mmm⊗ III −MMM
]

+d15
[ 1

2
[ III⊗mmm+ III⊗mmm ]−MMM

]
(5)

is adopted in the following; see Kamlah (2001)
for a detailed review on the underlying material
symmetry relations. For notational convenience
the abbreviations MMM = mmm⊗mmm⊗mmm and [ III ⊗mmm +
III⊗mmm ] : aaa = [ III⊗mmm+ III⊗mmm ] : aaat for all second or-
der tensors aaa, whereby •t denotes transposition,
have been introduced in eq.(5).

The numerical computations discussed as this
work proceeds consider specimens which, form a
macroscopic point of view, are initially isotropic.
To account for this un-poled virgin state, a radom
orientation is applied to the underlying unit-cells
by means of Eulerian angles from which local
spontaneous polarisation vectors and spontaneous
strain tensors are determined. For details of im-
plementation and further background information
the reader is refer to our previous works Arock-
iarajan, Menzel, Delibas, and Seemann (2006a,b)
and the monograph by Goldstein, Poole, and
Safko (2002).

3 Modelling of domain switching processes

The macroscopic nonlinear behaviour of poly-
crystalline piezoelectric materials mainly stems
form phase-transformation phenomena on related
micro-scales. Such domain switching effects
are commonly identified with a reorientation of
polarisation vectors or rather a reorientation of
the underlying unit-cells. In the following, per-
ovskite crystallites with tetragonal microstructure
are elaborated so that solely 90◦ or 180◦ domain
switching occurs; see figure 1 for a graphical rep-
resentation. For a particular finite time interval
Δt = tn+1− tn > 0 of interest polarisation vectors
might either reorient according to one out of four
possible 90◦ switching directions or align with re-
spect to a 180◦ switching processes. Next, related
modelling concepts are briefly reviewed.

3.1 Energy-based switching criterion

An energy-based switching criterion as advocated
by, McMeeking and Hwang (1997) is applied in
this work. In this regard, switching is initiated
as soon as the related reduction in energy (ΔU)
exceeds a critical possibly constant value Δψc,
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Figure 1: Different types of 90◦ and 180◦ domain switching for a representative tetragonal lattice structure.

namely

ΔU(uuu,φ )+Δψc ≤ 0 . (6)

Following Hwang, Lynch, and McMeeking
(1995), we adopt the particular format

ΔU = −EEE ·ΔPPPs −σσσ : Δεεεs together with (7)

Δψc = 2E0 P0 , (8)

wherein ΔPPPs and Δεεεs denote the change in sponta-
neous polarisation and strains, respectively, while
E0 > 0 and P0 > 0 characterise the coercive elec-
tric field value and the polarisation parameter.
Taking a specific load step into account, the do-
main of interest might meet this switching crite-
rion for several polarisation directions. For the
numerical examples highlighted in the sequel, the
phase-transformations realised are referred to po-
larisation directions which render the largest (lo-
cal) energy reduction value.

3.2 Time-dependent nucleation and propaga-
tion

Experimental observations show that piezoelec-
tric materials exhibit also time- or rather rate-
dependent response since domain switching pro-
cesses in general require a finite interval of time

to be completed. In the following, the modelling
of such rate-dependent domain switching process
is triggered by using the previously highlighted
switching criterion. Subsequently, a so-called
volume fraction concept combined with a linear
kinetics theory is adopted, in this work; for de-
tailed discussions see also previous elaborations
reported in Delibas, Arockiarajan, and Seemann
(2006) and Arockiarajan, Delibas, Menzel, and
Seemann (2006); Arockiarajan, Menzel, Delibas,
and Seemann (2006a). In this regard, eqs.(6, 7, 8)
are supplemented by a critical switching (limit)
time Δtl which is assumed to depend on the indi-
vidual loading level, namely

Δtl =
C1

‖EEE‖ +
C2

‖σσσ‖ , (9)

whereby the constitutive parameters C1,C2 > 0
might themselves depend on temperature, the
size of the domain, and so forth; compare Merz
(1954). Practically speaking, Δtl represents the
time interval required to complete a switching
process. When considering a sufficiently large
load step related to a time increment Δt < Δtl ,
the updated polarisation direction should, accord-
ingly, not correspond to the fully switched state.
In this regard, a simple volume fraction concept in
terms of the parameter τ – representing the frac-
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tion between the time elapsed since the switching
process has been initiated for a particular loading
level and the critical switching (limit) time – is ap-
plied. The modified update scheme consequently
results in

PPPs
n+1 = τ P̃PP

s
n+1 +[1−τ ] PPPs

n and (10)

εεε s
n+1 = τ ε̃εε s

n+1 +[1−τ ] εεε s
n , (11)

wherein P̃PP
s
n+1 and ε̃εε s

n+1 represent the fully
switched state. For surveys on alternative mod-
elling approaches the reader is referred to Smith
and Ounates (2000) and Kim and Seelecke (2007)
as well as to the investigations by Liu and Lynch
(2006), and to references cited in theses works.

3.3 Grain boundary effects

So-called grain boundary effects crucially affect
the overall response of poly-crystalline piezoelec-
tric materials. To give but a few examples, high
local loading levels and micro-cracking might
occur. The model discussed until here allows
switching, as initiated by the criterion (7, 8), in the
region of interest without directly incorporating
any additional influences of the neighbouring ma-
terial. In this regard and in view of related finite
element applications one could either deal with
very fine meshes, covering representative geome-
tries combined with advanced modelling strate-
gies for the grain boundaries themselves, or in-
corporate such grain boundary effects on a phe-
nomenological or rather constitutive level. Prac-
tically speaking and with respect to comparisons
of simulations with experimental investigations,
both approaches should render hysteresis and but-
terfly curves which do not posses sharp corners
near to the critical electric field value; compare
figure 3. In the following we pursue along the
lines of the latter framework and, in order to take
such grain boundary effects into account, intro-
duce a phenomenologically motivated probability
function P into the switching criterion, to be spe-
cific

P =

⎧⎪⎨
⎪⎩

[ −ΔU
2E0 P0

]p

for − ΔU < 2E0 P0

1 for − ΔU ≥ 2E0 P0

(12)

wherein −ΔU = EEE
e ·ΔPPPse +σσσ e : Δεεεse and the pa-

rameter p ≥ 0 allows calibration of simulation re-
sults with experimental data. Moreover, volume-
averaged quantities have been introduced in view
of the underlying domains, i.e. EEE

e = 1
V e

∫
V e EEEe v.

and σσσ e = 1
V e

∫
V e σσσ e v. . As such, the finally ap-

plied switching criterion results in

EEE
e ·ΔPPPse +σσσ e : Δεεε se > 2E0 P0 P . (13)

Please note that the incorporation of any suit-
able, for example statistically motivated, proba-
bility function is straightforward.

4 Numerical examples

The previously highlighted framework has been
embedded into a coupled finite element formula-
tion with uuu and φ constituting the underlying de-
grees of freedom. Both, spontaneous polarisation
PPPs as well as spontaneous strains εεε s are thereby
introduced as so-called internal variables stored
at the integration point level or, for the problem
at hand, at the element level. For detailed back-
ground information the reader is referred to Allik
and Hughes (1970), Gaudenzi and Bathe (1995),
or Schröder and Gross (2004) among others.

As a first step towards detailed discretisation tech-
niques, homogenisation schemes, and more ad-
vanced simulations we assume that every indi-
vidual finite element (Q1Q1) represents one grain
and thereby do not distinguish between grains and
domains; see figure 2 for a graphical illustration.

As discussed in section 2.2, the initial polarisa-
tion direction of each finite element is randomly
generated by means of Eulerian angles so that the
initial macroscopic state monitors the response of
an un-poled ceramics. Thereafter, a simple stag-
gered iteration technique is applied within each
load step to incorporate switching effects:

(I) based on the coupled finite element formula-
tion, compute uuu and φ at fixed PPPs, εεεs, and ddd
for given boundary and loading conditions

(II) based on the switching criterion, compute
PPPs, εεε s, and ddd at fixed uuu and φ
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(III) based on the coupled finite element formula-
tion, recompute uuu and φ at fixed PPPs, εεεs, and
ddd for given boundary and loading conditions

Further details are provided in Arockiarajan,
Menzel, Delibas, and Seemann (2006a,b). Please
note that steps (II) and (III) can be repeated until
a suitable convergence criterion is met. In view of
the numerical examples elaborated in this work,
however, it turned out that sufficiently accurate
results could be obtained without taking a related
(additional) iteration scheme into account. The
subsequent sections address the simulation of a
block-like specimen under different loading con-
ditions, see also figure 2, namely

(i) section 4.1: rate-independent behaviour un-
der cyclic electrical loading represented by a
prescribed electric potential (linearly in- and
decreased) at the top surface φ p

top – the elec-
tric potential at the bottom surface φ p

bot con-
stantly being zero – is discussed. In addition
compressive stresses in axial or lateral direc-
tion are uniformly applied to the top surface,
ttt p

top, and, respectively, to the side surfaces
ttt p

sid – the bottom surface being throughout
clamped.

(ii) section 4.2: rate-dependent behaviour under
cyclic electrical loading and axial compres-
sive stresses are elaborated, compare (i).

(iii) section 4.3: by analogy with (ii), rate-
dependent behaviour under cyclic electrical
loading and lateral compressive stresses (ap-
plied to the four pairwise opposite side sur-
faces) is investigated.

Since experimental measurements given in the lit-
erature are commonly referred to so-called in-
tegrated macroscopic data, we apply a simple
volume averaging technique to the results ob-
tained from three-dimensional finite element sim-
ulations. Moreover, contributions of interest are
projected onto the (macroscopic) axial direction,
eee3 say, so that typical hysteresis and butterfly
curves are determined by the scalar-valued quan-

tities

D =
1
V

∫
V

DDD · eee3 v. ,

E =
1
V

∫
V

EEE · eee3 v. ,

e =
1
V

∫
V

eee3 · εεε · eee3 v. .

(14)

All numerical examples studied in the following
refer to a block-like 9×9×9 specimen, whereby
the discretisation is performed with 9 × 9 × 9
eight node bricks (Q1Q1); see figure 2 for a
schematic illustration. Further studies concerning
influences of the chosen mesh – and load step size
are highlighted in Arockiarajan, Menzel, Delibas,
and Seemann (2006b) but not addressed in this
contribution. In view of material parameters,
representative PZT 51 values have been adopted
from the literature: k = 0.0666 [μ F/m], d33 =
1.52× 10−9 [m/V], d31 = −0.57× 10−9 [m/V],
d15 = 1.856×10−9 [m/V], Young’s modulus E =
μ [3λ + 2 μ ]/[λ + μ ] = 30.3 [GPa], Poisson ra-
tion ν = λ/[2λ + 2 μ ] = 0.3, ε s = 2.7 × 10−3

Ps = P0 = 0.1938 [C/m2], E0 = 0.4 [MV/m],
and, moreover, C1 = 0.00325 [MV s/m] and C2 =
0.00325 [MPa s] (both ‘per unit thickness’) as
well as |Δφ p

top| = 1.0 [KV]. Three different load-
ing frequencies and amplitudes are taken into
account, namely fφ = 0.01, fφ = 0.10, fφ =
1.00 [Hz] and Ê = 2.0, Ê = 1.5, Ê = 1.0 [MV/m].
The parameter entering the modelling of inter-
granular effects is chosen throughout as p = 5,
unless otherwise stated.

4.1 Rate-independent behaviour

To set the stage and for reasons of comparison
with experimental data reported by Fang and Li
(1999), the simulation of rate-independent mate-
rial behaviour is first addressed in this section.
Practically speaking, the volume fraction param-
eter τ , as introduced in eqs.(10, 11), is a priori
set identical to one. Figures 3 and 4 show the
classical hysteresis loop (electric displacement D
versus electric field E) and butterfly curve (total
strains e versus electric field E), whereby no ad-
ditional stresses have been superimposed. Within
the computations shown in figure 3 the switching
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a) b) c)

Figure 2: Two-dimensional graphical representation of a natural assembly of grains (a), schematic three-
dimensional finite element discretisation (b), and illustration of the applied boundary conditions (c).
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Figure 3: Hysteresis and butterfly curves under quasi-static loading without probabilistic approach (p = 0)
and without additional superimposed stresses.

-1.5 -1 -0.5 0 0.5 1 1.5
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

E (MV/m)

D
(C

/m
2
)

Simulated

Measured
( , 1999)Fang et al.

-1.5 -1 -0.5 0 0.5 1 1.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

E (MV/m)

e
(%

)

Simulated

Measured
( , 1999)Fang et al.

Figure 4: Hysteresis and butterfly curves under quasi-static loading with probabilistic approach (p = 5) but
without additional superimposed stresses.
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Figure 5: Hysteresis and butterfly curves under quasi-static loading with axial compressive stresses σ =
10 MPa.
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Figure 6: Hysteresis and butterfly curves under quasi-static loading with axial compressive stresses σ =
30 MPa.
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Figure 7: Hysteresis and butterfly curves under quasi-static loading with lateral compressive stresses σ =
10 MPa.
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Figure 8: Hysteresis and butterfly curves under quasi-static loading with lateral compressive stresses σ =
30 MPa.

probability function has been neglected by set-
ting p = 0. It is clearly seen that the hysteresis
and butterfly curves possess sharp corners near the
macroscopic coercive electric field which is not
observed in experiments. Due to the incorporation
of grain boundary effects by means of the proba-
bilistic ansatz in eq.(12), the obtained graphs pro-
ceed rather smooth near the macroscopic coer-
cive electric field parameter so that better agree-
ment with experimental measurements performed
by Fang and Li (1999) is observed.

The effects of axial compressive stresses on hys-
teresis and butterfly curves are highlighted in fig-
ures 5 and 6, whereby different loading levels are
addressed, namely 10 and 30 MPa. Compared
to the results displayed in figure 4, the switching
range is enlarge under axial compressive stresses.
Since two successive 90◦ switching processes are
preferred to one 180◦ transformation, a reduction
of the macroscopic coercive electric field is exper-
imentally observed and also reflected by our nu-
merical results. Similarly, a reduction of the satu-
ration polarisation value occurs. In addition, fig-
ures 5 and 6 clearly monitor that both, the hystere-
sis as well as the butterfly curves ‘flatten’ when
increasing the compressive stresses. Moreover,
the macroscopic (projected) strain level shifts to-
wards compression – to give an example, e|E=0 <

0 for, e.g., σ = 30 MPa.

By analogy with figures 5 and 6, rate-independent
behaviour under lateral compressive stresses is

addressed in figures 7 and 8. Compared to fig-
ure 4, an expanded switching rage is noted and,
similar to figures 5 and 6, a reduced macroscopic
coercive electric field as well as an increased satu-
ration polarisation magnitude are observed. How-
ever, both, the hysteresis and butterfly curves turn
out to be ‘compacted in horizontal direction’ un-
der lateral compressive stresses. Nevertheless, the
butterfly curves also ‘flatten’ for the considered
boundary conditions so that the critical level for
domain switching increases with increasing me-
chanical loading.

4.2 Rate-dependent behaviour under axial
compressive stresses

In this section, rate-dependent properties are stud-
ied under axial compressive stresses – figures 9 to
14 show hysteresis and butterfly curves for vari-
ous loading amplitudes (Ê = 2.0, 1.5, 1.0 MV/m)
and frequencies ( fφ = 0.01, 0.10, 1.00 Hz).

As expected, a reduction in the macroscopic co-
ercive electric field and the saturation polarisa-
tion value is observed under axial compressive
stresses irrespective of the applied loading fre-
quencies. Moreover, the macroscopic (projected)
total strains shift towards the compressive regime.
The numerical results highlighted in figures 9 to
14 underpin that the macroscopic coercive elec-
tric field value strongly depends on the applied
loading frequency. Practically speaking, an in-
crease of the coercive electric field is observed
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Figure 9: Hysteresis and butterfly curves under axial compressive stresses σ = 10 MPa for Ê = 2.0 MV/m.
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Figure 10: Hysteresis and butterfly curves under axial compressive stresses σ = 10 MPa for Ê = 1.5 MV/m.
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Figure 11: Hysteresis and butterfly curves under axial compressive stresses σ = 10 MPa for Ê = 1.0 MV/m.
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Figure 12: Hysteresis and butterfly curves under axial compressive stresses σ = 30 MPa for Ê = 2.0 MV/m.
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Figure 13: Hysteresis and butterfly curves under axial compressive stresses σ = 30 MPa for Ê = 1.5 MV/m.
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Figure 14: Hysteresis and butterfly curves under axial compressive stresses σ = 30 MPa for Ê = 1.0 MV/m.
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when raising the loading frequency fφ . Similar
effects are obtained for amplified load levels Ê.
For the results displayed in figures 11 and 14,
the loading amplitude Ê = 1.0 [MV/m] is close
to the macroscopic coercive electric field value it-
self – however, even within this regime the co-
ercive fields vary depending on the applied load-
ing frequency. Furthermore, it is clearly seen that
both, the electric displacements as well as the lon-
gitudinal strains decrease for higher loading fre-
quencies for all applied electrical loading ampli-
tudes. As an interesting aspect, the electric dis-
placements and total strains in figure 10 and 11
are, say, not saturated for all chosen loading sce-
narios so that an increase of these quantities upon
reverse loading takes place. From figures 9, 10,
12, and 13 one can additionally conclude that the
remanent polarisation value (electrical displace-
ment at zero electric field) and remanent strains
(longitudinal strains at zero electric field) are not
varying significantly for loading frequencies fφ of
0.01 and 0.10 Hz at maximum amplitudes of the
macroscopic electric field Ê of 2.0 and 1.5 MV/m.
Finally, note that the remanent polarisation as
well as the remanent strains decrease for increas-
ing loading frequency at a loading amplitude of
Ê = 1.0 MV/m; compare figures 11 and 14.

4.3 Rate-dependent behaviour under lateral
compressive stresses

In this section, rate-dependent properties are stud-
ied under lateral compressive stresses – figures 15
to 20 show hysteresis and butterfly curves for vari-
ous loading amplitudes (Ê = 2.0, 1.5, 1.0 MV/m)
and frequencies ( fφ = 0.01, 0.10, 1.00 Hz). As
a conclusion, lateral compressive stress yield a
reduction in the macroscopic coercive electric
field and an increase in the saturation polarisation
value irrespective of the considered loading fre-
quencies. Contrary to the elaboration in section
4.2, the macroscopic strain level does not move
towards overall compressive values under lateral
compressive stresses. The results displayed in this
section highlight hysteresis and butterfly curves
which are rather ‘squeezed in horizontal direc-
tion’ compared to those obtained for axial com-
pressive stresses. Furthermore, lower loading

frequencies result in decreasing coercive electric
fields. By analogy with section 4.2, figures 16 and
19 show that the electric displacements and the
total strains at maximum loading amplitudes are
not saturated for a loading frequencies of, for in-
stance, 1.00 Hz as compared to the almost quasi-
static cases at fφ = 0.01 or fφ = 0.1 Hz. More-
over, the remanent polarisation value increases
when decreasing the loading frequency.

5 Summary

A micro-mechanically motivated model, embed-
ded into a robust three-dimensional coupled fi-
nite element formulation, has been reviewed in
this contribution. The main goal of this work,
however, was to apply the proposed computa-
tion framework to various boundary value prob-
lems, namely rate-dependent response under ax-
ial and lateral compressive stresses. Switching
processes have thereby been initiated by means
of an energy-based criterion. Furthermore, a lin-
ear kinetics theory together with a simple volume
fraction concept has been applied to model the
propagation of switching processes. As a key as-
pect, grain boundary effects were incorporated via
a probabilistic approach in terms of a polynomial
ansatz. As a first step, each finite element was
assumed to represent one grain so that no pre-
cise distinction between grains and domains has
been made. The initially un-poled virgin state
of the bulk material was incorporated by means
of a randomly generated initial polarisation direc-
tions of individual elements. The adopted model
for piezoelectric materials has been embedded
into a finite element formulation, whereby switch-
ing phenomena have been realised via a sim-
ple and robust staggered iteration technique. Fi-
nally, straightforward volume averaging enables
to study the overall macroscopic behaviour rep-
resented via commonly used and experimentally
identified hysteresis and butterfly curves. The
numerically obtained results predicted important
insights into nonlinear rate-dependent effects of
piezoelectric materials. Due to the lack of exper-
imental data available in the literature, the simu-
lations were solely compared with measurements
for the rate-independent case.
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Figure 15: Hysteresis and butterfly curves under lateral compressive stresses σ = 10 MPa for Ê = 2.0 MV/m.
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Figure 16: Hysteresis and butterfly curves under lateral compressive stresses σ = 10 MPa for Ê = 1.5 MV/m.
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Figure 17: Hysteresis and butterfly curves under lateral compressive stresses σ = 10 MPa for Ê = 1.0 MV/m.
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Figure 18: Hysteresis and butterfly curves under lateral compressive stresses σ = 30 MPa for Ê = 2.0 MV/m.
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Figure 19: Hysteresis and butterfly curves under lateral compressive stresses σ = 30 MPa for Ê = 1.5 MV/m.
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Figure 20: Hysteresis and butterfly curves under lateral compressive stresses σ = 30 MPa for Ê = 1.0 MV/m.
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