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Two Dimensional Dynamic Green’s Functions for Piezoelectric Materials

Kuang-Chong Wu1 and Shyh-Haur Chen2

Abstract: A formulation for two-dimensional
self-similar anisotropic elastodyamics problems
is generalized to piezoelectric materials. In the
formulation the general solution of the displace-
ments is expressed in terms of the eigenvalues and
eigenvectors of a related eight-dimensional eigen-
value problem. The present formulation can be
used to derive analytic solutions directly without
the need of performing integral transforms as re-
quired in Cagniard-de Hoop method. The method
is applied to derive explicit dynamic Green’s
functions. Some analytic results for hexagonal
6mm materials are also derived. Numerical ex-
amples for the quartz are illustrated.
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1 Introduction

The Green’s functions for piezoelectric mate-
rials relate the mechanical displacements and
electric potential at a point to the concentrated
forces or charges applied at another point. The
Green’s functions are important analytically in
understanding mechanical or electric behavior of
loaded piezoelectric materials. They are also cru-
cial numerically in constructing boundary integral
equations for either static or dynamics analysis
of finite piezoelectric solids. For example, Dzi-
atkiewicz and Fedelinski (2007) applied the dual
reciprocity boundary element method to free vi-
brations of two-dimensional piezoelectric struc-
tures using the static Green’s function. The de-
veloped method was used to compute frequen-
cies and mode shapes of natural vibrations of
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two-dimensional piezoelectric structures. Sanz,
Solis and Dominguez (2007) have presented a
general mixed boundary element formulation for
three-dimensional piezoelectric fracture mechan-
ics problems. It is thus highly desirable to obtain
explicit expressions for the Green’s functions so
that they can be easily and accurately evaluated.

Piezoelectric solids are inherently anisotropic
elastic. It is not surprising that many methods of
analysis for piezoelectric solids are derived from
those for anisotropic elastic solids. The Stroh for-
malism is widely recognized as an elegant and
powerful method for two-dimensional anisotropic
elastostatics. A distinctive feature of the Stroh
formalism is that the general solution is provided
in terms of the eigenvalues and eigenvectors of a
constant six-dimensional matrix. The general so-
lution contains three arbitrary complex functions.
The functions can often be found by taking ad-
vantage of the orthogonality relations among the
eigenvectors in conjunction with theories of ana-
lytic functions. The Stroh’s formalism has been
applied to yield the static Green’s functions for
various configurations (Ting, 1996). General-
ization of the Stroh’s formalism to piezoelectric
materials has been given by Ting (Ting, 1996),
leading to an eigenvalue problem of a constant
eight-dimensional matrix. Wu (2000) extended
the Stroh’s formalism to treat the self-similar elas-
todynamic problems for anisotropic elastic ma-
terial. The formulation is also based on a six-
dimensional matrix, which, however, is a function
of position and time. A major advantage of the
formulation of Wu (2000) is that solutions can be
derived directly without the need of performing
integral transforms. In this paper the formulation
of Wu (2000) is generalized to piezoelectric ma-
terials in the context of the quasistatic approxima-
tion. The generalized formulation is then utilized
to derive the dynamic Green’s functions of piezo-
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electric materials.

The two-dimensional dynamic Green’s functions
for transversely isotropic piezoelectric materials
of class 6 mm have been derived by Daros and
Antes (2000) using an integral transform inver-
sion technique of Burridge (1967). Recently
Wang and Zhang (2005) have obtained the two-
dimensional dynamic Green’s functions for gen-
eral piezoelectric solids using Radon transform.
The Green’s functions, however, is in the form of
a one-dimensional integral along the unit circle.
The Green’s functions reported in the present pa-
per are also valid for general piezoelectric solids.
Moreover, the Green’s functions are in explicit
form such that only the eigenvalue problem of an
eight-dimensional matrix needs to be solved.

The plan of the paper is as follows. In section
2 the basic governing equations for linear piezo-
electric materials are illustrated. An extension
of the formulation (Wu, 2000) is developed for
piezoelectric material in section 3. In section 4 the
dynamic Green’s functions in an infinite piezo-
electric medium are obtained with the proposed
formulation. Some analytic results for hexagonal
6mm materials are derived in section 5. Numer-
ical examples are given in section 6. Some con-
cluding remarks are finally given.

2 Basic Equations

For a linear piezoelectric solid, the elastic stress
σi j , the elastic displacement ui, the electric dis-
placement Di and the electric potential φ are re-
lated by

σi j = Ci jksuk,s +esi jφ,s, (1)

Di = eiksuk,s −εisφ,s, (2)

where a subscript comma denotes partial differ-
entiation with respect to coordinates, repeated in-
dices imply summation from 1 to 3, Ci jks are the
elastic stiffness, and eiks, and εis are, respectively,
the piezoelectric stress constants and permittiv-
ity constants. In the absence of body forces and
free charges the balance laws under quasi-static
approximation require

σi j, j = ρ üi, (3)

Di,i = 0, (4)

where ρ is the density and an overhead dot desig-
nates derivative with respect to time t.

By letting φ = u4 and Di = σ4i, Eqs. (1) and (2)
can be expressed in terms of the generalized stress
and generalized displacement as

σI j = EI jKsuK,s (5)

where the upper case subscripts range from 1 to 4,
lower case subscripts from 1 to 3 and generalized
electric-mechanical constants EI jKs are defined as

EI jKs =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ci jks, I, K = 1,2,3,

esi j, I = 1,2,3, K = 4,

eiks, I = 4, K = 1,2,3,

−εis, I = 4, K = 4.

Equations (3) and (4) can also be combined as

σI j, j = ρδ ∗
IKüK (6)

where δ ∗
IK = δIK , I,K = 1,2,3, δIK being the Kro-

necker’s delta and δ ∗
IK = 0, I,K = 4. Substitution

of Eq. (5) into (6) yields the governing equations
for the elastic displacement and the electric poten-
tial as

EI jKsuK,s j = ρδ ∗
IKüK . (7)

3 Formulation

For two-dimensional problems in which the gen-
eralized displacement u = [u1, u2, u3, φ ]T are in-
dependent of x3, Eq. (7) can be expressed as

Qu,11 +(R+RT )u,12 +Tu,22 = ρ Îü, (8)

where Î, Q, R, and T are 4×4 matrices given by

Î =
[

I 0
0 0

]
, Q =

[
QE e11

eT
11 −ε11

]
,

R =
[

RE e21

eT
12 −ε12

]
, T =

[
TE e22

eT
22 −ε22

]
,

(9)

in which I is the 3×3 identity matrix and the el-
ements of 3×3 matrices QE , RE , TE , and 3×1
matrices ei j are

QE
ik = Ci1k1, RE

ik = Ci1k2,

T E
ik = Ci2k2, (ei j)s = ei js.
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Consider the generalized displacement u in the
following form

u(x1,x2, t) = ũ(w)+ψ(t)e4, (10)

where w(x1,x2, t) is defined implicitly by

Δ(w,x1,x2, t) = wt −x1 − p(w)x2 = 0, (11)

with p(w) as an analytic function of w, ψ(t) a
function of t, and e4 = [0, 0, 0, 1]T . It may be
shown that the first derivatives of u(x1,x2, t) with
respect to x1, x2, and t can be expressed as

u,1 =
ũ′(w)

Δ′ , u,2 =
p(w)

Δ′ ũ′(w),

Îu̇ = − w
Δ′ Îũ

′(w), (12)

and the second derivatives as

u,11 =
1
Δ′

∂
∂w

(
ũ′(w)

Δ′

)
,

u,22 =
1
Δ′

∂
∂w

(
p(w)2

Δ′ ũ′(w)
)

,

u,12 =
1
Δ′

∂
∂w

(
p(w)

Δ′ ũ′(w)
)

,

(13)

Îü = Î
1
Δ′

∂
∂w

(
w2

Δ′ ũ′(w)
)

, (14)

where ũ′(w) denotes the derivative of ũ(w) with
respect to w, Δ′ is given by

Δ′ =
∂Δ(w,x1,x2, t)

∂w
= t − p′(w)x2, (15)

and p′(w) is the derivative of p(w) with respect to
w. With Eqs. (13) and (14), Eq. (8) becomes

1
Δ′

∂
∂w

{[
Q−ρw2 Î+ p(w)

(
R+RT)+ p(w)2T

]
· 1

Δ′ ũ
′(w)

}
= 0 (16)

Equation (16) shows that for the generalized dis-
placement u given by Eq. (10) to be a solution to
Eq. (8), ũ(w) must satisfy Eq. (16) and ψ(t) is
arbitrary.

Let ũ′(w) be expressed as

ũ′(w) = f (w)a(w), (17)

where f (w) is an arbitrary scalar function of w. It
follows that u is a solution of Eq. (8) if

D(p,w)a(w) = 0, (18)

where D(p,w) is given by

D(p,w) = Q+ p(R+RT )+ p2T−ρw2 Î. (19)

For non-trivial solutions of a(w) we must have

|D(p,w)|= 0, (20)

where |D| is the determinant of D. Equation (20)
provides eight eigenvalues of p as a function of
w, denoted by pα(w), α = 1,2, . . .,8. The cor-
responding function wα = wα(y1,y2) can be de-
termined from Eq. (11) with p(w) replaced by
pα(w). More conveniently we can substitute Eq.
(11) into Eq. (19) and rewrite D as

D(p,y1,y2) = Q̂+ p(R̂ + R̂T )+ p2T̂, (21)

where

Q̂ =
[

QE −ρy2
1I e11

eT
11 −ε11

]
,

R̂ =
[

RE −ρy1y2I e21

eT
12 −ε12

]
,

T̂ =
[

TE −ρy2
2I e22

eT
22 −ε22

] (22)

with y1 = x1/t and y2 = x2/t. The func-
tion pα(y1,y2) can be directly obtained by
|D(p,y1,y2)| = 0. The corresponding wα(y1,y2)
is simply given by Eq. (11) and the associated
eigenvector aα(y1,y2) is determined by Eq. (18).

It is clear from Eq. (21) that complex roots of p
in Eq. (18) and the corresponding a must appear
in complex conjugate pairs. To further discuss the
properties of p let

p = tanθ , w =
c

cosθ
. (23)

Substituting Eq. (23) into Eq. (18) gives

ΓΓΓ(cosθ , sinθ )a = ρc2Îa, (24)

where

ΓΓΓ(cosθ , sinθ ) = Qcos2 θ +(R+RT )cosθ sinθ
+ Tsin2 θ . (25)
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Equation (24) can be further rewritten as

ΓΓΓE(cosθ , sinθ )aE = ρc2aE , (26)

where

ΓE
i j = Γi j − Γi4Γ4 j

Γ44
, i, j = 1,2,3,

aE =
[
a1 a2 a3

]T
.

For real p Eq. (26) shows that aE is the polariza-
tion vector and c is the speed of the acoustic plane
wave propagating in the direction of (cosθ , sinθ ).
Equation (26) may also be expressed as

[
ΓΓΓE(s1, s2)−ρI

]
aE = 0

where

s1 = cosθ/c = 1/w, s2 = sinθ/c = p/w, (27)

are the slowness components. For nontrivial aE ,

∣∣ΓΓΓE(s1, s2)−ρI
∣∣ = 0. (28)

Equation (28) is an algebraic equation of degree
six in s1 and s2, which describes a three-sheeted
slowness surface in the (s1, s2) space. Equations
(28), (23) and (27) suggest a graphical way for
finding real p′s. For a given w let the intersection
points of the straight line s1 = 1/w and the slow-

ness surface be s(α)
2 (s1). The real pα is simply

given by pα = s(α)
2 (s1)/s1. If t → ∞ or w → 0,

the straight will not intersect the slowness surface
and no real pα exists. In this case pα appear in
four complex conjugated pairs. On the other hand
as t → 0 or w → ∞, the straight will intersect the
slowness surface at six points, providing six real
pα . From Eq. (19) the other two complex roots
and the corresponding a∗ may be shown to be

p∗ =
−ε12 + iε

ε22
, p∗, a∗ = e4 (29)

where ε =
√

ε11ε22 −ε2
12 and i =

√−1.

From Eq. (12), the general solution of the gen-
eralized displacement satisfying Eq. (8) may be

represented as

u(x1,x2, t),1 =
8

∑
α=1

fα(wα)
Δ′

α
aα(wα), (30)

u(x1,x2, t),2 =
8

∑
α=1

pα(wα)
Δ′

α
fα(wα)aα(wα), (31)

u̇(x1,x2, t) = −
8

∑
α=1

wα

Δ′
α

fα(wα)aα(wα)+ ψ̇(t)e4,

(32)

Note that the wave surface can be parametrized as
(Wu 2000)

x1 =
(

w− pα(w)
p′α(w)

)
t, x2 =

t
p′α(w)

. (33)

From Eq. (15)

Δ′
α = 0, (34)

upon arrival of the bulk waves.

The constitutive law of Eq. (5) can be expressed
as

t1 = Qu,1 +Ru,2, (35)

t2 = RT u,1 +Tu,2, (36)

where t1 and t2 are the generalized stress vec-
tors given by t1 = (σ11,σ21,σ31,D1)T and t2 =
(σ12,σ22,σ32,D2)T . By substituting Eqs. (30)
and (31) into Eqs. (35) and (36), the general so-
lutions of the generalized stress vectors t1 and t2

can be expressed as

t1(x1,x2, t) =
8

∑
α=1

1
Δ′

α
[ρw2

α Îaα(wα)

− pα (wα)bα(wα)] fα(wα), (37)

t2(x1,x2, t) =
8

∑
α=1

fα(wα)
Δ′

α
bα(wα), (38)

where

bα(w) = (RT + pα(w)T)aα(w)

= −1
p

(
Q−ρw2 Î+ pα(w)R

)
aα(w)

.

(39)
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The second identity in Eq. (39) follows from Eq.
(18). Introduce given by

b̂α(y1,y2) = (R̂T + pα T̂)aα

= − 1
pα

(Q̂ + pα R̂)aα
. (40)

The second line of Eq. (40) follows from Eq. (18).
The vector b̂α(y1,y2) is related to bα(w) by

b̂α(y1,y2) = bα(w)−ρwy2 Îaα(w). (41)

It is noted that while b̂α is a function of y1 and
y2, it is not a function of w alone for y2 �= 0.
Equation (40) can be cast into the following eight-
dimensional eigenvalue problem

N̂ξ̂ξξ= pξ̂ξξ, (42)

where

N̂ =
(

N̂1 N̂2

N̂3 N̂T
1

)
, ξ̂ξξ=

(
a
b̂

)
,

N̂1 = −T̂−1R̂T , N̂2 = T̂−1,

N̂3 = R̂T̂−1R̂T − Q̂.

The p and ξ̂ξξ are the eigenvalue and right eigen-
vector, respectively, of N̂. Since N̂2 and N̂3 are
symmetric, the left eigenvector, η̂ηη, of N̂ defined
by

N̂T η̂ηη= pη̂ηη (43)

is given by

η̂ηη=
(

b̂
a

)
.

If the eigenvalues pα and pβ are distinct, the cor-
responding left and right eigenvectors satisfy or-
thogonality relations

η̂ηηT
αξ̂ξξβ = aT

α b̂β + b̂T
α aβ = 0, α �= β . (44)

For y2 = 0, bα(y1) = b̂α(y1) and from Eq. (44)

aT
α(y1)bβ (y1)+bT

α (y1)aβ (y1) = 0, α �= β . (45)

With Eqs. (30), (36) and (45), the function fα(y1)
can be represented as

fα(y1) =
t

γα(y1)

[
aT

α(y1)t2(x1, t)

+ bT
α(y1)u,1(x1, t)

]
, (46)

where

γα(y1) = 2aT
α(y1)bα(y1). (47)

A useful expression for calculating Δ′
α is as fol-

lows. Differentiating Eq. (18) with respect to w
and pre-multiplying the result by aT

α gives

p′α(w)aT
α(w)

(
RT + pα (w)T

)
aα(w)

= ρwaT
α(w)Îaα(w). (48)

By using Eq. (39), Eq. (48) can be rewritten as

p′α(w) = ρw
aT

α(w)Îaα(w)
aT

α(w)bα(w)
. (49)

Substitution of Eq. (49) into Eq. (15) yields

Δ′
α = t

aT
α(w)b̂α(y1,y2)
aT

α(w)bα(w)
, (50)

where Eq. (41) has been used.

The formulation developed so far is for the case
where the displacement u is homogeneous of de-
gree 0. If the displacement u is homogeneous of
degree n, we can define a fictitious displacement
u∗ by (Eringen and Suhubi, 1975).

u∗(x1,x2, t) =⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂ nu(x1,x2, t)
∂ tn , n > 0

∫ t

0

∫ τm

0
· · ·
∫ τ2

0
u(x1,x2, t)dτ1 · · ·dτm−1dτm,

n = −m, m > 0

(51)

The fictitious displacement u∗ is homogeneous of
degree 0 and the formulation applies.

4 Two-Dimensional Dynamic Green’s Func-
tion

Consider a line impulse force h and a line impulse
charge q which appear at the origin at time t = 0
in an infinite medium. The jump conditions for
the generalized stress vector t2 and the continuity
conditions for the displacement u at x2 = 0 are
given by

t+2 (x1, t)− t−2 (x1, t) = −δ (x1)δ (t)F, (52)

∂
∂x1

u+(x1, t)− ∂
∂x1

u−(x1, t) = 0, (53)
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where F = ( h1 h2 h3 −q)T , δ (t) is the Dirac delta
function and superscripts + and - denotes the lim-
iting values as x2 → 0+ and x2 → 0−, respectively.
The stresses are clearly homogeneous of degree
−2 and the displacement u homogeneous of de-
gree −1. From Eq. (50) the fictitious displace-
ment u∗ is given by

u∗(x1,x2, t) =
∫ t

0
u(x1,x2, t)dτ1, (54)

From Eqs. (52) and (53) the jump conditions for
the fictitious traction t∗2 and the continuity condi-
tions for the fictitious displacement u∗ at x2 = 0
are

t∗2(x1, t)+− t∗2(x1, t)∗ = −δ (x1)H(t)F, (55)

∂
∂x1

u∗(x1, t)+− ∂
∂x1

u∗(x1, t)− = 0. (56)

where H(t) is the Heaviside step function.

From Eqs. (55) and (56) for t > 0, Eq. (46) yields

fα(y1)+− fα(y1)− = − δ (y1)
γα(y1)

aT
α(wα)F. (57)

If pα is complex, from Plemelj formula the solu-
tion of fα(wα) is given by

fα(wα) = ± 1
2π iwα γα(wα)

aT
α(wα)F, (58)

where “+” should be taken if the imaginary part
of pα is positive and “-” is taken if the imaginary
part of pα is negative. If pα is real,

fα(wα) = 0.

The fictitious velocity u̇∗ is given by

u̇∗(x1,x2, t) = − 1
π

Im

[
n+

∑
α=1

aα(wα)aT
α(wα)

γα(wα)Δ′
α

]
F

+ ψ̇∗(t)e4, (59)

where n+ is the number of pα with positive imag-
inary parts and Im stands for the imaginary part.

From Eq. (28), as t → 0+, u̇∗is given by

u̇∗ =
[
− F4

2πεt
+ ψ̇∗(t)

]
e4, (60)

or

φ̇ ∗ (t) = − F4

2πεt
+ ψ̇∗(t). (61)

If φ̇ ∗ is required to be bounded at t = 0, the func-
tion ψ̇∗(t) must be in the following form

ψ̇∗(t) =
F4

2πεt
+h(t) , (62)

where h(t) is a regular function of t. Since only
the spatial variation of the electric potential φ̇ ∗ is
of interest, we can let h(t) = 0. Substitution of
Eqs. (60) and (54) into Eq. (59) leads to

u(x1,x2, t) = u̇∗(x1,x2, t) = G+(x1,x2, t)F,

where G+ is the Green’s function for t > 0 given
by

G+(x1,x2, t) = − 1
π

Im

[
n+

∑
α=1

aα(wα)aT
α(wα)

γα(wα)Δ′
α

]

+
1

2πεt
e4eT

4 . (63)

Since as t → 0+, it may be shown that the ficti-
tious displacement is

u∗(x1,x2,0+) =
1

2πε
Re [log(x1 + p∗x2)]e4F4,

(64)

where Re stands for the real part; while
u∗(x1,x2, t) = 0 as t → 0−. Equation (64) is
a result of the quasi-static approximation which
assumes that the electromagnetic wave speed is
infinite. Consequently the electrostatic poten-
tial without piezoelectricity is induced instanta-
neously as the line charge is applied. The Green’s
function G(x1,x2, t) for t > 0− is thus given by

G(x1,x2, t) = G+(x1,x2, t)

+
δ (t)
2πε

Re [log(x1 + p∗x2)]e4eT
4 . (65)

From Eq. (50) , Eq. (65) can be also expressed as

G(x1,x2, t) = − 1
πt

Im

[
n+

∑
α=1

aα(y1,y2)aT
α(y1,y2)

γ̂α(y1,y2)

]

+
1

2πε

[
1
t

+δ (t)Re [log(x1 + p∗x2)]
]

e4eT
4 (66)
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and γ̂α(y1,y2) = 2aT
α(y1,y2)b̂(y1,y2). Thus the

Green’s function can be evaluated simply from the
complex eigenvectors of Eq. (42). It should be
noted that the Green’s function matrix given by
Eq. (42) is symmetric.

5 Analytic Results For Hexagonal 6mm ma-
terials

For hexagonal 6mm materials with the (x1,x2)
plane as the isotropy plane, the matrix D given
by Eq. (21) becomes

D =

⎛
⎜⎜⎝

D11 D12 0 0
D12 D22 0 0

0 0 D33 D34

0 0 D34 D44

⎞
⎟⎟⎠ , (67)

where

D11 = Ĉ11 +2pĈ16 + p2C̃66,

D12 = p(C11−C66),

D22 = Ĉ66 +2pĈ26 + p2Ĉ22,

D33 = Ĉ55 +2pĈ45 + p2Ĉ44,

D34 = e15(1+ p2),

D44 = −ε11(1+ p2).

Here the contracted notation for the elastic con-
stants is employed and(

Ĉ11,Ĉ66,Ĉ55
)

= (C11,C66,C44)−ρy2
1 (1,1,1) ,(

Ĉ16,Ĉ26,Ĉ45
)

= −ρy1y2 (1,1,1) ,(
C̃66,Ĉ22,Ĉ44

)
= (C66,C11,C44)−ρy2

2 (1,1,1) .

Equation (67) shows that the electric potential u4

is coupled with the anti-plane displacement u3

only. Thus for an anti-plane force and charge, the
p-eigenvalues are determined by

D33D44 −D2
34 = (1+ p2)

×[(C44−ρy2
1

)−2ρy1y2p+
(
C44 −ρy2

2

)
p2]= 0,

(68)

where C44 = C44 + e2
15/ε11 is the stiffened elastic

constants. The roots of p with positive imaginary
parts satisfying Eq. (68) are given by

p3 =
y1y2/c2

s + i
√

(1− (y/cs)2)
1− (y2/cs)2 ,

y < cs and p4 = i

, (69)

where cs =
√

C44/ρ is the shear wave speed and

y =
√

y2
1 +y2

2. The corresponding eigenvectors
are

a3 =
(

ε11

e15

)
and a4 =

(
0
1

)
. (70)

From Eqs. (40), (69) and (70), γ̂3 and γ̂4 are ob-
tained as

γ̂3 = 2iC44

√
(1− (y/cs)2)ε2

11 and γ̂44 = −2iε11.

(71)

Substitution of (70) and (71) into Eq. (66) yields

G33 =
1

2πtC44

H(cs −y)√
(1− (y/cs)2)

,

G34 = G43 =
e15

ε11
G33,

G44 =
(

e15

ε11

)2

G33 +
δ (t) logr

2πε11
.

6 Numerical Examples

To verify the present formulation, numerical cal-
culations were first made for the hexagonal 6mm
piezoelectric solids treated by Daros and Antes
(2000). In that paper, three specific piezoelec-
tric solids, BaTiO3, PZT-6B and ZnO, were con-
sidered and the (x1,x3) plane was assumed to be
the isotropy plane. For comparison purposes, the
variations of the scaled components πc0tG11 and
πc0tG22, where c0 =

√
C44/ρ, with the dimen-

sionless variable y = x2/(c0t) along x1 = 0 for the
three materials were computed as shown in fig-
ures 1∼3. The present results are in close agree-
ment with those in Daros and Antes (2000).

The Green’s functions given by Eq. (65) were
computed next for quartz, which is a crystal of
trigonal 32 symmetry class. The Green’s func-
tions may be expressed in the following dimen-
sionless form:

Gi j(ψ ,τ) =⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(πC0r/c0)Gi j(x1,x2, t), i, j = 1,2,3,

(πe0r/c0)Gi j(x1,x2, t), i = 4, j = 1,2,3

or i = 1,2,3, j = 4

(πε0r/c0)Gi j(x1,x2, t), i = 4, j = 4

(72)
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Figure 1: Displacement components πc0tG11 and
πc0tG22 for BaTiO3 along x1 = 0.

Figure 2: Displacement components πc0tG11 and
πc0tG22 for PZT-6B along x1 = 0.

where c0 =
√

C0/ρ, τ = tc0/r, r =
√

x2
1 +x2

2, and

ψ = tan−1(x2/x1). Here C0, e0 and ε0 = e2
0/C0

, respectively, are certain reference elastic con-
stant, piezoelectric stress constant and permittiv-
ity. The elastic stiffness constants C, the piezo-
electric stress constants e, and dielectric constants

Figure 3: Displacement components πc0tG11 and
πc0tG22 for ZnO along x1 = 0.

εεε of quartz used for calculations were:

C =⎡
⎢⎢⎣

86.74 6.97 11.9 −17.91 0 0
6.97 86.74 11.9 17.91 0 0
11.9 11.9 107.2 0 0 0

−17.91 17.91 0 57.93 0 0
0 0 0 0 57.93 −17.91
0 0 0 0 −17.91 39.885

⎤
⎥⎥⎦

GPa, (73)

e =[−0.171 0.171 0 0.0406 0 0
0 0 0 0 −0.0406 0.171
0 0 0 0 0 0

]

C/m2, (74)

and

εεε=

⎡
⎣39.21 0 0

0 39.21 0
0 0 41.03

⎤
⎦×10−12 Farads/m.

(75)

The reference material constants of quartz were
selected as C0 = C44, e0 = e12.

Figure 4 displays the wave surface of quartz in
the infinite region for the observational angle, ψ ,
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between 0o and 90o. The three wavefronts are
denoted by L, FT, and ST. Figures 5∼8 show
the components of Green’s functions for the ob-
servational angle ψ = 36o. The components
Gi j, i, j = 1,2,3, are given in figures 5 and 6.
These components correspond to the displace-
ments due to a unit line force. The responses
resemble those for an elastic material. How-
ever, as shown in the inserts in figures 5 and 6,
small disturbances appear even before the arrival
of the fastest bulk L-wave. Moreover, the distur-
bances are appreciable only when the L-wave is
approached. The phenomenon is a result of the
electro-mechanical coupling effect of the piezo-
electric material and the quasistatic approxima-
tion, in which the electro-magnetic wave speed is
assumed infinite. The components Gi j, i = 1,2,3,
j = 4, corresponding to the displacements due to a
unit line charge, are shown in figures 7. Again dis-
turbances appear before the arrival of the L-wave.
However, in contrast to those due to the mechan-
ical force, the disturbances occur soon after the
electric potential is applied and the variations are
more pronounced. The component G44, which is
the electric potential due to a line charge, is shown
in figure 8. The component exhibits similar fea-
tures as those of the displacements displayed in
figure 7.

Figure 4: Wavefronts and the angle of observation
for quartz.

Figure 5: The components of Green’s functions
(G)11, (G)12 and (G)13 for ψ = 36o.

Figure 6: The components of Green’s functions
(G)22, (G)23 and (G)33 for ψ = 36o.
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Figure 7: The components of Green’s functions
(G)14, (G)24 and (G)34 for ψ = 36o.

Figure 8: The components of Green’s functions
(G)44, for ψ = 36o.

7 Concluding Remarks

A formulation developed by Wu (2000) for two-
dimensional anisotropic elastodynamics is ex-
tended to treat general piezoelectric materials.
The formulation does not require integral trans-
forms and can be used to yield the displacement
or stress fields in the time domain directly. The
formulation is applied to derive analytic expres-
sions for Green’s functions of infinite piezoelec-
tric media. The Green’s functions can be sim-

ply calculated using the eigenvalues and eigen-
vectors of an eight by eight matrix. Numerical
examples provided for several piezoelectric mate-
rials show that the dynamic responses can be ac-
curately computed by the present formulation.
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