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Viscous Incompressible Flows by the Velocity-Vorticity Navier-Stokes
Equations

Alfredo Nicolás1 and Blanca Bermúdez2

Abstract: 2D viscous incompressible flows are
presented from the unsteady Navier-Stokes equa-
tions in its velocity-vorticity formulation. The re-
sults are obtained using a simple numerical pro-
cedure based on a fixed point iterative process
to solve the nonlinear elliptic system that results
once a second order time discretization is per-
formed. Flows on the un-regularized unit driven
cavity problem are reported up to Reynolds num-
bers Re=4000 to compare them with those re-
ported by other authors, mainly solving the steady
problem, and supposed to be correct. Moreover,
results are reported for Re = 1000, 4000, 5000,
and 10000 to see how their flows look like close
from its departure t = 0.

1 Introduction

The main goal of this paper is to present 2D
viscous incompressible flows from the unsteady
Navier-Stokes equations in its velocity-vorticity
formulation. These flows are obtained by apply-
ing a numerical procedure based mainly on a fixed
point iterative process to solve the nonlinear el-
liptic system that results once a convenient sec-
ond order time discretization is made. The iter-
ative process leads to the solution of uncoupled,
well-conditioned, symmetric linear elliptic prob-
lems for which very efficient solvers exist either
by finite differences or finite elements as far as
rectangular domains are considered.

Flows on the un-regularized unit driven cavity
problem are reported to validate the numerical
procedure up to Reynolds numbers Re = 4000
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with those in Schreiber and Keller (1983) from
the steady problem as well as those in Nicolás
and Bermúdez (2004) from the unsteady prob-
lem; both works in terms of the stream function-
vorticity formulation. Beyond this validation, re-
sults are reported for Re = 1000, 4000, 5000, and
10000 to see how their flows look like close from
its departure t = 0. These either transient or time-
dependent flows show the ability of the numerical
procedure to start directly from the initial condi-
tion at t = 0 and not necessarily from a smaller
Reynolds number previously calculated.

Taking into account that solving the unsteady
problem a steady state is supposed to exist for
Re ≤ 7500, some facts are addressed next on the
steady state results reported here up to Re = 4000,
up to Re = 5000 in Nicolás and Bermúdez (2004).
1) As can be seen in several other works, say
Schreiber and Keller (1982) solving the steady
problem in the stream function-vorticity variables
formulation, Ghia et al. (1982) and Goyon (1996)
solving the unsteady one with the same formu-
lation, like in Nicolás and Bermúdez (2004), in
the steady state, agreeing with the solution of the
steady problem, the vorticity is concentrated close
to the solid parts of the boundary, being not zero
there by boundary layer effects associated with
viscosity, Landau and Lifshitz (1989). 2) In con-
nection with this, an interesting aspect is to see
what happens with the vorticity before the steady
state is reached; that is, what happens in the tran-
sient stage, an aspect not usually considered so
far due to the fact that most numerical schemes
cannot compute the flow directly from the initial
condition t = 0 but from the flow of a smaller
Reynolds number previously computed. Interest-
ing as well is to see what happens with the cor-
responding vorticity for a time-dependent flow,
say Re = 10000. As the results show, close from
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its departure t = 0, the vorticity being spread all
over the cavity for Re = 10000 tends to concen-
trate close to the solid parts of the boundary as
Re decreases since the fixed final time is closer to
the time where the asymptotic steady state occurs,
this time being smaller as Re is smaller. Unlike
the situation showed here, the vorticity of the re-
sults close from t = 0 for Re ≥ 10000 shown in
Nicolás and Bermúdez (2004) is spread all over
the cavity since they are supposed to be time-
dependent flows.

Based on the experience of the authors with
the 2D solution of the driven cavity problem
with the three formulations of the Navier-Stokes
equations: primitive variables, stream function-
vorticity, and velocity-vorticity we would like to
point out that is easier to get the results with
the contour values given by Schreiber and Keller
(1982) than with those by Ghia et al. (1982),
meaning by this that the results can be obtained
with a coarser mesh; moreover, it is more diffi-
cult to get the vorticity with the contour values in
Ghia et al. (1982): if the numerical method works
a finer mesh is required. That this is not a trivial
task to deal with is reflected in the fact that several
published works report only the streamlines.

In Nicolás and Bermúdez (2004) it was possible
to obtain steady state flows up to Re = 5000 as
well as to obtain time-dependent flows close from
its departure t = 0 for higher Reynolds numbers
than the one reported here; moreover, it was also
possible to obtain various long time computations
for Re=10000 to illustrate its evolution as time-
dependent flow. On the other hand, the meshes
needed for them, even for the steady state results,
are coarser than those used here. Then, because
not all the analogous results are obtained, con-
sidering also that the meshes are coarser, it can
be concluded that with the velocity-vorticity for-
mulation is more difficult to solve these flows, at
least with a numerical procedure very similar to
the one applied in the stream function-vorticity
formulation, mainly using a fixed point iterative
process to solve the elliptic non-linear system
that results after time discretization, and taking
likely other aspects: no up-winding ingredient is
used, the meshes follow also the size dictated by

the thickness of the boundary layer (of order of
Re−1/2), and no refining of the mesh is used near
the boundary.

Some works on velocity-vorticity formulation are
mentioned next. Fusegi and Farouck (1986) use a
control-volume finite difference approach to dis-
cretize the problem and then a direct solution pro-
cedure (along a grid line) to solve the algebraic
system via a block tridiagonal matrix algorithm.
They present isothermal results for the driven cav-
ity problem also, and heat transfer results for nat-
ural and mixed convection. Lo et al. (2005)
present 3D results for the driven cavity problem
up to Re≤ 2000 using finite differences combined
with an ADI procedure for the parabolic veloc-
ity Poisson equations and the continuity equation
to solve the resultant algebraic system by a di-
agonally dominant tridiagonal matrix algorithm.
In Tsai et al. (2002) a meshless BEM method
is developed to solve 3D Stokes flows with this
formulation. Surprisingly, the iterative process
used is very close to ours, the only difference is
that ours is a truly fixed point one, with a differ-
ent time discretization. Actually, they claim that
their method can be extended to the 3D velocity-
vorticity Navier-Stokes equations. Grimaldi et al.
(2006) through a Parallel multi-block method re-
port results for 2D and 3D for the driven cav-
ity problem; for 2D, the horizontal and vertical
velocity profiles at the center of the cavity are
shown for Re = 1000. Chantasiriwan (2006) re-
ports driven cavity results for the low Reynolds
numbers Re = 0, which turns out to be a Stokes
flow because of its infinity viscosity, and Re = 100
using a Multiquadric collocation method. Mai-
Duy and Tran-Cong (2004) with the primitive
variables formulation, report also the driven cav-
ity flow for Re = 100 using the one for Re = 0
as the initial interface solution in their domain de-
composition technique.

This paper is organized as follows: In Section 2
the problem is formulated, in Section 3 the nu-
merical method is described, the numerical ex-
periments appear in Section 4 and in Section 5
some conclusions are made. On Section 4 we
proceed as follows: 1) Asymptotic steady results
for 400 ≤ Re ≤ 4000, from the unsteady prob-
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lem, are presented as a validation matter of the
numerical method; they are compared with those
in Schreiber and Keller (1983) obtained by solv-
ing the steady problem. To reinforce this valida-
tion, for Re = 1000 a kind of mesh independence
is showed through some velocity profiles, from
which the optimal mesh that works for this case
is chosen and it is taken as a guide to choose the
appropriate meshes for the other Reynolds num-
bers. 2) Results for Re = 1000, 4000, 5000, and
10000 are shown to see how their flows look like
close from its departure t = 0.

2 The Navier-Stokes equations in velocity-
vorticity form

Let Ω ⊂ RN(N = 2,3) be the region of the un-
steady flow of a viscous incompressible fluid, and
Γ its boundary. This kind of time dependent flow
is governed by the non-dimensional equations, in
Ω× (0,T ), T > 0,

ut − 1
Re

∇2u+∇p+(u ·∇)u = f (1a)

∇ ·u = 0 (1b)

known as the Navier-Stokes equations in primi-
tive variables u, velocity, and p, pressure. The
parameter Re is the Reynolds number and f is a
given concentration of external forces.

To get, in principle, a unique solution in a
bounded region Ω, initial and boundary condi-
tions must be supplied, say u(x,0) = u0(x) in Ω
and for instance u = g on Γ, respectively. As is
well known, unlike in 3D, in 2D a unique solution
exists, weakly speaking, for problem (1a− 1b),
with initial and boundary conditions, for all time
t ≥ 0 regardless of the Reynolds number.

By taking the curl in both sides of equation (1a)
one obtains the non-dimensional form of the vor-
ticity ω transport equation in Ω× (0,T )

ωωω t − 1
Re

∇2ωωω +u ·∇ωωω = ωωω ·∇u+ f (2)

where the vorticity vector ωωω is defined by

ωωω = ∇×u (3)

and the new f is the curl of the old one.

Taking the curl of equation (3) and using the in-
compressibility constraint (1b), from the identity
∇×∇×a = −∇2a + ∇(∇ · a), the following ve-
locity Poisson equation is obtained

∇2u = −∇×ωωω (4)

Equations (2) and (4) are the velocity-vorticity
form of the Navier-Stokes equations, with three
equations for the velocity vector u = (u1,u2,u3)
and three equations for the vorticity vector ωωω =
(ω1,ω2,ω3) in Cartesian co-ordinates.

Equations (2) and (4), like those in (1a−b), can
handle in general 3D flows; however, in this work
numerical results are presented for 2D flows only.
Some details of this case follows.

It can be easily verified that the vorticity, scalar, ω
transport equation in Ω× (0,T ), Ω ⊂ R2, is given
by

ωt − 1
Re

∇2ω +u ·∇ω = f (5)

where, from the 2D restriction in (3),

ω =
∂u2

∂x
− ∂u1

∂y
(6)

and, from (4), the two Poisson equations for the
velocity components are expressed as

∇2u1 = −∂ω
∂y

(7a)

∇2u2 =
∂ω
∂x

(7b)

Then, the vector system (2) and (4) is reduced
to a scalar system of three equations in 2D: one
from the form (2) for ω given by (5) and two from
(4) for u1 and u2 given by (7), related each other
through (6) from which the boundary condition
for ω in (5) should be obtained from the one of
u = (u1,u2).

It must be noted that the 2D scalar system (5)-(7)
has the advantage to the so called stream function-
vorticity variables formulation since the velocity
u is computed explicitly. Actually, the stream
function ψ is trivially computed solving a Pois-
son equation with ω computed in (5) as the right
hand side; that is

∇2ψ = −ω (8)
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obtained from the definition of ω given by (6) and
the definition of ψ in terms of u1 and u2:

u1 =
∂ψ
∂y

, u2 = −∂ψ
∂x

(9)

which follows from (1b); the equation must be
supplemented by the ψ boundary condition im-
plied by the one from u. Equations (9) and (5)
give the so called stream function-vorticity formu-
lation of the Navier-Stokes equations in 2D.

Another approach to solve (7) is to embedding it
into a time-depending problem, in Ω× (0,T ),

∂u1

∂ t
−∇2u1 =

∂ω
∂y

(10a)

∂u2

∂ t
−∇2u2 = −∂ω

∂x
(10b)

and look for the steady state of the flow, if any, as
t approaches to +∞ (large t in practice).

Following Fusegi and Farouck (1986), some as-
pects on the velocity-vorticity formulation must
be pointed out. Although continuity, that is, in-
compressibility condition (1b), was assumed to
be satisfied for the derivation of equations (4), and
hence for equations (7), there is not guaranty it
must be hold for the difference equations.

Let

D =
∂u1

∂x
+

∂u2

∂y
= 0 (11)

By differentiating the equations appearing in (7)
with respect to x and y respectively, and adding
the resulting equations, it follows that

∇2D = 0 (12)

Then, by the maximum principle, if |D|= 0 on the
boundary it follows that continuity, D = 0, holds
in the entire domain of the flow. As can be seen
next, the numerical experiments are given for the
so called un-regularized driven cavity problem;
then continuity is satisfied.

The numerical experiments of this work are con-
cerned with the well known un-regularized driven
cavity problem which implies re-circulation phe-
nomena because of its velocity boundary condi-
tion. Then, equations (1) are set in the domain

Ω = (0,1)× (0,1) and the boundary condition, in
terms of u is defined by u = (1,0) at the mov-
ing boundary (the top one) and u = (0,0) else-
where. So, the components of these relations give
the boundary conditions for equations (7) to get
u1 and u2 whereas the ω boundary condition to
solve the vorticity equation (5) follows from (6)
and are given by
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u1 = 0, u2 = 0, ω = ∂u2
∂x on Γx=0

u1 = 0, u2 = 0, ω = ∂u2
∂x on Γx=1

u1 = 0, u2 = 0, ω = −∂u1
∂y on Γy=0

u1 = 1, u2 = 0, ω = −∂u1
∂y on Γy=1.

(13)

In addition, ω(x,0) = ω0(x) denotes the initial
condition for the vorticity which, by (3), has to
satisfy ω0 = ∂u02

∂x − ∂u01
y if u0 = (u01,u02) is the

initial velocity.

3 Numerical method

For the time derivative appearing in the vorticity
equation (5) the following well known second-
order approximation is used

ωt(x, (n+1)Δt) =
3ωn+1−4ωn +ωn−1

2Δt
, (14)

where xε Ω, n ≥ 1, and Δt denotes the time step
and ω r ≡ ω(x, rΔt) for ω smooth enough.

The implicit time-discretization system (5) and
(7) reads, in Ω,

⎧⎪⎨
⎪⎩

∇2un+1
1 = −∂ωn+1

∂y

∇2un+1
2 = ∂ωn+1

∂x

αωn+1−ν∇2ωn+1 +un+1 ·∇ωn+1 = fω

,

(15)

where α = 3
2Δt , fω = 4ωn−ωn−1

2Δt , and 1/Re has been
replaced by the kinematic viscosity ν .

Then, at each time step the following nonlinear
system of elliptic equations must be solved in Ω
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∇2u1 = −∂ω
∂y

∇2u2 = ∂ω
∂x

u = ubc on Γ
αω −ν∇2ω +u ·∇ω = f

ω = ωbc on Γ,

(16)



Viscous Incompressible Flows by the Velocity-Vorticity Navier-Stokes Equations 77

where ubc and ωbc denote the boundary condition
for u and ω respectively, given in (13). To ob-
tain u1

1, u1
2, and ω1 in (15), an Euler first-order

approximation is applied for the time derivative
through a subsequence with a smaller time step
to keep up with second-order accuracy. A sys-
tem of the form (16) is also obtained. If equa-
tions (10) were solved instead of equations (7),
after approximating the time-derivatives by (14),
a system like (16) would be also obtained.

Taking into account that the elliptic system (16),
in addition to be nonlinear, is of non-potential
(or transport) type, a fixed point iterative pro-
cess is used to solve it. This process is simi-
lar to one applied to thermal problems, in con-
nection with mixed convection in primitive vari-
ables, Bermúdez and Nicolás (1999), and in
stream function-vorticity variables, Nicolás and
Bermúdez (2005); and as already mentioned in
the Introduction, in connection with isothermal
problems in stream function-vorticity variables
too, Nicolás and Bermúdez (2004).

Denoting

R(ω)≡ αω −ν∇2ω +u ·∇ω − f in Ω (17)

then, system (16) is equivalent to, in Ω,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∇2u1 = −∂ω
∂y

∇2u2 = ∂ω
∂x

u = ubc on Γ
R(ω) = 0, ω = ωbc on Γ

(18)

Then, (18) is solved, at time level (n + 1), by the
fixed point iterative process

With ω0 = ωn given, until convergence on ω solve

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∇2um+1
1 = −∂ωm

∂y

∇2um+1
2 = ∂ωm

∂x

um+1 = ubc on Γ,

ωm+1 = ωm −ρ(αI−ν∇2)−1R(ωm)
ωm+1 = ωbc on Γ; ρ > 0,

(19)

then take (un+1
1 ,un+1

2 ,ωn+1)=(um+1
1 ,um+1

2 ,ωm+1).

Finally, system (19) is equivalent to, in Ω,
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∇2um+1
1 = −∂ωm

∂y

∇2um+1
2 = ∂ωm

∂x

um+1
bc = ubc on Γ,

(αI−ν∇2)ωm+1 = (αI−ν∇2)ωm −ρR(ωm)
ωm+1 = ωbc on Γ.

(20)

It turns out that at each iteration three uncoupled
elliptic linear problems associated with the op-
erators ∇2 and αI − ν∇2 have to be solved; it
should be noted that the non-symmetric part for
ω has been taken into the right hand side thanks
to the iterative process. Therefore, the solution of
the original system, at each iteration of each time
level, leads to the solution of standard symmetric
linear elliptic problems.

It is well known that for the space discretization
of elliptic problems like those in (20), either finite
differences or finite elements may be used, as far
as rectangular domains are concerned; it is also
known that in either case very efficient solvers ex-
ist. In the finite element case, variational formu-
lations have to be chosen and then restrict them to
the finite dimensional finite elements spaces, for
instance like those in Gunzburger (1989), Dean et
al. (1991), and Glowinski (2003). For the specific
results in the following Section, the second order
approximation of the Fishpack solver in rectangu-
lar domains, Adams et al. (1980), has been used,
where the corresponding algebraic linear systems
are solved through an efficient cyclic reduction it-
erative method, Sweet (1977). Then, such second
order approximation in space combined with the
second order approximation in time (14), imply
that the whole approximate problem is based on
second order discretizations.

As indicated at the beginning of the next Section,
contrary to what it was thought not all the results
could be obtained with second order discretiza-
tions; then, a fourth order one was required for
some of them. The fourth order discretization
is accomplished with the fourth order option of
Fishpack to approximate the elliptic problems and
with the one in Burden and Faires (1985) to ap-
proximate the first derivatives.
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4 Numerical experiments

First of all, it is pointed out that the results that
follow for small Reynolds numbers, Re=400 and
1000, were obtained with 4th order approxima-
tions, for the higher ones Re=4000 and 5000 with
2th order, and for the highest Re = 10000 with
4th order. Because the fluid motion is lower for
smaller Reynolds numbers, in the first two sets the
opposite might be expected.

The initial condition for velocity and vorticity are
given by u(x,0) = (0,0) and ω(x,0) = 0. The
parameter ρ in the iterative process is chosen as
ρ = 0.7 with stopping absolute criterion given by
10−7. The Reynolds number Re considered in
the numerical experiments lies in the range 400 ≤
Re ≤ 10000. The results are reported through the
streamlines of the stream function (right part of
the pictures) and the iso-vorticity contours (left
part); the iso-contours values, are those given by
Schreiber and Keller (1983). The discretization
parameters, time step Δt and mesh size h, will be
specified in each case under study.

All the results shown correspond to either steady
state flows obtained from the unsteady problem,
which are the converged asymptotic steady state
obtained as time t approaches to +∞ (large time in
practice), or flows close from its departure t = 0.

1). The results for Re = 400,1000,4000 cor-
respond to the asymptotic steady state and they
are compared with those in Schreiber and Keller
(1983) by solving the steady problem.

Figure 1 shows the profile of u2 at y = 0.5 whereas
Figure 2 the one of u1 at x = 0.5 for Re = 400,
with h = 1/100, and Re = 1000, with h = 1/140;
in both cases Δt = 0.01. It is observed that there
is good agreement with those in Schreiber and
Keller (1983). In Figure 3 and Figure 4 through
the analogous profiles as before a kind of mesh
independence is shown for Re = 1000 on three
meshes: h = 1/100, h = 1/140, and h = 1/400.
As can be observed the results are almost indis-
tinguishable for the latter two. Then, h = 1/140
is chosen as the good one, and we take this size
as a guide for Re = 400, 4000, 5000, and 10000.
We mention in passing that the profiles for Re =
400 and 1000 agree also with those in Shu et al.

(2005) from the stream function-vorticity formu-
lation, taking into consideration that the profiles
for the horizontal velocity u1 show a kind of ro-
tation since in their stream function-vorticity for-
mulation the stream function equation is not mi-
nus the vorticity as it must be in the general case.

To reinforce the mesh size choice, the streamlines
and iso-vorticity contours for Re = 400, 1000,
and 4000 are compared with those in Schreiber
and Keller (1983). To this end: Figure 5 shows
the contours for Re = 400 with h = 1/100, Fig-
ure 6 for Re = 1000 with h = 1/140; both with
Δt = 0.01; and Figure 7 shows the ones for Re =
4000 with h = 1/600 and Δt = 0.002. In all cases
a perfect agreement is obtained; the results for
Re = 400 and 1000, with different meshes, co-
incide also with those in Nicolás and Bermúdez
(2004).

2). A set of results follows for Re = 1000, 4000,
5000, and 10000 to show how the flows look like
close from its departure t = 0, all of them com-
puted at the specific final time T = 25.

Figure 8 shows such flow for Re = 4000 and Fig-
ure 9 the one for Re = 5000; both with h = 1/600
and Δt = 0.002. Finally, Figure 10 shows the flow
for Re = 10000 with h = 1/512 and Δt = 0.0002.
It is worth noticing that the result for Re = 4000 in
Figure 8, concerning the vorticity contours, looks
very similar to the one in Mai-Duy et al. (2007)
for the close Re = 3200 where a different method
is used on the stream function-vorticity formula-
tion.

The result for Re = 1000, at T = 25, is not pre-
sented because it looks like the same shown in
Figure 6, which was obtained at a bigger final
time T to make sure that the steady state was al-
ready reached. However, comparing this result at
T = 25 with the others we have: as long as Re de-
creases from 10000 to 1000, at T = 25 fixed, the
vorticity, with contour values different from zero
(given this way by Schreiber and Keller (1983))
concentrates close to the solid parts of the bound-
ary, because of boundary layer effects associated
with viscosity, as already mentioned in the Intro-
duction, but before the steady state it is still con-
centrate in all the cavity, this effect could be also
seen for Re = 1000 if the flow were computed at
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X

Y

0.5

Figure 1: Profiles of u2 at y=0.5: Re=400, h=1/100
(-); Re=1000, h=1/140 (+)

Figure 2: Profiles of u1 at x=0.5: Re=400, h=1/100
(-); Re=1000, h=1/140 (+)

Figure 3: Re=1000; profiles of u1 at x=0.5: h=1/400
(-), h=1/140 (+), h=1/100 (...)

Figure 4: Re=1000; profiles of u2 at y=0.5: h=1/400
(-), h=1/140 (+), h=1/100 (...)

some T < 25; the concentration being more and
more in all the cavity for bigger Reynolds num-
ber (smaller viscosities), because the fluid mo-
tion is faster, as can be seen in Figures 8, 9, and
10. This phenomenon can be seen better looking
backwards Figures 10, 9, 8, and 6, reminding that
the vorticity contours are at the left of each pic-
ture. This vorticity "behavior" shows that the size
of the meshes in addition to be demanded by the
numerical procedure it reflects the physical mean-
ing of the flow; of course, the finer the mesh for

higher Re the smaller the time step because of sta-
bility.

5 Conclusions

Numerical solutions of 2D viscous incompress-
ible flows up to Reynolds numbers Re = 10000
have been presented from the unsteady Navier-
Stokes equations in velocity-vorticity formula-
tion. These flows are obtained with a simple nu-
merical procedure based mainly on a fixed point
iterative process to solve the nonlinear elliptic
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Figure 5: Re=400 (vs S. & Keller)

Figure 6: Re=1000 (vs S. & Keller)

Figure 7: Re=4000 (vs S. & Keller)
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Figure 8: Re=4000 at T =25

Figure 9: Re=5000 at T =25

Figure 10: Re=10000 at T=25
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system that results after an appropriate time dis-
cretization is made. The numerical procedure
shows to be good capturing asymptotic steady
states and computational experiments carried out
so far indicate that it seems to be also able
to computing flows for Reynolds numbers suf-
ficiently large, close from its departure t = 0,
to see how the flows look like. Even though
that the numerical procedure applied to this for-
mulation is not as good as the one applied to
the stream function-vorticity formulation, the way
it behaves, through the discretization parameters
and even through the order of the discretization,
gives us another point of view of the behavior
of the flows under different numerical methods
and different formulations of the problem, teach-
ing us once again the difficulties associated with
the numerical solution of the Navier-Stokes equa-
tions. On this regard, it is worth to mention
that the difficulty with the vorticity-velocity for-
mulation of the Navier-Stokes equations is rein-
forced through the works of Grimaldi et al. (2006)
and Chantasiriwan (2006), mentioned in the In-
troduction, who with very different methods re-
port driven cavity flows for Reynolds numbers not
greater than ours; noticeable also is how similar
the flow, for Re = 3200 in Mai-Duy et al. (2007)
from the stream function-vorticity formulation,
looks like with ours at the final time T = 25 for
Re = 4000, concerning the vorticity iso-contours,
showing the congruence of the different formula-
tions. Moreover, the way the numerical method
behaves for 2D flows gives bases to figure it out
how close the method can handle the 3D for-
mulation of velocity-vorticity formulation of the
Navier-Stokes equations, or what kind of modifi-
cations must be done.
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