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A Modified Trefftz Method for Two-Dimensional Laplace Equation
Considering the Domain’s Characteristic Length

Chein-Shan Liu1

Abstract: A newly modified Trefftz method
is developed to solve the exterior and interior
Dirichlet problems for two-dimensional Laplace
equation, which takes the characteristic length of
problem domain into account. After introducing
a circular artificial boundary which is uniquely
determined by the physical problem domain, we
can derive a Dirichlet to Dirichlet mapping equa-
tion, which is an exact boundary condition. By
truncating the Fourier series expansion one can
match the physical boundary condition as accu-
rate as one desired. Then, we use the colloca-
tion method and the Galerkin method to derive
linear equations system to determine the Fourier
coefficients. Here, the factor of characteristic
length ensures that the modified Trefftz method
is stable. We use a numerical example to ex-
plore why the conventional Trefftz method is fail-
ure and the modified one still survives. Numerical
examples with smooth boundaries reveal that the
present method can offer very accurate numeri-
cal results with absolute errors about in the orders
from 10−10 to 10−16. The new method is pow-
erful even for problems with complex boundary
shapes, with discontinuous boundary conditions
or with corners on boundary.

Keyword: Laplace equation, Artificial bound-
ary condition, Modified Trefftz method, Char-
acteristic length, Collocation method, Galerkin
method, DtD mapping

1 Introduction

The Dirichlet problem of Laplace equation in
plane domain is a classical one. Although for
some simple domains with contour like as circle,
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ellipse, rectangle, etc., the exact solutions could
be found, in general, for a given arbitrary plane
domain the finding of closed-form solution is not
an easy task. Indeed, the explicit solutions are ex-
ceptional. If one was chosen an arbitrary shape
as the problem domain, the geometric complex-
ity commences and then typically the numerical
solutions would be required.

In this paper we consider numerical solutions of
Laplace equation on an unbounded domain and
also in a bounded domain, of which the bound-
ary shape may be complicated, which in turn ren-
dering the boundary value specified there also a
rather complicated function.

The problems on exterior domain arise in many
application fields. For example, the incompress-
ible irrotational flow around a body is described
by an exterior problem of Laplace equation. The
difficulties in these problems are the unbounded-
ness of the domain and the geometrical complex-
ity of boundary. Even, there are many numerical
methods to solve the exterior problems, the most
popular one is the artificial boundary method. In
the procedure of this method, an artificial bound-
ary is introduced to divide the exterior domain S
into a bounded part S1 and an unbounded part S2

as schematically shown in Fig. 1(a). The basic
idea of artificial boundary has existed since the
works by Feng (1980), Feng and Yu (1982) and
Yu (1983) about twenty years ago. After a suit-
able artificial boundary condition is set up on the
artificial boundary ΓR in Fig. 1(a), the original ex-
terior problem in the domain S = S1 ∪ S2 is re-
duced to a new one defined on the bounded do-
main S1. Indeed, on the boundary ΓR there ex-
ists an exact boundary condition as first derived
by Feng (1980):

∂u(R,θ )
∂ r

=
∫ 2π

0
K(θ ,θ ′)u(R,θ ′)dθ ′, (1)
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Figure 1: Schematically displaying the domains for (a) the usual artificial boundary method for exterior
problem, (b) the present method for exterior problem, and (c) the present method for interior problem. R0

specifies a characteristic length of the problem domain.

where

K(θ ,θ ′) =
1

πR

∞

∑
k=1

k cosk(θ −θ ′)

= − 1

4πRsin2 (θ−θ ′)
2

.

(2)

The above mapping from the Dirichlet bound-
ary function u(R,θ ) onto the Neumann boundary
function ∂u(R,θ )/∂ r on the artificial circle ΓR is
sometimes called the DtN mapping [Givoli, Pat-
lashenko and Keller (1998)]. Usually, the elliptic
problem is solved under a given boundary condi-
tion on a complicated boundary ∂S together with
the above boundary condition on a simple ficti-
tious boundary ΓR by a proper numerical method,
e.g., finite element method. Then, we may apply
the boundary element method or other boundary
type methods to treat the problem in S2 by using
the boundary data on ΓR, which is already cal-
culated from a previous method applying in S1.
About the combined methods for elliptic prob-
lems the readers may refer the monograph by Li
(1998).

In order to reduce the computational cost and in-
crease the computational accuracy, the bounded
domain must not be too large and the artificial
boundary condition must be a good approxima-
tion of the exact boundary condition on the ar-
tificial boundary. It is needless to say that the
accuracy of the artificial boundary condition and
the computational cost are closely related [Givoli,
Patlashenko and Keller (1997); Han and Zheng
(2002)]. Therefore, having an artificial bound-
ary condition with high accuracy on a given ar-

tificial boundary becomes an effective and impor-
tant method for solving partial differential equa-
tion in an unbounded domain which arises in var-
ious fields of engineering. In the last two decades,
many researchers were worked on this issue for
various problems by using different techniques.
A detailed review concerning the numerical solu-
tions of problems on unbounded domain through
artificial boundary condition techniques can be
found in [Tsynkov (1998); Han (2005)].

For the Laplace equation, Han and Wu (1985)
have obtained the exact boundary conditions and
a series of their approximations at an artificial
boundary. For exterior problems of elliptic equa-
tion, Han and Zheng (2002) have employed a
mixed finite element method and high-order lo-
cal artificial boundary conditions to solve them.
By considering a definite artificial circle deter-
mined by the problem domain, Liu (2007a) has
developed a meshless regularized integral equa-
tion method for the Laplace equation in arbitrary
plane domain, and Liu (2007b) extended these re-
sults to the Laplace problem defined in a doubly-
connected region.

For a complicated domain the conventional meth-
ods usually require a large number of nodes and
elements to match the geometrical shape. In or-
der to overcome these difficulties, the meshless
local boundary integral equation (LBIE) method
[Atluri, Kim and Cho (1999)], and the meshless
local Petrov-Galerkin (MLPG) method [Atluri
and Shen (2002)] are proposed. Both methods use
local weak forms and the integrals can be easily
evaluated over regularly shaped domains, like as



A Modified Trefftz Method for Two-Dimensional Laplace Equation 55

circles in 2D problems and spheres in 3D prob-
lems.

On the other hand, the method of fundamental so-
lutions (MFS), also called the F-Trefftz method,
utilizes the fundamental solutions as basis func-
tions to expand the solution, which is another
popularly used meshless method [Cho, Golberg,
Muleshkov and Li (2004)]. In order to tackle
of the ill-posedness of MFS, Jin (2004) has pro-
posed a new numerical scheme for the solution of
the Laplace and biharmonic equations subjected
to noisy boundary data. A regularized solution
was obtained by using the truncated singular value
decomposition, with the regularization parameter
determined by the L-curve method. Tsai, Lin,
Young and Atluri (2006) have proposed a prac-
tical procedure to locate the sources in the use
of MFS for various time independent operators,
including Laplacian operator, Helmholtz opera-
tor, modified Helmholtz operator, and biharmonic
operator. The procedure is developed through
some systematic numerical experiments for re-
lations among the accuracy, condition number,
and source positions in different shapes of com-
putational domains. By numerical experiments,
they found that good accuracy can be achieved
when the condition number approaches the limit
of equation solver. The MFS has a broad appli-
cation in engineering computations, for example,
Cho, Golberg, Muleshkov and Li (2004), Hong
and Wei (2005), Young, Chen and Lee (2005),
Young and Ruan (2005), and Young, Tsai, Lin and
Chen (2006).

Recently, Young, Chen, Chen and Kao (2007)
have proposed a modified method of fundamental
solutions (MMFS) for solving the Laplace prob-
lems, which implements the singular fundamental
solutions to evaluate the solutions, and it can lo-
cate the source points on the real boundary as con-
trasted to the conventional MFS. Therefore, the
major difficulty of the coincidence of the source
and collocation points in the conventional MFS is
thereby overcome, and the ill-posed nature of the
conventional MFS disappears.

In general, the artificial boundary condition may
be very rough, if one cannot design a special
method to properly realize the exact boundary

condition. In this paper, we will show how to
design an artificial boundary condition with high
accuracy on a given artificial boundary, which is
uniquely determined by the domain of physical
problem. The concept of characteristic length is
proposed. Then, the original problem can be re-
duced to a boundary value problem on a fictitious
circle, which allows us to obtain a series solution
with high accuracy.

The other parts of present paper are arranged as
follows. In Section 2 we derive the basic equa-
tions along a given artificial circle. By using
the Dirichlet to Dirichlet (DtD) mapping tech-
nique, a newly modified Trefftz method is thus
performed, which takes the characteristic length
of the problem domain into account. In Section
3 we consider a direct collocation method to find
the Fourier coefficients. Then, in Section 4 we
apply the Galerkin method to find the Fourier co-
efficients. In Section 5 we use some examples to
test the new methods, and also use a numerical ex-
ample to explore the reason why the modified Tr-
efftz method can survive, when the conventional
Trefftz method is failure. Finally, we give some
conclusions in Section 6.

2 Basic formulations and comments

In this paper we consider new methods to solve
the Dirichlet problem under the boundary condi-
tion specified on a non-circular boundary:

Δu = urr +
1
r

ur +
1
r2 uθθ = 0,

r < ρ or r > ρ , 0 ≤ θ ≤ 2π , (3)

u(ρ ,θ ) = h(θ ), 0 ≤ θ ≤ 2π , (4)

where h(θ ) is a given function, and ρ = ρ(θ ) is a
given contour describing the boundary shape of
interior or exterior domain. The contour ∂S in
the polar coordinates is given by ∂S = {(r,θ )|r =
ρ(θ ), 0 ≤ θ ≤ 2π}, which is the boundary of the
problem domain S. For exterior problem S is un-
bounded, and S is bounded for interior problem.

We can replace Eq. (4) by the following boundary
condition:

u(R0,θ ) = f (θ ), 0 ≤ θ ≤ 2π , (5)
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where f (θ ) is an unknown function to be deter-
mined, and R0 is a given positive constant, such
that the disk D = {(r,θ )|r≤ R0, 0 ≤ θ ≤ 2π} can
cover S for interior problem, or for exterior prob-
lem it is inside in the complement of S, that is,
D ∈ R

2/S. Specifically, we may let

R0 ≤ ρmin = min
θ∈[0,2π]

ρ(θ ) (exterior problem),

(6)

R0 ≥ ρmax = max
θ∈[0,2π]

ρ(θ ) (interior problem).

(7)

See Figs. 1(b) and 1(c). Because R0 is uniquely
determined by the contour of the considered prob-
lem by Eq. (6) or Eq. (7), we do not need to worry
how to choose R0. In the later, it will be clear that
R0 specifies a characteristic length of the problem
domain, and also plays a major role to control the
stability of our numerical method.

The above basic idea is to replace the original
boundary condition (4) on a complicated contour
by a simpler boundary condition (5) on a specified
circle. However, we require to derive a new equa-
tion to solve f (θ ). If this task can be performed
and if the function f (θ ) can be available, then the
advantage of the present method is that we have a
closed-form solution in terms of the Poisson inte-
gral:

u(r,θ ) =

± 1
2π

∫ 2π

0

r2 −R2
0

R2
0−2R0r cos(θ −ξ )+ r2

f (ξ )dξ .

(8)

Here, R0 can be viewed as the radius of an ar-
tificial circle, and f (θ ) is an unknown function
to be determined on that artificial circle. In the
above and similarly in the below, the positive sign
is used for the exterior problem, and conversely
the minus sign is used for the interior problem.

By satisfying Eqs. (3) and (5), we can write a
Fourier series expansion for u(r,θ ):

u(r,θ ) = a0+
∞

∑
k=1

[
ak

(
R0

r

)±k

coskθ +bk

(
R0

r

)±k

sinkθ

]
,

(9)

where

a0 =
1

2π

∫ 2π

0
f (ξ )dξ , (10)

ak =
1
π

∫ 2π

0
f (ξ )coskξdξ , (11)

bk =
1
π

∫ 2π

0
f (ξ ) sinkξdξ . (12)

By imposing the condition (4) on Eq. (9) we ob-
tain

a0 +
∞

∑
k=1

Bk(θ )[ak coskθ +bk sinkθ ] = h(θ ), (13)

where

B(θ ) :=
(

R0

ρ(θ )

)±1

. (14)

Substituting Eqs. (10)-(12) into Eq. (13) leads to
a first-kind Fredholm integral equation:

∫ 2π

0
K(θ ,θ ′) f (θ ′)dθ ′ = h(θ ), (15)

where

K(θ ,θ ′) =
1

2π
+

1
π

∞

∑
k=1

Bk(θ )cosk(θ −θ ′) (16)

is a kernel function. Liu (2007a, 2007c) has ap-
plied the regularization integral equation method
to solve Eq. (15) for the Dirichlet boundary value
problems. But in this paper, we are going to di-
rectly solve Eq. (9) to obtain the Fourier coeffi-
cients ak and bk as simple as possible.

Corresponding to the DtN mapping in Eq. (1), the
one in Eq. (15) is a mapping from the Dirich-
let boundary function f (θ ) on the artificial circle
onto the Dirichlet boundary function h(θ ) on the
real boundary ∂S. This mapping may be called
the Dirichlet-to-Dirichlet mapping, and is abbre-
viated as the DtD mapping. Up to this point, it can
be seen that our method is different from other
artificial boundary condition methods. The rea-
sons are given as follows. Comparing Figs. 1(a)
and 1(b) for solving the exterior problems, we do
not require to divide the unbounded domain S into
two parts S1 and S2, and we just need to solve
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an exterior problem which is outside the bound-
ary ΓR0 . It has an analytical solution as shown by
Eq. (8) or Eq. (9) when we can get f (θ ) or the
Fourier coefficients. This concept can be imme-
diately extended to apply on the interior problems
as that shown in Fig. 1(c). The artificial boundary
set up here is uniquely determined by the domain
of the problem through Eq. (6) or Eq. (7). This
point is also different from other artificial bound-
ary condition methods.

Eq. (15) is an exact boundary condition; however,
it is difficult to directly inverse that equation to
obtain the exact boundary data f (θ ). In the paper
by Liu (2007a) the regularization integral equa-
tion method was applied to solve Eq. (15), but
in this paper, we are going to solve its equivalent
part in Eq. (13) to obtain the Fourier coefficients
directly. Without loss much accuracy we can con-
sider a truncated version of Eq. (13).

It is known that for the Laplace equation in
the two-dimensional bounded domain the set
{1, rk coskθ , rk sinkθ , k = 1,2, . . .} forms the T-
complete function, and the solution can be ex-
panded by these bases [Kita and Kamiya (1995)]

u(r,θ ) = a0 +
∞

∑
k=1

[akrk coskθ +bkrk sinkθ ]. (17)

It is simply a direct consequence of Eq. (9) by in-
serting R0 = 1 for the interior problem by taking
the minus sign there. As that done in Eq. (13),
after imposing the boundary condition (4) on
Eq. (17) one obtains

a0 +
∞

∑
k=1

ρk(θ )[ak coskθ +bk sinkθ ] = h(θ ). (18)

This method is very simple and is called the Tre-
fftz method [Kita and Kamiya (1995)] for the in-
terior problem of Laplace equation.

The Trefftz method is designed to satisfy the gov-
erning equation and leaves the unknown coeffi-
cients determined by satisfying the boundary con-
ditions through the collocation, the least square
or the Galerkin method, etc. [Kita and Kamiya
(1995); Kita, Kamiya and Iio (1999)]. Recently,
Li, Lu, Huang and Cheng (2007) gave a very com-
prehensive comparison of the Trefftz, collocation

and other boundary methods. They concluded
that the collocation Trefftz method is the simplest
algorithm and provides the most accurate solution
with the best numerical stability.

As just mentioned, our new artificial boundary
method has led to a simple solution procedure as
that for the Trefftz method. The resultant govern-
ing Eq. (9) bears a certain similarity with that used
in the Trefftz method; however, it needs to stress
that our equation is based on the series solution
with the boundary data on an artificial circle with
a radius R0, and this quantity R0 is appeared ex-
plicitly in the series solution (9), but it does not
appear in the Trefftz method. It may argue that
the new method is just the Trefftz method. How-
ever, this is incorrect. By letting R0 = 1, we in-
deed recover our method to the Trefftz method.
But the converse is not true. R0 is a characteristic
length of the considered problem, and usually it is
not equal to 1. The Trefftz method does not con-
sider this characteristic length R0 in the above two
equations (17) and (18). In Section 5, a numer-
ical example will be given for an interior prob-
lem, whose characteristic length is much larger
than 1. When directly applying Eqs. (17) and (18)
together with a collocation method as to be in-
troduced below to solve that problem, the Trefftz
method is failure.

Liu (2007d) has proposed a modified Trefftz
method to calculate the Laplace problems un-
der mixed-boundary conditions. Because the ill-
posedness of the conventional Trefftz method is
overcome by the new method, which can even be
applied on the singular problem with a high accu-
racy never seen before. Liu (2007e) has employed
the same idea to modify the direct Trefftz method
for the two-dimensional potential problem, and
Liu (2007f) used this idea to develop a highly ac-
curate numerical method to calculate the Laplace
equation in doubly-connected domains.

3 The collocation method

For Eq. (9) we have found that Eq. (13) can
be used to determine the unknown coefficients.
Therefore, the above mentioned techniques for
the Trefftz method can be employed here to find
the unknown Fourier coefficients. In this sec-
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tion we introduce the collocation method, and in
the next section we will introduce the Galerkin
method.

The series expansion in Eq. (13) is well suited in
the range of θ ∈ [0,2π ]. Hence, we may have an
admissible function with finite terms

a0 +
m

∑
k=1

Bk(θ )[ak coskθ +bk sinkθ ] = h(θ ),

0 ≤ θ ≤ 2π . (19)

Our next task is to find ak, k = 0,1, . . .,m and
bk, k = 1, . . .,m from Eq. (19).

Eq. (19) is imposed at n = 2m different collocated
points θi on the interval with 0 ≤ θi ≤ 2π :

a0 +
m

∑
k=1

Bk(θi)[ak coskθi +bk sinkθi] = h(θi).

(20)

It can be seen that the basic idea behind the collo-
cation method is rather simple, and it has a great
advantage of the flexibility to apply to different
geometric shapes, and the simplicity for computer
programming as to be shown below.

Let

θi = iΔθ , i = 1, . . . ,n, (21)

where Δθ = 2π/(n− 1). When the index i in
Eq. (20) runs from 1 to n we obtain a linear equa-
tions system with dimensions n = 2m+1:

[
1 V(1) · · · V (m)

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a0

a1

b1
...

am

bm

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

h(θ0)
h(θ1)
h(θ2)

...
h(θn−1)
h(θn)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

(22)

where

V(1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

B(θ0)cosθ0 B(θ0) sinθ0

B(θ1)cosθ1 B(θ1) sinθ1

B(θ2)cosθ2 B(θ2) sinθ2
...

...
B(θn−1)cosθn−1 B(θn−1) sinθn−1

B(θn)cosθn B(θn) sinθn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

V(m) =⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Bm(mθ0)cos(mθ0) Bm(mθ0) sin(mθ0)
Bm(mθ1)cos(mθ1) Bm(mθ1) sin(mθ1)
Bm(mθ2)cos(mθ2) Bm(mθ2) sin(mθ2)

...
...

Bm(mθn−1)cos(mθn−1) Bm(mθn−1) sin(mθn−1)
Bm(mθn)cos(mθn) Bm(mθn) sin(mθn)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Corresponding to the uniformly distributed collo-
cated points on the circle, θ0 is a single indepen-
dent collocated point which is supplemented to
obtain 2m + 1 equations used to solve the 2m + 1
unknowns (a0,a1,b1, · · · ,am,bm).

We denote the above equation by

Rc = h,

where c = (a0,a1,b1, · · · ,am,bm)T is the vector of
unknown coefficients. The superscript T signifies
the transpose.

The conjugate gradient method can be used to
solve the following normal equation:

Ac = b, (23)

where

A := RTR, b := RTh. (24)

Inserting the calculated c into Eq. (9) we can cal-
culate u(r,θ ) at any point in the problem domain
by

u(r,θ ) = c1+
m

∑
k=1

[
c2k

(
R0

r

)±k

coskθ +c2k+1

(
R0

r

)±k

sinkθ

]
.

(25)

Even we do not discuss the well-posedness of
Eq. (23) here, the interesting readers may refer the
paper by Liu (2007d), where one can see that the
condition number can be greatly reduced by the
modified Trefftz method than the original Trefftz
method about thirty orders with m = 20.

4 The Galerkin method

In order to apply the Galerkin method on Eq. (19),
we require P and Q, which are 2m + 1-vectors
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given by

P :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
Bcosθ
Bsinθ

B2 cos2θ
B2 sin2θ

...
Bm cosmθ
Bm sinmθ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Q :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
cosξ
sinξ

cos2ξ
sin2ξ

...
cosmξ
sinmξ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (26)

In Eq. (13), 1, cos(kθ ) and sin(kθ ) can be em-
ployed as the weighting functions to minimize the
residual function

R(θ ) = a0+
m

∑
k=1

Bk(θ )[ak coskθ +bk sinkθ ]−h(θ ).

(27)

Applying 1 and each cos(kθ ) and sin(kθ ) for k =
1, . . .,m on the above equation, integrating it from
0 to 2π and forcing each resultant to be zero, i.e.,

〈R(θ ),1〉=
∫ 2π

0
R(ξ )dξ = 0, (28)

〈R(θ ),cos(kθ )〉=
∫ 2π

0
R(ξ )cos(kξ )dξ = 0,

(29)

〈R(θ ), sin(kθ )〉=
∫ 2π

0
R(ξ ) sin(kξ )dξ = 0 (30)

for each k = 1, . . . ,m, we can obtain a linear equa-
tions system of dimensions n = 2m+1:

Rc = d, (31)

where

R :=
∫ 2π

0
Q(ξ )PT(ξ )dξ , (32)

d :=
∫ 2π

0
h(ξ )Q(ξ )dξ . (33)

Now, we can apply the conjugate gradient method
to solve the normal form of Eq. (31). Then, insert-
ing the calculated c into Eq. (25) we can calculate
u(r,θ ) at any point in the problem domain.

5 Numerical examples

In this section we will apply the new methods on
both exterior and interior problems.

5.1 Example 1 (exterior problem)

In this example we investigate a discontinuous
boundary condition on the unit circle:

h(θ ) =

{
1 0 ≤ θ < π ,

−1 π ≤ θ < 2π .
(34)

For this example an analytical solution is given by

u(x,y) =
2
π

arctan

(
2y

x2 +y2 −1

)
. (35)

We have applied the collocation method with m =
150 and θ0 = π , and the Galerkin method with
m = 100 on this example. In Fig. 2(a) we compare
the exact solution with numerical solutions along
a circle with radius 2.5. It can be seen that the nu-
merical solutions are close to the exact solution.
Furthermore, the numerical errors were plotted in
Fig. 2(b), of which it can be seen that the colloca-
tion method is slightly accurate than the Galerkin
method.

5.2 Example 2 (exterior problem)

In this example we consider a complex epitro-
choid boundary shape

ρ(θ ) =
√

(a+b)2 +1−2(a+b)cos(aθ/b),
(36)

x(θ ) = ρ cosθ , y(θ ) = ρ sinθ (37)

with a = 3 and b = 1. The contour shape is al-
ready plotted in Fig. 1(b). The analytical solution
is supposed to be

u(x,y) = exp

(
x

x2 +y2

)
cos

(
y

x2 +y2

)
. (38)

The exact boundary data can be easily derived by
inserting Eqs. (36) and (37) into the above equa-
tion.

We have applied the new methods on this example
by using R0 = 2, m = 50 and θ0 = 0 for the col-
location method, and R0 = ρmin = 3 and m = 20
for the Galerkin method. In Fig. 3 we compare
the exact solution with numerical solutions along
a circle with radius 10. It can be seen that the nu-
merical solutions are almost coincident with the
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Figure 2: Comparing the exact solution and nu-
merical solutions for Example 1 in (a), and the
numerical errors are plotted in (b).

exact solution. The numerical errors are com-
pared in Fig. 3(b), of which we can see that the
Galerkin method is slightly accurate than the col-
location method, and both methods have absolute
errors smaller than 10−10.

5.3 Example 3 (interior problem)

In this example we consider another epitrochoid
boundary shape with a = 4 and b = 1. The inset
in Fig. 4 displays the contour shape. We consider
two analytical solutions:

u(x,y) = x2 −y2, u(x,y) = ex cosy. (39)

The exact boundary data can be obtained by in-
serting Eqs. (36) and (37) into the above equa-
tions.

In the numerical computations we have fixed R0 =
ρmax = 6, m = 25 and θ0 = π/2 for the colloca-
tion method, and m = 4 for the Galerkin method.
In Fig. 4(a) we compare the numerical solutions
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Figure 3: Comparing the exact solution and nu-
merical solutions for Example 2 in (a), and the
numerical errors are plotted in (b).

with exact solution u(x,y) = x2 − y2 along a cir-
cle with radius r = 3, while the numerical errors
are plotted in Fig. 4(b). In Fig. 5(a) we com-
pare the numerical solutions with exact solution
u(x,y) = ex cosy along a circle with radius r = 3,
while the numerical errors are plotted in Fig. 5(b).
For all these cases very accurate numerical so-
lutions are obtained with absolute errors smaller
than 10−10.

In Section 3 we have mentioned that when the
characteristic length R0 is larger than 1, applying
the Trefftz method may be ineffective. We ap-
plying the collocation method to solve Eq. (18)
with n = 2m+1 collocated points. For the second
case, we use m = 9 and m = 10 to calculate the
numerical solutions by the Trefftz method. The
numerical results are compared with the exact one
u = ex cosy along a circle with radius r = 3. From
Fig. 6, we find that large errors appear, especially
that with m = 10. The result with m = 9 is the best
one, and others m make more large errors.
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Figure 4: Comparing the exact solution and nu-
merical solutions for Example 3 case 1 in (a), and
the numerical errors are plotted in (b).

The main reason for the failure of the Trefftz
method is that one uses a divergent series

a0 +
m

∑
k=1

ρk(θ )[ak coskθ +bk sinkθ ] = h(θ ), (40)

where ρ(θ ) > 1, to solve the unknown coeffi-
cients. Conversely, in our method the series

a0 +
m

∑
k=1

Bk(θ )[ak coskθ +bk sinkθ ] = h(θ ) (41)

used to find the unknown coefficients is conver-
gent, because by Eqs. (14) and (7) we have

B(θ ) =
ρ(θ )

R0
< 1. (42)

From this point we can understand that the char-
acteristic lengh R0 indeed plays a vital role to
control the stability of numerical method. When
the Trefftz method is sensitive to the collocation
points, displaying unstable behavior, the present
method is stable by adopting a characteristic fac-
tor R0 in the algebraic equations.
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Figure 5: Comparing the exact solution and nu-
merical solutions for Example 3 case 2 in (a), and
the numerical errors are plotted in (b).
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Figure 7: Comparing the exact solution and nu-
merical solutions for Example 4 in (a), and the
numerical errors are plotted in (b).

5.4 Example 4 (interior problem)

For this example the solution domain is a disk
with a radius equal to 2. To illustrate the accu-
racy and stability of the new method we consider
the following analytical solution [Jin (2004)]:

u(x,y) = cosxcoshy+ sinxsinhy. (43)

The exact boundary data can be easily derived by
inserting x = 2cosθ and y = 2sinθ into the above
equation.

In the numerical computations we have fixed m =
50 and θ0 = 0. In Fig. 7(a) we compare the exact
solution with numerical solutions along a circle
with radius 1. It can be seen that the numerical so-
lution is very close to the exact solution, of which
the L2 error is about 10−16 and the absolute errors
smaller than 2×10−15 are plotted in Fig. 7(b).
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Figure 8: Comparing the exact solution and nu-
merical solutions for Example 5 in (a), and the
numerical errors are plotted in (b).

5.5 Example 5 (interior problem)

For this example an elastic torsion problem is
solved for a circular shaft with a grove. In the
inset of Fig. 8 a schematic plot of the cross sec-
tion with grove is shown. We consider the follow-
ing analytical solution [Timoshenko and Goodier
(1961)]:

u(r,θ ) =

b2

2
+(a2 +ar cosθ )

[
1− ab2

r2 +2ar cosθ +a2

]
.

(44)

Here, we have expressed the conjugate warping
function u(r,θ ) in a polar coordinate with the cir-
cular center as the original point. For the most
solutions appeared in the literature, the original
point is placed at the left-end point of the circle.
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The contour shape of this problem is given by

ρ(θ ) ={
−acosθ−√

b2−a2 sinθ 2 π−φ ≤θ ≤π+φ ,

a otherwise,

(45)

where

φ = arccos

(
2a2−b2

2a2

)
. (46)

The boundary condition is obtained by inserting
Eq. (45) for r into Eq. (44).

In the numerical computations we have fixed a =
2, b = 1, m = 30 and θ0 = 0. In Fig. 8(a) we com-
pare the exact solution with numerical solutions
along a circle with radius 1. It can be seen that the
numerical solutionsare close to the exact solution,
of which the L2 error is about 8.22×10−3 for the
collocation method, and about 5.27×10−3 for the
Galerkin method. The absolute errors are plotted
in Fig. 8(b). Due to the corners appeared in the
boundary, two peaks are exhibited in the absolute
error curves.

6 Conclusions

In this paper we have proposed a new artificial
boundary method to calculate the solutions of ex-
terior and interior Laplace problems in arbitrary
plane domains. In practice, it is a modified Tr-
efftz method by taking the domain’s character-
istic length R0 into account. The new factor R0

is very important to stabilize the Trefftz method.
The equations derived are easy to numerical im-
plementation, which is similar to that for the con-
ventional Trefftz method. The collocation method
and the Galerkin method are used to find the un-
known Fourier coefficients. The computational
costs of the new methods are saving, especially
that for the collocation method. The numerical
examples show that the effectiveness of the new
methods and the accuracy is very good. About
this, we should note that both methods are highly
accurate with the absolute errors smaller than
10−10 for the problems with smooth boundaries.
When there appears discontinuity or singularity

of boundary, the accuracy is decreased a certain
amount, with the absolute error about in the or-
der of 10−3. Generally speaking, under the same
m, the Galerkin method is accurate than the col-
location method; however, the Galerkin method
requires more computational cost to calculate the
coefficients matrix R of the algebraic system.
The new methods presented here possess sev-
eral advantages than the conventional boundary-
type solution methods, which including meshfree,
singularity-free, semi-analyticity, efficiency, ac-
curacy and stability.

References

Atluri, S. N.; Kim, H. G.; Cho, J. Y. (1999):
A critical assessment of the truly meshless local
Petrov-Galerkin (MLPG), and local boundary in-
tegral equation (LBIE) methods. Comp. Mech.,
vol. 24, pp. 348-372.

Atluri, S. N.; Shen, S. (2002): The meshless lo-
cal Petrov-Galerkin (MLPG) method: a simple
& less-costly alternative to the finite element and
boundary element methods. CMES: Computer
Modeling in Engineering & Sciences, vol. 3, pp.
11-51.

Cho, H. A., Golberg, M. A.; Muleshkov, A.
S.; Li, X. (2004): Trefftz methods for time-
dependent partial differential equations. CMC:
Computers, Materials & Continua, vol. 1, pp. 1-
37.

Feng, K. (1980): Differential vs. integral equa-
tions and finite vs. infinite elements. Math. Nu-
mer. Sinica, vol. 2, pp. 100-105.

Feng, K.; Yu, D. H. (1982): Canonical integral
equations of elliptic boundary value problems on
the finite element method. Proceedings of Inter-
national Invitational Symposium on the Finite El-
ement Method, pp. 211-252, Science Press, Bei-
jing.

Givoli, D.; Patlashenko, I.; Keller, J. B. (1997):
High-order boundary conditions and finite ele-
ments for infinite domains. Comp. Meth. Appl.
Mech. Eng., vol. 143, pp. 13-39.

Givoli, D.; Patlashenko, I.; Keller, J. B.
(1998): Discrete Dirichlet-to-Neumann maps for
unbounded domains. Comp. Meth. Appl. Mech.



64 Copyright c© 2007 Tech Science Press CMES, vol.21, no.1, pp.53-65, 2007

Eng., vol. 164, pp. 173-185.

Han, H. (2005): The artificial boundary method–
Numerical solutions of partial differential equa-
tions on unbounded domains. In Frontiers and
Prospects of Contemporary Applied Mathemat-
ics, eds. T. Li and P. Zhang, pp. 33-58, Higher
Education Press, Beijing, P. R. China.

Han, H.; Wu, X. (1985): Approximation of infi-
nite boundary condition and its application to fi-
nite element method. J. Compu. Math., vol. 3,
pp. 179-192.

Han, H.; Wu, X. (1992): The approximation of
exact boundary condition at an artificial bound-
ary for linear elastic equation and its application.
Math. Comp., vol. 59, pp. 21-27.

Han, H.; Zheng, C. (2002): Mixed finite element
method and high-order local artificial boundary
conditions for exterior problems of elliptic equa-
tion. Comp. Meth. Appl. Mech. Eng., vol. 191,
pp. 2011-2027.

Hon, Y. C.; Wei, T. (2005): The method of funda-
mental solution for solving multidimensional in-
verse heat conduction problems. CMES: Com-
puter Modeling in Engineering & Sciences, vol.
7, pp. 119-132.

Jin, B. (2004): A meshless method for the
Laplace and biharmonic equations subjected to
noisy boundary data. CMES: Computer Modeling
in Engineering & Sciences, vol. 6, pp. 253-261.

Kita, E.; Kamiya, N. (1995): Trefftz method: an
overview. Adv. Engng. Software, vol. 24, pp.
3-12.

Kita, E.; Kamiya, N.; Iio, T. (1999): Application
of a direct Trefftz method with domain decom-
position to 2D potential problems. Engng. Ana.
Bound. Elem., vol. 23, pp. 539-548.

Li, Z. C. (1998): Combined Methods for Ellip-
tic Equations with Singularities, Interfaces and In-
finities. Kluwer Academic Publishers, Dordrecht,
Netherlands.

Li, Z. C.; Lu, T. T.; Huang, H. T.; Cheng, A. H.
D. (2007): Trefftz, collocation, and other bound-
ary methods–A comparison. Num. Meth. Par.
Diff. Eq., vol. 23, pp. 93-144.

Liu, C.-S. (2007a): A meshless regularized inte-
gral equation method for Laplace equation in ar-
bitrary interior or exterior plane domains. CMES:
Computer Modeling in Engineering & Sciences,
vol. 19, pp. 99-109.

Liu, C.-S. (2007b): A MRIEM for solving the
Laplace equation in the doubly-connected do-
main. CMES: Computer Modeling in Engineer-
ing & Sciences, vol. 19, pp. 145-161.

Liu, C.-S. (2007c): Elastic torsion bar with ar-
bitrary cross-section using the Fredholm integral
equations. CMC: Computers, Materials & Con-
tinua, vol. 5, pp. 31-42.

Liu, C.-S. (2007d): A highly accurate solver for
the mixed-boundary potential problem and singu-
lar problem in arbitrary plane domain. CMES:
Computer Modeling in Engineering & Sciences,
in press.

Liu, C.-S. (2007e): An effectively modified direct
Trefftz method for 2D potential problems con-
sidering the domain’s characteristic length. Eng.
Anal. Bound. Elem., on-line available.

Liu, C.-S. (2007f): A highly accurate collocation
Trefftz method for solving the Laplace equation
in the doubly connected domains. Num. Meth.
Par. Diff. Eq., on-line available.

Timoshenko, S. P.; Goodier, J. M. (1961): The-
ory of Elasticity. McGraw-Hill, New York.

Tsai, C. C.; Lin, Y. C.; Young, D. L.; Atluri,
S. N. (2006): Investigations on the accuracy and
condition number for the method of fundamental
solutions. CMES: Computer Modeling in Engi-
neering & Sciences, vol. 16, pp. 103-114.

Tsynkov, S. V. (1998): Numerical solution of
problems on unbounded domains. A review.
Appl. Num. Math., vol. 27, pp. 465-532.

Young, D. L.; Chen, K. H.; Lee, C. W. (2005):
Novel meshless method for solving the potential
problems with arbitrary domain. J. Comp. Phys.,
vol. 209, pp. 290-321.

Young, D. L.; Ruan J. W. (2005): Method of
fundamental solutions for scattering problems of
electromagnetic waves. CMES: Computer Mod-
eling in Engineering & Sciences, vol. 7, pp. 223-
232.



A Modified Trefftz Method for Two-Dimensional Laplace Equation 65

Young, D. L.; Tsai, C. C.; Lin, Y. C.; Chen, C.
S. (2006): The method of fundamental solutions
for eigenfrequencies of plate vibrations. CMC:
Computers, Materials & Continua, vol. 4, pp. 1-
10.

Young, D. L.; Chen, K. H.; Chen, J. T.; Kao,
J. H. (2007): A modified method of fundamental
solutions with source on the boundary for solving
Laplace equations with circular and arbitrary do-
mains. CMES: Computer Modeling in Engineer-
ing & Sciences, vol. 19, pp. 197-222.

Yu, D. H. (1983): Numerical solutions of har-
monic and biharmonic canonical integral equa-
tions in interior or exterior circular domains. J.
Comput. Math., vol. 1, pp. 52-62.




