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Smoothed Molecular Dynamics for Large Step Time Integration

Yan Liu1, Xiong Zhang1, K. Y. Sze2 and Min Wang1

Abstract: In molecular simulations, the fre-
quencies of the low-frequency modes are many
orders of magnitude lower than those of the high-
frequency modes. Compared with the ampli-
tudes of the low-frequency modes, the amplitudes
of the high-frequency modes are often negligible
and, thus, least interesting. As dictated by the
period of the highest frequency mode, the criti-
cal time step for stable time integration can be
significantly increased by suppressing the negli-
gible high-frequency modes yet the solution re-
mains virtually intact. In this light, a smoothed
molecular dynamics (SMD) approach is proposed
to eliminate the high-frequency modes from the
dynamical system through the use of a regular
background grid. By manipulating the grid size,
it is possible to increase the critical time step
significantly with respect to that of the conven-
tional molecular dynamics (MD). The implemen-
tation of SMD is very similar to the conventional
MD. Any time integrators and inter-atomic poten-
tials used in the conventional MD can be equally
adopted in SMD. The coupling of MD and SMD
methods is briefly investigated, and the similar-
ity between MD and SMD methods enables a
simple and concise coupling. Examples on 1D
atom chains and 3D tension/compression of sin-
gle crystal show that the proposed SMD method
and the conventional MD method yield close re-
sults yet the time step of the former can be one
order higher than that of the latter. Tension of a
cracked single crystal is examined to verify the
coupling method, and the yield point can be cap-
tured precisely by the coupling method.
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1 Introduction

In molecular dynamics (MD) simulations, the
Newtonian equations of motion

mir̈rri = FFFi(rrr) ≡−∂E(rrr)
∂ rrri

(1)

are solved numerically to obtain the distribution
of the atoms in a molecular system [Allen and
Tildesley (1989)]. In Eq. (1), rrri and mi are respec-
tively the position vector and the mass of atom
i. Moreover, FFFi is the force vector acting on the
atom, rrr is the vector that contains the positions of
all atoms and E is the empirical potential energy
function of the system.

A typical integrator used in MD is the leap-
frog/Verlet method [Verlet (1967)] which can be
expressed as

pppn+1/2
i = pppn

i +
Δt
2

FFFi(rrrn) (2)

rrrn+1
i = rrrn

i +Δt pppn+1/2
i /mi (3)

pppn+1
i = pppn+1/2

i +
Δt
2

FFFi(rrrn+1) (4)

where pppi = mirrri is the momentum of atom i and
a quantity affixed with superscript n refers to its
solution at time nΔt.

Computation of the forces acting on the atoms
involves evaluating and summing all the inter-
atomic forces acting in the system. It is expensive
and should be conducted as infrequently as pos-
sible. Unfortunately, the time step Δt cannot ex-
ceed some limit value, otherwise the time integra-
tion will be numerically unstable. The limit of the
time step Δt is defined as the critical time step. In
MD, the oscillation periods of the high-frequency
modes are many orders of magnitude smaller than
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those of the low-frequency modes whose am-
plitudes are dominating and, thus, constituting
the real concern [Schlick, Skeel, Brunger, Kale,
Board Jr., Hermans, and Schulten (1999)]. From
classical linear stability analysis, the critical time
step for the Verlet method is ε/π where ε is
the period of the highest frequency mode [Verlet
(1967)]. The nonlinear stability analysis leads to
the value to ε/(

√
2π) [Schlick, Mandziuk, Skeel,

and Srinivas (1998)]. Consequently, the typi-
cal stable time step used in molecular simula-
tion is in the order of femtosecond. This time
scale leads to huge computing load and imposes
severe limitation on the applicability of MD to
real world problems. Various methods have been
suggested to alleviate the restriction on the time
step. Among these are the constrained dynamics,
multiple-time-stepping method, implicit methods,
multibody dynamics and subspace method.

Generally speaking, force fields in molecular dy-
namics for macromolecules can be classified to
bond stretching, bond bending and torsion, short-
range non-bonded forces and long-range non-
bonded forces [Humphreys, Friesner, and Berne
(1994)]. Non-bonded forces vary much slower
than bonded forces. The highest frequency modes
are due to bond deformation. Larger time step
is possible by imposing constraints for removing
these modes [Leimkuhler and Reich (1994); Re-
ich (1995)]. The practice leads to a set of con-
strained equations of motion which can be dis-
cretized by the SHAKE/RATTLE method [An-
dersen (1983); Ryckaert, Ciccotti, and Berend-
sen (1977)]. Reich also suggested a constrained
formulation that maintains the flexibility of the
system while, at the same time, suppresses the
high-frequency components in the solutions and
thus enables a larger time step [Reich (1995)].
The method employs a mean force field which is
yielded by an averaging process over the fastest
degrees of motion.

The idea of multiple-time-stepping (MTS) is
to evaluate different force terms by using dif-
ferent time steps. A typical MTS integrator
is the RESPA multiple-time-stepping impulse
method [Grubmuller, Heller, Windemuth, and
et al (1991); Tuckerman, Berne, and Martyna

(1992)]. In this method, the force is split into fast
and slow components, and Trotter factorization of
the Liouville propagator is adopted [Humphreys,
Friesner, and Berne (1994)]. The inexpensive fast
interactions are updated more frequently while
the costly slow forces are updated less frequently.
RESPA is designed for large biomolecular sys-
tem, but it is also ready for other systems. RESPA
was applied in ab initio/quantum molecular dy-
namics [Gibson and Carter (1993); Reich (1999)],
in combination with Ewald and particle mesh
Ewald method [Zhou, Harder, Xu, and Berne
(2001)], and simulation of dislocation and grain
boundaries [Li and Yang (2005)]. Limitations
on the step size in MTS integrators are still se-
vere and these are mostly due to stability rather
than accuracy [Izaguirre, Ma, Matthey, Willcock,
Slabach, Moore, and Viamontes (2002)]. The lim-
itation comes mainly from nonlinear resonances
[Ma, Izaguirre, and Skeel (2003)]. Izaguirre, Re-
ich, and Skeel (1999) and Izaguirre, Catarello,
Wozniak, and Skeel (2001) proposed Langevin
dynamics or mollified scheme to stabilize RESPA
method. The Langevin-Implicit/Normal mode
scheme (LIN) [Zhang and Schlick (1993, 1994)]
is another multiple-time-stepping method. It re-
solves the fast motion by linearizing the equa-
tions of motion and obtains the residual motion by
implicit integration. LIN permits comparatively
longer time steps. As the computational expense
for each time step is rather high, LIN yields only
modest overall efficiency gain.

Various researchers have studied the use of
implicit/semi-implicit methods with the hope of
circumventing the stability restriction and en-
abling larger time steps. A popular implicit
discretization is the (implicit) midpoint method
[Hairer and Wanner (1991); Ascher and Reich
(1998, 2000)]. Since fully implicit methods
are very expensive when long-range forces are
present, semi-implicit methods [Reich (1996)] are
also proposed. In these methods, the force is
split into weak forces and strong forces. Only the
highly oscillatory components which are caused
by the strong forces are integrated by an implicit
method.

Different from separation of different types of
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forces in the above methods, subspace method
uses cut-off in frequency domain. Dey, Rabitz,
and Askar (2003) proposed an optimal reduced
method to find optimal degrees of freedom and
the cut-off frequency to achieve a minimum cost
functions.

The interaction of molecules are very similar to
those of multibody system. MBO(N)D [Chun,
Padilla, Chin, M, Karlov, Alper, Soosaar, Blair,
Becker, Caves, Nagle, Haney, and Farmer (2000)]
is an order N multibody method, which grouped
atoms into flexible and/or rigid bodies. The forces
between molecules are simulated with hinges and
elastic springs. In this manner, the dominated
low-frequency motion of molecules can be treated
efficiently.

Review of approaches to enlarge time step of
molecular dynamics can be found in literature
[Schlick, Skeel, Brunger, Kale, Board Jr., Her-
mans, and Schulten (1999)]. Constrained meth-
ods are easy to implement, but they are some-
times too coarse to describe the motion. The
idea of MTS methods is natural and intriguing,
but MTS methods are mainly limited by stabiliza-
tion. The time step of MTS methods cannot be
increased too much, which hinders their broader
application. Implicit methods, subspace method
and multibody dynamics may obtain longer time
step. A common drawback of the three kinds of
methods is that they require nontrivial computa-
tional cost in addition to time integration. To sum
up, the kernel spirit to enlarge time step is to find
an appropriate way to deal with high-frequency
motions and reserve major results of the low-
frequency motion.

The numerical stability is limited by the pres-
ence of the high-frequency modes. Under most
circumstances, the high-frequency modes pos-
sess negligible amplitudes and practical interest.
Hence, these small and fast oscillations can be fil-
tered out to arrive at a new system which mainly
describes the slow but large dynamic compo-
nents of the original system. In such a way, the
time step can be increased significantly. In fact,
numerical stability issue similar to that of MD
also exists in other dynamic problems. A dis-
tinct example is the hyper-velocity impact prob-

lem in which the explicit Lagrangian finite el-
ement method is commonly used. Due to ele-
ment distortion and mesh entanglement, the crit-
ical time step decreases considerably as the im-
pact process proceeds. The computational cost
per unit time in simulating the process may be in-
creased to an unacceptable level. Among the vari-
ous approaches for hyper-velocity impact simula-
tion, the Material Point Method (MPM) [Sulsky,
Chen, and Schreyer (1994); Zhang, Sze, and Ma
(2006)] which discretizes the material with a col-
lection of particles or material points is computa-
tionally efficient. In each time step, the particles
are attached to a regular background grid and they
deform with the grid. The momentum equations
are solved on the grid points instead of particles.
Consequently, the critical time step is controlled
by the grid size rather than the inter-particle spac-
ing. At the end of each time step, the deformed
grid is discarded and a new regular background
grid is used for the next time step. Usually, the
same regular grid is used for all time steps, hence
the grid size and thus the critical time step would
remain constant during the impact process.

In this paper, a smoothed molecular dynamics
(SMD) approach is proposed by introducing the
computational strategy of MPM into molecu-
lar simulations. The high-frequency oscillation
modes are eliminated from the dynamic system
via the use of a regular background grid. The crit-
ical time step can be increased significantly and
by as much as one order compared with that of
the conventional MD.

2 Smoothing the Motion of Atoms

Reich suggested a mean force field approach [Re-
ich (1995)] in which the force field is obtained by
an averaging process over the fastest degrees of
motion and the high-frequency components can
be eliminated. The high-frequency components
can also be eliminated by attaching the atoms to
the grid cells which are defined by a regular back-
ground grid at the beginning of each time step, see
Fig. 1.

Let CI be the set of adjacent grid cells connected
to grid point I, PI be the set of grid points that
define all the grid cells in CI and AI be the set of
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Figure 1: Motion of atoms are smoothed by at-
taching the atoms rigidly to the background grid
in every time step

atoms within CI . In this paper, the lowercase sub-
script indices (i, j) refer to atoms and the upper-
case ones (I, J) refer to grid points. Hexahedral
grid cell defined by eight grid points is adopted.

Because the atoms are attached to the grid cells,
the value of the unknown variable f for atom i can
be obtained from the values of f at the grid points
by using typical finite element approximation as

fi = ∑
J∈PI

NJi fJ ∀ i ∈ AI (5)

When grid point J defines the grid cell that em-
braces atom i, NJi = NJ(rrri) is the finite element
shape function associated with grid point J evalu-
ated at atom site rrri. Otherwise, NJi is zero. NJ(xxx)
varies for different types of element. For 3D 8-
node cuboid element, NJ(xxx) is given by the fol-
lowing trilinear interpolation

NJ =
1
8
(1+ξξJ)(1+ηηJ)(1+ζζJ) (6)

where ξ , η and ζ are the local coordinates,
which take on their nodal values (ξJ ,ηJ ,ζJ) of
(±1,±1,±1) at the grid points.

Similar to Eq. (5), the velocity and the accelera-

tion of an atom i can be obtained by

ṙrri = ∑
J∈PI

NJiṙrrJ, ∀ i ∈ AI (7)

r̈rri = ∑
J∈PI

NJir̈rrJ, ∀ i ∈ AI (8)

In the proposed method, the high-frequency os-
cillation components are eliminated from the mo-
tion of atoms by attaching the atoms to the back-
ground grid using which the motion of atoms are
smoothed. Therefore, the proposed method is
termed as smoothed molecular dynamics (SMD).
Unlike the conventional MD, the spatial resolu-
tion of SMD is controllable. To enable a larger
allowable time step, a larger grid cell size is re-
quired at the expense of the accuracy in the spatial
discretization.

However, the grid cell will be distorted and entan-
gled if the material experiences severe deforma-
tion. This will reduce the critical time step sig-
nificantly. To avoid this difficulty, the deformed
grid is discarded at the end of each time step and
a new regular grid is used in the next time step. It
is generally adequate to use the same regular grid
in all time steps. The background grid is therefore
essentially fixed in the space. In this way, the crit-
ical time step which depends on the grid cell size
can be kept constant.

3 Time Integration

In the proposed SMD, the atoms do not move in-
dependently as in the conventional MD. The ve-
locity and acceleration of atoms depend on their
grid point values via Eqs. (7) and (8). Instead
of solving the equations of motion for the atoms,
those for the grid points are solved. The equation
of motion of grid point I can be established by
mapping the equations of motion (Eq. (1)) of all
atoms

∑
i∈AI

NIimir̈rri = FFFI (9)

in which

FFFI = ∑
i∈AI

NIiFFFi(rrr) (10)
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is the grid point force. Substituting Eq. (8) into
Eq. (9) leads to

∑
J∈PI

MIJr̈rrJ = FFFI (11)

where

MIJ = ∑
i∈AI

miNIiNJi (12)

It is noted that the above mass matrix MMM is banded
but not diagonal. Using a non-diagonal mass ma-
trix will increase the computational cost signifi-
cantly because solving linear algebraic equations
simultaneously are required to obtain r̈rrJ. The
lumped mass approach, which is very popular in
the finite element method, is used in SMD to save
the computational time. The lumped mass ap-
proach replaces the diagonal element of mass ma-
trix with the summation of all the elements in the
same row, and set all the other non-diagonal ele-
ments zero. Owing to the lumped mass approach,
Eq. (11) can be further simplified to

MIr̈rrI = FFFI (13)

where

MI = ∑
J∈PI

MIJ = ∑
J∈PI

∑
i∈AI

miNIiNJi = ∑
i∈AI

miNIi

(14)

after invoking the relationship ∑J NJ(xxx) = 1 for
arbitrary field point xxx. Eq. (13) is much easier to
solve than Eq. (11) because no matrix inversion is
involved.

Mapping from atoms to grid points conserves the
total forces, the total linear momenta and the total
angular momenta of the system. For example, the
total linear momenta of the grid points

∑
I

pppI =∑
I

∑
j∈AI

NI j ppp j = ∑
j∈AI

(
∑
I

NI j

)
ppp j = ∑

j∈AI

ppp j

(15)

which is exactly that of the atoms. The formula
∑I NI(rrr j) = 1 is also used in Eq.(15). The conser-
vation of angular momenta can be derived in the

same way

∑
I

rrrI × pppI = ∑
I

rrrI × ∑
j∈AI

NI j ppp j

= ∑
j∈AI

(
∑

I

NI jrrrI

)
× ppp j

= ∑
j∈AI

rrr j × ppp j (16)

It may be interesting to see what will happen
when the grid cell size approaches zero. The ac-
celeration of an atom i obtained in SMD method
is given by

r̈rri = ∑
J∈PI

NJir̈rrJ = ∑
J∈PI

NJi
FFFJ

MJ

= ∑
J∈PI

NJi

∑
j∈AJ

m jNJ j

(
∑

k∈AJ

NJkFFFk

)
, ∀i ∈ AI

(17)

When the grid cell size decreased to a certain
level, any arbitrary pair of atoms do not contribute
to the equations of motion of the same back-
ground grid point. Consequently, the summations
over j and k in Eq. (17) will be degenerated to
single value of i, which leads to

r̈rri = ∑
J∈PI

NJi

miNJi
NJiFFFi =

(
∑

J∈PI

NJi

)
FFFi

mi
=

FFFi

mi
,

∀i ∈ AI (18)

which is identical to the acceleration calculated by
conventional MD.

Any time integration scheme used in the conven-
tional MD can be used in SMD to solve Eq. (13).
Taking the velocity Verlet scheme as an example,
the typical SMD time step starting at time nΔt
where Δt is the time step is outlined as follows.

1. Establish a new regular grid. However, if
the regular grid established at time (n−1)Δt
still cover all the atoms at time nΔt, it can be
used and a new regular grid is not needed.

2. Calculate the grid point mass

Mn
I = ∑

i∈AI

miN
n
Ii, (19)
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the grid point force

FFFn
I = ∑

i∈AI

Nn
IiFFFi(rrrn), (20)

and the nodal momentum

pppn
I = ∑

i∈AI

Nn
Iimiṙrr

n
i (21)

at time nΔt. In Eq. (20), FFFi(rrrn) =
−∂E(rrrn)/∂ rrri is the inter-atomic force at
time nΔt.

3. Calculate the nodal momentum and atom ve-
locity at the intermediate time (n+1/2)Δt as

pppn+1/2
I = pppn

I +
Δt
2

FFFn
I (22)

ṙrrn+1/2
i = ṙrrn

i +
Δt
2 ∑

I∈PI

Nn
IiFFF

n
I /Mn

I (23)

4. Update the atom position

rrrn+1
i = rrrn

i +Δt ∑
I∈PI

Nn
Iippp

n+1/2
I /Mn

I (24)

and the grid point force

FFFn+1
I = ∑

i∈AI

Nn
IiFFFi(rrrn+1) (25)

at time (n+1)Δt.

5. Update the atom velocity at time (n+1)Δt

ṙrrn+1
i = ṙrrn+1/2

i +
Δt
2 ∑

I∈PI

Nn
IiFFF

n+1
I /Mn

I (26)

6. Discard the deformed background grid.

It should be noted that the atom positions and
velocities are updated by using the interpolated
grid point velocities and accelerations, respec-
tively, instead of being updated directly by atomic
velocities and accelerations. Updating by incre-
ments can avoid possible numerical damping, as
pointed out by the research of MPM method [Bar-
denhagen and Kober (2004)].

4 Combination of MD and SMD

As discussed in the previous sections, enlarg-
ing time step in SMD method is mainly based
on filtering out high-frequency motion that can-
not be represented by the mesh. Filtering high-
frequency motion is not essential to the results
of many atomic and molecular systems. In some
situations, however, rearrangements or disconti-
nuities of the atomic lattices (e.g. dislocation,
crack, bond breakage, bond formation, etc.) oc-
cur, it is desirable to use the atomic resolution
in some localized regions to capture the interest-
ing high-frequency motion generated by the dis-
continuities, while to use SMD in the other re-
gion to save the computational cost. The idea of
region division has been adopted in some popu-
lar combined atomic and continuum literatures,
where the localized region is simulated by MD
approach, while the rest far-field region is rep-
resented by continuum computational approaches
such as finite element methods or meshfree meth-
ods [Tan and Yang (1994); Broughton, Abraham,
Bernstein, and Kaxiras (1999); Wagner and Liu
(2003); Shen and Atluri (2004, 2005); Lu, Dapha-
lapurkar, Wang, Roy, and Komanduri (2006)].
Generally speaking, the continuum region is a
coarse representation of the problem so that great
computational resources may be saved by the
combined approach. This kind of approach is al-
ways called concurrent multiscale coupling. The
realization of concurrent coupling is not trivial
though the idea is natural. For example, in some
popular concurrent multiscale coupling methods,
a transition zone must be introduced to achieve
seamless coupling. The element size or nodal
spacing of the continuum should be decreased to
the lattice constant.

The coupling of MD and SMD is portrayed in
Fig. 2, it is assumed that some discontinuities hap-
pen in the central region. MD is adopted in the
central region, and SMD is used elsewhere. From
the flowcharts of MD and SMD methods, it can be
seen that SMD is very similar to MD except that
the velocity or acceleration is smoothed by map-
ping process. Only a criterion is needed to justify
what region an atom resides in. If an atom is in the
MD region, it follows the flowchart of MD; other-
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Figure 2: Coupling between MD and SMD

wise it follows that of SMD. No special treatment
is needed for the interface of MD and SMD re-
gions. Interactions between the two regions will
be included naturally by the interactive forces be-
tween atoms in different regions. The critical time
step for the two regions are not consistent, and a
multiple time scale algorithm can always be used
for the coupling method. Another method to deal
with the localized problem is to use hierarchical
adaptive background grid in which the grid size
shrinks to the atomic scale in the localized re-
gions. This is also reasonable since it has been
shown that SMD method will degenerate to MD
method if the grid cell size is below some critical
value.

A schematic illustration of multiple-time-step
coupling of MD and SMD methods is shown in
Fig. 3. Atom i belongs to MD region and atom
i−1 belongs to SMD region. A smaller time step
ΔtA is assigned to MD region and a larger time
step ΔtB to SMD region. Assume that ΔtB/ΔtA =
m, where m is an integer. The symbol n + [k]
represents the k-th substep between time steps n
and n + 1, and n + [m] = n + 1. The calculation
of acceleration of an atom needs the positions of
its nearest neighbors. For example, calculating
r̈i needs the information of ri−1, ri and ri+1 as
shown in Fig. 3. The equations of motion of atoms
1,2, · · · , i−2 and i+1, i+2, · · · can be integrated
easily because these atoms do not interact with
atoms in the other region. The integration of equa-

xn

n+[1]

n+[2]

n+1

t

SMD Region MD Region

i i +1i -1

Figure 3: Multiple-time-step coupling of MD and
SMD methods

tions of motion of atom i, however, requires some
assumption due to lack of the position of atom
i−1 at substeps n+[1],n+[2], · · · ,n+[m−1].
Assumption of constant acceleration [Belytschko
and Lu (1993)] is adopted in this paper, in which
the accelerations of atoms interacting with atoms
in MD region are assumed to be constant between
time steps n and n + 1 and equaling to those at
time step n. For the illustrated example in Fig. 3,
the assumption is applied for atom i−1 so that the
pseudo-position and the pseudo-velocity at time
step n+[ j] can be given as follows

rn+[ j]
i−1 = rn

i−1 +( jΔtA) ṙn
i−1 +

1
2

( jΔtA)2 r̈n
i−1 (27)

ṙn+[ j]
i−1 = ṙn

i−1 +( jΔtA) r̈n
i−1 (28)

The equations of motion of atom i can be inte-
grated with the pseudo-position and the pseudo-
velocity of atom i−1. The formulae are the same
for more complicated and high dimensional cases
except that more atoms near the interface of two
regions are involved.

5 Numerical Examples

5.1 Impact of Two 1D Atom Chains

Impact of the two atom chains in Fig. 4 is firstly
considered. Each chain contains 201 atoms. Ad-
jacent atoms interact according to 1D harmonic
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potential Ui j = 0.5k(
∣∣xi −x j

∣∣− h0)2 where h0 is
the equilibrium distance. The two chains are ini-
tially h0 apart and they move towards each other
with an initial speed v = 0.1. The rightmost atom
of the left chain and the leftmost atom of the right
chain also interacts according to the 1D harmonic
potential.

k
v v

k

Figure 4: Impact of two atom chains. Dots denote
atoms and squares denote grid points

The potential parameter k, the atom mass m and
the equilibrium distance h0 are taken as the basic
units and the units of other quantities are derived
accordingly. For simplicity, k, m and h0 are taken
to be unity. All the variables are dimensionless
in 1D examples. With the values, the critical MD
time step size Δtcr equals 1.0.

Numerous SMD simulations with the grid cell
sizes Δx ranging from 2 to 40 and the time steps
Δt ranging from 1 to 20 are attempted. The total
energy is plotted against time in Fig. 5. As the
system is conservative, the analytical total energy
does not vary with time and is equal to 5. Three
representative SMD results with (Δx,Δt) equal to
(2,1), (10,8) and (40,20) are included in Fig. 5.
It can be seen that all results agree well with the
MD results obtained by using Δt = 0.5. The loss
of total energy in SMD, El, does not exceed 5%
even with Δx = 40 and Δt = 20. El reduces for
smaller Δt and Δx. With Δx = 10 and Δt = 8, El

drops to approximately 2.6%. The SMD results
obtained by using Δx = 2 and Δt = 1 is graphically
indistinguishable from the MD results obtained
by using Δt = 0.5. On the other hand, MD yields
erroneous results when Δt = Δtcr = 1. Our com-
putation also shows that the energy loss is more
sensitive to grid size Δx than to the time step Δt.

Figs. 6 and 7 plot the time-history of the veloc-
ity and displacement of the leftmost and middle
atoms in the left atom chain, respectively. It can
be seen that the high-frequency ripples in the MD
results cannot be seen in the SMD results. More
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 MD, Δt = 0.5
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Figure 5: The variation of total energy. Even with
Δx = 40 and Δt = 20, the energy loss El < 5%. El

will reduce to about 2.6% when Δt decreases to 8

high-frequency ripples can be filtered off by using
a larger grid size which in turn enables a larger
critical time step.

5.2 Tension of a 1D Atom Chain

In this example, an atom chain with 201 atoms
uniformly distributed from x = 0 to x = 200 is
considered. Initial displacements and velocities of
all atoms are zero. Starting from time zero, an ex-
ternal force of magnitude 0.01 along the positive
x-direction is applied to the ten rightmost atoms.
All MD results are obtained by using Δt = 0.5.
The results are compared with the SMD results
with (Δx,Δt) taken to be (4,2), (6,5) and (11,10)
in Figs. 8 to 11. Fig. 8 shows the computed po-
tential energies. They are almost identical after
t = 40 even when the SMD time step is taken to be
10 which is 20 times of the MD time step. Fig. 9
shows the displacements along the atom chain at
t = 60 and t = 90 at which the disturbance has not
reached the left end of the chain. Excellent agree-
ments are also seen between the MD and SMD
results.

Figs. 10 and 11 show the time-history of the ve-
locities and displacements of the two atoms with
initial positions x = 169 and x = 199, respec-
tively. As expected, the velocities yielded by the
SMD are significantly smoothed. The displace-
ments yielded by both SMD simulations agree



SMD for Large Step Time Integration 185

0 100 200 300 400

0

5

10

15

20

D
isp

la
ce

m
en

t

Time

 MD, Δt=0.5
Δx=2, Δt=1
Δx=10, Δt=8

0 100 200 300 400

-0.15

-0.10

-0.05

0.00

0.05

0.10

V
el

oc
ity

Time

 MD, Δt=0.5
Δx=2, Δt=1
Δx=10, Δt=8

Figure 6: Time history of velocity and displace-
ment of the leftmost atom in the left atom chain

0 100 200 300 400
-0.15

-0.10

-0.05

0.00

0.05

0.10

V
el

oc
ity

Time

 MD, Δt=0.5
Δx=2, Δt=1
Δx=10, Δt=8

0 100 200 300 400

0

5

10

D
isp

la
ce

m
en

t

Time

 MD, Δt=0.5
Δx=2, Δt=1
Δx=10, Δt=8

Figure 7: Time history of velocity and displace-
ment of the middle atom in the left atom chain
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very well with those given by MD. For Δx = 4
and Δt = 2, the differences in the displacements
between SMD and MD at t = 100 are only 0.22%
for the atom initially at x = 169 and 0.03% for the
atom initially at x = 199.

The results of an additional simulation with Δx =
21 and Δt = 20 are plotted in Fig. 11. In this case,
only 5 time steps are used to simulate the whole
process of from t = 0 to t = 100. The time step,
which is 40 times of the MD time step, is too
large to obtain the velocities at reasonable accu-
racy. However, the time integration is still stable
and the displacements are in good agreement with
the MD results.

5.3 1D examples with different fundamental
frequencies

In the above examples, the potential coefficients
of different atom pairs are all the same. Some
atom pairs are set to be stiffer in this example to
examine the performance of SMD in the problem
with different fundamental frequencies.

Similar to the last example, 201 atoms are pulled
at the right end. The only difference is that the po-
tential coefficient is set to be k2 = 10 (ten times
the coefficient of the other atom pairs) for the
21th to the 40th atom pairs counted from the right
end. According to our computation, the critical
time step of MD is about 0.31, which is much
lower than that of the last example due to stiffer
potentials. Time step Δt = 0.3 is used in MD
computation. SMD methods with (Δx,Δt) equal-
ing (2,0.6), (4,1.2) and (10,3.0) are computed.
Results show that good performances can be ob-
tained even in problems with different fundamen-
tal frequencies. Fig. 12 and 13 shows the time his-
tory of potential energy and displacements along
the atom chain. Consistent results are obtained by
MD and SMD computations.

5.4 Tension/Compression of 3D Single Crys-
tals at High Strain Rate

Tension and compression tests at high strain rate
are important tests to identify the time-dependent
material properties. Owing to the limitation on
computing power, the reported strain rate of MD
can only be several orders higher than maximum

experimental strain rate 103s−1 [Lu, Li, and Lu
(2001)].

A cubic copper specimen with side length 30a0

where a0 = 3.615Å is the lattice constant is iso-
lated from a much larger single-crystal copper.
The total number of atoms in the specimen is
108,000. The three coordinate axes are along
the [100]-, [010]- and [001]-directions. Peri-
odic boundary conditions are prescribed in all the
three directions. The specimen is first relaxed for
10 ps to assume its equilibrium state and then
stretched to 5% logarithmic strain. During the
loading process, the simulation box is lengthened
by 0.001 times along the [001] direction in every
picosecond. The other two directions are short-
ened accordingly to keep the total volume of the
specimen unchanged. The system temperature is
kept constant at 1 K using the velocity-rescaling
technique and Lennard-Jones potential [Agrawal,
Rice, and Thompson (2002)] is used in the com-
putation.

Owing to the periodic boundary conditions, the
specimen remains to be a rectangular prism. The
regular background grid is changed after each
time step such that it overlaps with the deformed
specimen at the beginning of all time steps. Two
SMD simulations are conducted. In the first sim-
ulation, the specimen is divided into 3 × 3 × 3
grid and the time step is taken to be 100 fs which
is slightly less than the critical time step (� 110
fs). In the second simulation, only one grid cell
is used and the time step is taken to be 200 fs
which is again slightly less than the critical time
step (= 210 fs). On the other hand, the criti-
cal time step is 25 fs for the MD. Fig. 14 shows
the energy-strain and stress-strain relations. It
can be seen that the computed MD and SMD re-
sults are graphically indistinguishable. Another
cubic specimen with 80,000 atoms compressed to
around 10% logarithmic strain is also considered.
Again, the computed MD and SMD results can
hardly be distinguished.

Table 1 lists the normalized CPU times consumed
in the MD and SMD simulations. The computa-
tional cost of SMD is around 20% higher than that
of MD per time step. However, the present SMD
time step sizes are one order larger than the MD
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Figure 10: Time-history of velocity and displace-
ment of the atom initially at x = 169.
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Figure 12: The variation of total energy versus
time Figure 13: Displacements at the time t = 60 and

t = 90
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critical time step. Consequently, the SMD CPU
times are one order smaller than the MD CPU
times.
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Figure 14: The variation of total energy (outer
box) and the stress-strain curve (inner box) for
uniform tension of single crystal with periodic
conditions. All results are indistinguishable even
when the SMD Δt is one order larger than the MD
Δt.

Table 1: Normalized CPU times consumed in the
MD and SMD simulations. (Simulation details:
AMD Athlon 64 Processor 3200+, 2GB memory.)

Method MD SMD SMD SMD
Δt (fs) 10 100 167 200

Tension 1.0 0.124 — 0.065
Compression 1.0 0.123 0.073 —

5.5 Tension of a Single Crystal with Free Sur-
faces

This example considered a cubic specimen within
a much larger single-crystal copper and periodic
boundary conditions are prescribed over all the
specimen surfaces. In this example, a single-
crystal copper specimen with free surfaces is con-
sidered. Lack of neighboring atoms will increases
the potential energy of atoms near the free sur-
faces so that the distribution of potential energy
is not uniform. This example aims to examine
the ability of SMD in dealing with non-uniform

deformation. The specimen length is 10a0 in the
[001]-direction and, 20a0 in both the [100]- and
[010]-directions. The total number of atoms is
16,000. Embedded atom (EAM) potential with
the analytical form proposed by Johnson [Johnson
(1988)] is adopted here. Periodic boundary con-
dition is prescribed in [001]-direction while the
surfaces normal to the [100]- and [010]-directions
are left free.

In the simulation, the specimen is first relaxed for
1 ns and then stretched to 8% logarithm strain
in the [001]-direction and the strain rate is 108

s−1. A 3× 3× 1 background grid is used in the
SMD computation. Fig. 15 plots the potential en-
ergy versus strain relations yielded by MD with
Δt = 10 fs and SMD with Δt = 100 fs. Similar
to the previous example, the two set of results are
essentially overlapping.
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Figure 15: The variation of potential energy ver-
sus strain for single crystal specimen with free
surfaces under tension

5.6 Tension of cracked single crystal

As an example to verify the coupling method, a
cracked cuboid specimen shown in Fig. 16 is con-
sidered. This specimen is made from perfect sin-
gle crystal of copper where the atoms in the range
0 < x < 1.0nm, 10.75nm < z < 11.25nm are re-
moved. The three edges of the specimen are along
[100](x), [010](y) and [001](z) directions. The
lengthes of three edges are 5nm, 5nm and 20nm,
respectively. The atoms in the outmost six layers
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near the two surfaces perpendicular to the z axis
are moved in a given manner. All the other sur-
faces are set free. The specimen is first relaxed
for 1ns, then the two ends along z axis are pulled
with constant velocity. Constant temperature of
10K are kept in the simulation, and EAM poten-
tial is adopted. The tension rate is 5×108s−1.

MD-SMD coupling method and MD method are
used to compute this example. Time step Δt =
10fs in both the pure MD method and the MD re-
gion of the coupling method. A larger time step
Δt = 100fs is used in the SMD region of the cou-
pling method. MD region occupies the central
6nm zone along z axis, while the other regions
are set as SMD region. The background grid cov-
ers the whole region to be reached, and the grid
cell size is about 2.3nm. The stress-strain curve is
shown in Fig. 17. The results of MD method and
coupling method matches well. The yield point
indicating the startup of plastic mechanism is cap-
tured precisely by the coupling method, which
shows the good capability of the coupling method
to deal with the local disorder.

z

x

y

Figure 16: A cracked specimen

6 Concluding Remarks

In this paper, a smoothed molecular dynamics
(SMD) approach is proposed to enlarge the crit-
ical time step in molecular simulations. In SMD,
a regular background grid is set up at the begin-
ning of each time step. With the unknowns of
the atoms obtained from that of the grid points
by interpolation, the unknowns to be solved are
reduced from that of the atoms in conventional
molecular dynamics (MD) to that of the grid
points in the present SMD. To avoid cumulative
entanglement and distortion of the grid, the de-

Figure 17: The stress-strain curve of MD and cou-
pled MD-SMD methods

formed grid is discarded at the end of each time
step. Besides the mapping process between the
atoms and the grid points, the implementation
of SMD is very similar to the conventional MD.
Any time integration scheme and inter-atomic po-
tential used in the conventional MD can equally
be adopted in SMD. The critical time step is
controlled by the grid size in SMD instead of
the inter-atomic distance in the conventional MD.
Consequently, the critical time step can be in-
creased significantly by enlarging the background
grid size. Numerical examples show that SMD
can yield almost identical results to MD results at
much larger time step size.

Coupling of MD and SMD method is briefly dis-
cussed in this paper. The coupling process is sim-
ple and convenient owing to the similarity of MD
and SMD methods. Numerical example shows
that coupling method can effectively captures the
atom disorder. It may be desired to adopt an adap-
tive method to partition the problem to different
regions. The coupling work is still under devel-
opment in our group.
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