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An Accurate Refinement Scheme for Inverse Heat Source Location
Identifications

Leevan Ling1 and Tomoya Takeuchi2

Abstract: We aim to identify the unknown
source locations in a two-dimensional heat equa-
tion from scattered measurements. In [Inverse
Problems, 22(4):1289–1305, 2006], we proposed
a numerical procedure that identifies the unknown
source locations of 2D heat equation solely based
on three measurement points. Due to the nonlin-
earity and complexity of the problem, the qual-
ity of the resulting estimations is often poor espe-
cially when the number of unknown is large. In
this paper, we purpose a linear refinement scheme
that takes the outputs of the existing nonlinear al-
gorithm as initial guesses and iteratively improves
on the accuracy of the estimations; the conver-
gence of the proposed algorithm with noisy data
is proven. The work is concluded by some numer-
ical examples.

Keyword: Heat equation, inverse problem,
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tal solution, convergence

1 Introduction

Inverse source identification problems are impor-
tant in many branches of engineering sciences.
For examples, an accurate estimation of a pol-
lution source in a river [El Badia, Ha Duong,
and Hamdi (2005)], a determination of magni-
tude of groundwater pollution sources [Li, Tan,
Cheng, and Wang (2006)] are crucial to environ-
mental protection. Other examples can be found
in [Ohnaka and Uosaki (1989); Özişik and Or-
lande (2000)] and the references therein.

In general, a complete recovery of the unknown
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source is not attainable from practically restricted
boundary measurements. The inverse source
problem only becomes solvable if certain a pri-
ori knowledge is assumed. Since the heat conduc-
tion process is irreducible in time and the temper-
ature profile becomes rapidly smoother in time,
the characteristic of the solution (for instance, the
shape of the interior heat flow) may not be af-
fected by the observed data. To the best knowl-
edge of the author, the mathematical analysis and
efficient algorithms for inverse heat problems are
still very limited. For instance, the inverse heat
conduction problems are studied in [Chang, Liu,
and Chang (2005); Hon and Wei (2005); Ling
and Atluri (2006)]. The uniqueness and con-
ditional stability results for heat source identi-
fication problem can be found in [Choulli and
Yamamoto (2004); Ling, Yamamoto, Hon, and
Takeuchi (2006); Saitoh, Tuan, and Yamamoto
(2002)]. Studies on stationary point source prob-
lem can be found in the work of [Baratchart,
Ben Abda, Ben Hassen, and Leblond (2005);
El Badia and Ha Duong (1998); Kang and Lee
(2004)]. Some reconstruction schemes can be car-
ried out in [Park and Chung (2002); Wang and
Zheng (2000); Yi and Murio (2004)].

For the sake of simplicity, we formulate our prob-
lem in R

2 whereas the extension to R
3 is straight-

forward. We consider the following heat equation
in R

2: for (t,x) ∈ R+×R
2,⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂u(t,x)
∂ t

= Δu(t,x)+
N0

∑
k=1

ckρ(x−ak),

u(0,x) = 0, x ∈ R2,

u(t,x) → 0, as |x| → ∞, for all t > 0.

(1)

The inverse source identification problem we con-
sidered here is stated as follows:
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Determine the total number of source points N0

and the unknown source locations {ak}1≤k≤N0 ⊂
R

2 in (1) by some observation data

u(b j, t), 1 ≤ j ≤ M,

where M > 0 and t ∈ (t0, t1) with 0 < t0 < t1 are
fixed.

In our first work, we analyzed the above prob-
lem with some radially symmetric functions ρ(·)
in the Schwartz space S (R2) of rapidly decreas-
ing functions that approximated the dirac-delta
function. Furthermore, we assumed that the data
are noise-free and all strengths are unitary, e.g.
ck = 1 for all k in (1). Recently, we analyze the
same problem without such approximation. Be-
sides of the number of sources N0 and their loca-
tions ak, the strength ck is now considered as un-
known. Moreover, the analysis there takes noise
into the account. In both articles, we showed that
one measurement point is sufficient to identify the
number of sources and three measurement points
are sufficient to determine all unknown source po-
sitions. Below is a brief summary of the method-
ology.

Firstly, [Ling, Yamamoto, Hon, and Takeuchi
(2006)] showed that M = 3 measurement points
are sufficient to determine all source locations in
two-dimension. The uniqueness of the problem is
proven. Later, [Ling and Takeuchi (2007)] con-
sidered the same problem with noisy data. After
recasting the problem as a nonlinear minimization
problem, we are able to show that if the regular-
ization parameter α is chosen properly according
to the noise level δ , then the numerical procedures
will converge to a sequence of moment equations
involving all the target unknowns. Such system of
nonlinear equations can then be solved by the pole
identification algorithm [Kang and Lee (2004);
Nara and Ando (2003)] and allow us to iden-
tify the number of source N0 and their strength
ck and corresponding measurement-to-source dis-
tances rk = ‖b−ak‖ for each b ∈ {b j|1 ≤ j ≤ M}.
In the R2 plane, three circles with distinct centers
which are not colinear have at most one intersec-
tion point. We employ the algorithm in [Vaku-
lenko (2004)] in order to locate the N0 intersec-
tions (or source locations). Details can be found

in the original articles.

Numerical demonstrations in our previous study
suggest that the proposed method in this paper is
capable of identifying the unknown source loca-
tion in 2D based on the information from as few
as three measurement points. Due to the non-
linearity and complexity of the method, the ac-
curacy may not be acceptable in certain cases or
some false-positive locations will be found. How-
ever, our previously proposed nonlinear methods
do successfully provide the initial guess and ex-
tra information to some efficient linear solvers for
accuracy refinement.

In this paper, we again are interested in the case
when ρ(·) is the Dirac delta function. For gen-
erality, the analysis in this paper is carried out so
that it works for both the Dirac delta function and
any radially symmetric functions in the Schwartz
space S (R2) of rapidly decreasing functions.
Henceforth, B(c, r) denotes the circle centered at
c with radius r. Moreover, we assume that the
noise level of the input data u(b j, t) are moder-
ate so that the nonlinear algorithm in [Ling and
Takeuchi (2007)] can provide:

• An upper estimation N (with N ≥ N0) to the
total number of the source points N0.

• A set of N circles B(a(0)
k ,ε (0)

k ) k = 1, . . . ,N–
each of these circles contains exactly one
source point.

In Section 2, we propose an iterative linear algo-
rithm that gives accurate refinements to the source
locations of (1). Its convergence is proven in the
same section. In Section 3, some numerical ex-
amples are presented. The sensitivity of various
parameters are studied. Moreover, studies on the
effect of various parameters are given. Conclu-
sion is given in Section 4.

2 Source locations refinement scheme

In this section, a linear refinement scheme is con-
structed to further improve the accuracy on the es-
timations of source locations. Prescribed data to
our problem are therefore

u(t,b) for t ∈ (t0, t1) and b ∈ M .
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Here, M is a set of measurement points
{b1, . . . ,bM} with M ≥ 3.

We aim to determine the unknown source loca-
tions numerically from the a priori estimation;
namely, the estimated locations given by the pre-
calculation in the form of B(a(0)

k ,ε (0)
k ) for k =

1, . . .,N with N known. Let B(0) denote the union
of all estimations

B(0) =
N⋃

k=1

B(a(0)
k ,ε (0)

k ). (2)

We choose a sequence of points

YN,P = {yp : 1 ≤ p ≤ N×P} ⊂
N⋃

k=1

B(a(0)
k ,ε (0)

k ),

(3)

so that P points are uniformly distributed in each
B(a(0)

k ,ε (0)
k ) for k = 1, . . .,N. We call the points

yp to be the trial centers at which we place the
centers of the fundamental solutions. The method
of fundamental solution has been successfully ap-
plied to many inverse problems; as an example,
[Hon and Wei (2005); Jin and Marin (2007); Wei,
Hon, and Ling (2007)]

First of all, the solution for the heat equation (1)
is given by

u(x, t) =

N

∑
k=1

ck

∫ t

0

∫
R2

1
4πτ

e

(
− |x−z|2

4τ

)
ρ(z−ak) dz dτ , (4)

in which the location ak and the strength ck are
unknowns. We define an approximation function
un for (t,b)∈ (t0, t1)×M by

un(t, b) =

N×P

∑
p=1

λp

∫ t

0

∫
R2

1
4πτ

e

(
− |b−z|2

4τ

)
ρ(z−yp) dz dτ ,

(5)

where each λp is the corresponding numerical
source strength to yp ∈ YN,P. If the measurement
point b ∈ M are not placed in the convex hull
of {ak}1≤k≤N0, then the approximation function is
well defined.

Motivated by the algorithm given in [Ling, Hon,
and Yamamoto (2005)] for the stationary prob-
lems, we define a set of collocation points on the
measurement point at different time level

TQ ×M ={
(ti,b j) ∈ (t0, t1)×M | 1≤ i≤ Q, 1≤ j ≤ M

}
,

(6)

where TQ := {ti ∈ (t0, t1),1 ≤ i ≤ Q} is the time
sampling. Let ti ∈ TQ be the time samplings that
are distributed uniformly on (t0, t1). Collocating
(5) at the M distinct measurement points for each
ti, i ∈ {1, · · · ,Q}, yields

un(ti, b j) (7)

=
N×P

∑
p=1

λp

∫ t

0

∫
R2

1
4πτ

e

(
− |b j−z|2

4τ

)
ρ(z−yp) dz dτ

= u(ti, b j), j = 1, . . .,M. (8)

Equation (8) is equivalent to a linear system of the
form

A(ti)λ = G(ti), (9)

where A(ti) is a M×(NP) matrix. The jp-th com-
ponent of the A(ti) is given by

[A(ti)] jp =
∫ ti

0

∫
R2

1
4πτ

e

(
− |b j−z|2

4τ

)
ρ(z−yp) dz dτ ,

(10)

with
λ = [λ1, . . .,λNP]T

and

G(ti) := [u(ti,b1), · · · ,u(ti,b3)]T .

Combining (9) for i = 1,2, . . .,Q yields the fol-
lowing (MQ)× (NP) system⎛⎜⎝A(t1)

...
A(tQ)

⎞⎟⎠
⎛⎜⎝ λ1

...
λNP

⎞⎟⎠=

⎛⎜⎝G(t1)
...

G(tQ)

⎞⎟⎠ or Φλ = ζ . (11)

For our numerical computations, we seek for a
stable solution of (11) by the least squares op-
timization. Such approach is commonly used
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for solving ill-conditioned or singular system;
see [Baumeister (1987); Ling and Kansa (2004,
2005); Ling and Hon (2005)] and references
within.

After all the unknown coefficients λp in (11) for
p ∈ {1, · · · ,N×P} are obtained, we need to trans-
form the solution in each ball back to a single
source locations. The k-th approximated source
location associated with the ball Bk = B(a(0)

k ,ε (0)
k )

is given by

a(1)
k :=

(
∑

{p:yp∈Bk}
λp

)−1

∑
{p:yp∈Bk}

λp yp, 1 ≤ k ≤ N.

(12)

Moreover, for each k = 1, . . .,N, we define a set of
new estimations by circles centering at a(1)

k with

radius ε (1)
k := ε (0)

k /γ for some γ > 1.

The proposed method hence provides new estima-
tions to the source locations by (12) and new es-
timated circles B(1)

k := B(a(1)
k ,ε (1)

k ). The refine-
ment can be made iterative: we use the output
B(m)

k = B(a(m)
k ,ε (m)

k ), m ∈N, to get a new approxi-

mation B(m+1)
k = B(a(m+1)

k ,ε (m+1)
k ) and iterate the

computation by distributing the new P trial cen-
ters in the new circles. We summarize the above
methodology by Algorithm 1.

Theorem 1 (see [Ling and Takeuchi (2007)])
If α = α(δ ) and m = m(δ ) are cho-
sen so that h2

m(δ) + δ 2 = O(α(δ )) where
hm(δ) := max

2≤k≤m(δ)
‖vk −vk−1‖L2(0,T), then we have

lim
δ→0

m(δ)

∑
k=1

λ̂kg(sk) =
N

∑
k=1

ckg(rk), (13)

for all g ∈ C∞(R+). In particular, if we take
g(r) = rn, we have

lim
δ→0

m(δ)

∑
k=1

λ̂ksn
k =

N0

∑
k=1

ckrn
k , (14)

for all n ∈ R

Our previous work shows that, by applying some
proper choices of the regularization parameter

Algorithm 1 Pseudo-code for the Source Loca-
tions Refinement Scheme.

Input initial guesses with uncertainty in the
form of B(0) =

⋃N
k=1 B(a(0)

k ,ε (0)
k ) for k =

1, . . . ,N
Observe MQ measurement data u(t,b) for
(t,b) ∈ TQ ×M
Select a shrink parameter γ > 1

while a(m)
k for k = 1, . . .,N has not converged

do
for k = 1, . . . ,N do

Place P trial centers yp uniformly in B(m)
k

defined by (2) with radius {ε (m)
k } to form

the set YN,P as defined in (3)
end for
Compute the resultant matrix by (11) and
solve the matrix system to find the unknown
coefficients associated with YN,P

for k = 1, . . . ,N do
Compute the numerical source position
a(m+1)

k by (12)
end for
Update trust radius ε (m+1)

k = ε (m)
k /γ

end while

α = α(δ ) and the denseness of the partition (pro-
portional to m) with respect to the given noise
level δ > 0, the unknown coefficients λ̂k deter-
mined by solving a nonlinear system will lead to
a set of moment equations for any real number n.
The exact form of the functional can be found in
the original article.

All terms in the right-hand side of (14) are either
known a priori or obtainable by solving some re-
sultant systems. If we focus only on n ∈ N, this
becomes a pole identification problem.

Let rk = ‖ak −b‖ for 1 ≤ k ≤ N and suppose that

inf
1≤ j,k≤N, j 	=k

|r j − rk|> 2 sup
1≤k≤N

εk,

From Theorem 1, if the measurement-to-source
distances are well–separated, we can choose the
function g in (13) to be the characteristic function
χIk where Ik = [rk − εk, rk + εk] with C∞ transient.
Considering the i-th measurement point and the
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j-th source point results in

lim
δ→0

∑
{p:yp∈B j}

λ̂p‖yp −bi‖n = c jr
n
j ,

for all n ∈ R, j = 1, . . . ,N and 1 ≤ i ≤ M with
M ≥ 3. We are interested in the case when the
power n = 2. We have

0 = lim
δ→0

∑
{p:yp∈B j}

λ̂p‖yp −bi‖2 −c jr
2
j

= lim
δ→0

∑
{p:yp∈B j}

λ̂p‖yp −bi‖2 −c j‖a j −bi‖2

= lim
δ→0

{
‖bi‖2

(
∑

{p:yp∈B j}
λ̂p −c j

)

−2

(
∑

{p:yp∈B j}
λ̂pbT

i yp −c jb
T
i a j

)

+

(
∑

{p:yp∈B j}
λ̂p‖yp‖2−c j‖a j‖2

)}
. (15)

By picking n = 0, we know that

lim
δ→0

∑
{p:yp∈B j}

λ̂p = c j, (16)

and the first quantity in (15) vanishes. Consider
M = 3 for simplicity and note that the last quan-
tity in (15) is constant with respect to all bi. Sub-
tracting consecutive equations in (15) results in

(b1−b2)T

(
a j − lim

δ→0
∑

{p:yp∈B j}
λ̂pyp

)
= 0,

(b1−b3)T

(
a j − lim

δ→0
∑

{p:yp∈B j}
λ̂pyp

)
= 0,

as δ → 0. If the measurement points b j =
(bi,1, bi,2)T for i = 1,2,3 are non-colinear, then
the following matrix[

b1,1−b2,1 b1,2−b2,2

b1,1−b3,1 b1,2−b3,2

]
is nonsingular and hence both x- and y-component
in(

c ja j − lim
δ→0

∑
{p:yp∈B j}

λ̂pyp

)

must vanish. Combining (16), we obtain (12).

It remains to show that our linear system gives
the correct coefficients λ̂k. We define an operator
KNP : RNP → L2(t0, t1) by

KNP(λ̂)(t) =

∑
{p:yp∈B(′)}

λ̂pk

∫ t

0

1

(4πτ)
d
2

e

(
−‖yp−b‖2

4τ

)
dτ ,

for λ̂ ∈ R
NP. Following the idea in [Ling and

Takeuchi (2007)], the coefficient in Theorem 1 is
the unique solution of⎧⎪⎨⎪⎩

K∗
NPKNP(λ̂)−K∗

NPuδ +αξ = 0,

ξk =
λ̂k +ξk

max{1, |λ̂k +ξk |}
, 1 ≤ k ≤ NP.

(17)

To derive a direct collocation method from the
nonlinear system, we need to apply two approxi-
mations to the above sections. First, the nonlinear
system (17) has to be linearized. Next, the Gram
matrix in (17) can be approximated by the normal
equation of some overdetermined collocation sys-
tems.

As the noise level δ → 0 and for large number
of centers NP, we may assume that the parameter
α → 0; see [Ling and Takeuchi (2007)] for details.
Hence, the nonlinear system (17) for each bi ∈M
can be linearized to obtain

K∗
NPKNP(λ ) = K∗

NPuδ . (18)

Let

Yk(·, t) =
∫ t

t0

∫
R2

1
4πτ

e

(
−‖·−z‖2

4τ

)
ρ(z−yk) dzdτ ,

and the k j-th component of K∗K is given by

[K∗
NPKNP]k j =

∫ t1

t0
Yk(bi, t)Yj(bi, t)dt, (19)

whereas the k-th component of K∗u is given by

[K∗
NPu]k =

∫ t1

t0
Yk(bi, t)u(bi, t)dt. (20)

Now, we partition the time interval [t0, t1] equally
by Q points as in (6). If we approximate (19) and
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(20) by some numerical integration schemes, then
the linear system (18) can be approximated by

AT
i WAiλ = AT

i Wui, (21)

where A is a Q×NP matrix with entries

[Ai] jk = Yk(bi, t j) 1 ≤ j ≤ Q, 1 ≤ k ≤ NP,

and the components of u are given by

[ui] j = u(bi, t j) 1 ≤ j ≤ Q.

Here, W = diag(wj) is to be determined by the
choice of numerical integration scheme. It is well-
known that the solution to (21) is equivalent to the
least squares solution to

W 1/2Aiλ = W 1/2ui. (22)

Although different numerical schemes result in
different non-singular square diagonal weight ma-
trices W , the system (22) is equivalent to

Aiλ = ui (23)

up to some constant factors. The overdetermined
system (23) with all wj = 1 is used in our al-
gorithm to obtain unknown coefficients. In fact,
system (22) suggests a possible preconditioning
scheme to the least squares collocation system
(23). Lastly, we augment (23) for i = 1, . . .,M to
obtain the matrix system (11).

3 Numerical Verifications

In this section, we verify the numerical accuracy
of the Algorithm 1 by using an example in found
Ling, Yamamoto, Hon, and Takeuchi (2006). We
focus on the accuracy of source locations for the
case that the function ρ is the Dirac function. In
this case the solution (4) of the equation (1) is
given by

u(t, x) =
N

∑
k=1

∫ t

0

1
4πs

e

(
− |x−ak |2

4s

)
ds

=
N

∑
k=1

1
4π

∫ ∞

|x−ak |2
4t

s−1e−s ds

=:
N

∑
k=1

1
4π

Ei

( |x−ak|2
4t

)
,

where Ei is the scaled exponential integral func-
tion. Thus, the matrix A(ti) in (10) is given by

[A(ti)] jp =
1

4π
Ei

( |b j −yp|2
4ti

)
.

We numerically recover the exact source locations

{ak}3
k=1 = [(0.4,0), (−0.26,0.13), (−0.36,−0.33) ],

from the measurement data at

b1 = (1/
√

2, −1/
√

2),
b2 = (−1/

√
2, −1/

√
2),

b3 = (0, 1).

at some sampling times t� for 1 ≤ � ≤ Q such that
t� ∈ [Tmin, Tmax] is equally distributed. We assume

that all the radius or uncertainty ε (0)
k to be 10−1 of

three estimated circles B(a(0)
k ,ε (0)

k ) for k = 1,2,3.

We consider two different cases:

Example 1 All exact sources are contained in the
first estimated circles B(0)

k . Centers of the circles

{a(0)
k }3

k=1 are:

{a(0)
k }3

k=1 ={a1 +(1.7e-3, 1.7e-3),
a2 +(5.8e-4, 5.8e-4),
a3 +(9.5e-5, 9.5e-5)}

Example 2 Some sources are outside in the circle
B(0)

k for the sake of applicability.

{a(0)
k }3

k=1 ={a1 +(1.5e-1, 5.5e-2),
a2 +(6.0e-2, 6.0e-2),
a3 +(1.0e-1, 1.0e-1)}

In all computations, the convergence of the al-
gorithm is based on the maximum difference of
computed locations in consecutive runs; the stop-
ping criteria is set to be 10e-14 through out of this
section.

First, we investigate the effect of increasing num-
bers of trial centers P. The tested values of P
ranged from 3 to 100. For each P, the Algo-
rithm 1 provides three set of estimated locations
{â1, â2, â3} for each test. The locations of the
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Figure 1: Graphical display of problem setting for
Example 1. Three exact source position (�) and
their first estimated circles with P = 30 trial cen-
ters (•). Three (+) are measurement points.

-1 -0.5 0 0.5 1
-1

-0.5
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0.5

1

a1

a2

a3

Figure 2: Graphical display of problem setting for
Example 2. The source a1 and a3 are located out-
side of their first estimated circles.

source points and the first estimated circle B
(0)
k

for k = 1,2,3 are showed graphically in Figure 1
and 2.

Figure 3 shows the convergence results of each
test for Example 1. In this computation, the num-
ber of sampling times is fixed to be Q = 100 with
various values of Tmax = 5, 10, 50, and 100. Tmin

is fixed 10−10. The values of max{|a1− â1|, |a2−
â2|, |a3− â3|} are plotted. Algorithm 1 appears to
be stable for all tests. The value of Tmax has minor
influence to the accuracy of the estimated source
locations; the maximum errors are stable and ac-
curate with respect to the number of trial centers.

In Example 2, under the same setting, instability
appears when Tmax = 5 and 10. Such instability
disappears for large P, see Figure 4.

We continue our analysis on the worst-case. Con-
sider Example 2 when Tmax = 5. In order to see
the effect of the parameters P and Q to the accu-
racy of our algorithm in the case Tmax = 5 for Ex-
ample 2, we demonstrate the numerical test with
varying P and Q. In Figure 5, the missing dot in-
dicates that the algorithm diverged and the dot in-
dicates the convergence for that particular setting.
For each number of time sampling there exists a
region for P that the algorithm diverge. But by in-
creasing the number P, we regain the convergence
of the algorithm.

Next, we study the effect on increasing numbers
of sampling times Q with various values of Tmax =
5, 10, 50, and 100. Tmin is fixed 10−10, see Figure
6 and 7. The number of trial centers is fixed P =
30. We observe a monotone trend as Q increases
and smaller values of Tmax show better accuracy.

The heat conduction process is irreducible in time,
while the temperature profile becomes rapidly
smoother in time. Figure 8 shows the effect of
shifting time interval T = [Tmin,Tmax] for both ex-
ample. Tmin is defined by Tmax −10. In this com-
putation the number of sampling times is Q = 100
and the numbers of trial centers is P = 30. We
shift the time interval T = [Tmax − 10,Tmax] by
Tmax = 20,21, . . .,110. As Tmax increases, the ac-
curacy of the algorithm for both cases worsen as
expected.

3.1 Examples with 4 and 6 source points

Finally, we give the results of the algorithm with
4 and 6 source points:

{ak}4
k=1 =[(−0.01, +0.60), (+0.43, +0.13),

(−0.26,−0.39), (+0.42,−0.54) ],

{ak}6
k=1 =[(−0.20, +0.80), (+0.70, +0.50),

(−0.20,−0.20), (+0.40,−0.30),
(−0.70,−0.50), (−0.30,−0.80) ].
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Figure 3: Example 1 with Q = 100: The effect of the number of trial centers P to the errors |a1− â1|, |a2− â2|
and |a3− â3| where ak and âk are, respectively the exact and numerical locations.
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Figure 4: Example 2 with Q = 100: The effect of the number of trial centers P to the errors |ak − âk| for
1 ≤ k ≤ 3.
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Figure 5: The convergence results for various P and Q for the Example 2. The measurement time interval
is fixed to T = [10−10,5]. The dot (•) indicates the Algorithm successfully converged to the exact sources.
Whereas, the missing dot indicates the Algorithm diverged.

0 10 20 30 40 50 60 70 80 90 100

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

Number of Time Sampling, Q

M
ax

im
um

 E
rr

or
 in

 S
ou

rc
e 

Lo
ca

tio
ns

Tmax = 5
Tmax = 10
Tmax = 20
Tmax = 100

Figure 6: Example 1 with P = 30: The effect of the number of time sampling Q to the errors |ak − âk| for
1 ≤ k ≤ 3.
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Figure 7: Example 2 with P = 30: The effect of the number of time sampling Q to the errors |ak − âk| for
1 ≤ k ≤ 3.
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Figure 8: The effect of shifting time interval T = [Tmax −10,Tmax] to the errors |ak − âk| for 1 ≤ k ≤ 3 with
P = 30 trial centers and Q = 100 time sampling. The maximum of the errors is plotted in y-axis.
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Table 1: Numerical results for problems with 4
and 6 sources.

Maximum error
M 4 sources 6 sources
3 5.4097e-011 3.7582e-004
4 4.3472e-012 1.0331e-008
5 1.2165e-012 6.7345e-010
6 6.1931e-013 5.6379e-011
10 8.3251e-014 9.7918e-012

The centers of the first estimated circles are:

{a(0)
k }4

k=1 =[(−0.17, +0.55), (+0.52, +0.12),
(−0.22,−0.47), (+0.49,−0.47) ],

{a(0)
k }6

k=1 =[(−0.25,+0.90), (+0.75,+0.55),
(−0.20,−0.25), (+0.45,−0.20),
(−0.65,−.55), (−.35,−.85) ].

and the radius ε (0)
k = 10−1. The parameters are

fixed to be P = 30, Q = 100, T = [10−10,100]. We
test not only the case M = 3 measurement points,
but also the cases of M = 4,5,6 and 10. Note that
in the cases of M > 3, the collocation conditions
(8) are merely replaced by u(ti, b j) = un(ti, b j)
for j = 1, . . . ,M. Hence the resultant matrix in
(11) is of the size (MQ)× (NP). In each case, M
measurement points are uniformly distributed on
the unit circle. The maximum errors in source lo-
cations are displayed in Table 1. The more infor-
mation the better–we observe a monotone trend as
M increase.

4 Conclusion

We propose a refinement scheme that postprocess
the results of a nonlinear source location iden-
tification algorithm for the heat equations. Our
proposed method successfully refines the approx-
imation to the unknown source locations based on
three measurement points. Our work demonstrate
that having three measurement points (that is the
previously proven minimum requirement for this
problem) is also numerically possible to deter-
mine all unknown source locations in the inverse
heat equation accurately.

We accurately locate all unknowns source loca-
tions and source strengths with three examples.
Through the given examples, we see that with
more than three measurement points it is possible
to develop the algorithm that is able to identify
more unknown source locations numerically.
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