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Acoustic Scattering from Fluid Bodies of Arbitrary Shape

B. Chandrasekhar1 and Sadasiva M. Rao2

Abstract: In this work, a simple and robust nu-
merical method to calculate the scattered acous-
tic fields from fluid bodies of arbitrary shape sub-
jected to a plane wave incidence is presented.
Three formulations are investigated in this work
viz. the single layer formulation (SLF), the double
layer formulation (DLF), and the combined layer
formulation (CLF). Although the SLF and the
DLF are prone to non-uniqueness at certain dis-
crete frequencies of the incident wave, the CLF is
problem-free, eliminates numerical artifacts, and
provides a unique solution at all frequencies. Fur-
ther, all the three formulations are surface formu-
lations which implies that only the scatterer sur-
face is discretized for the numerical solution. The
numerical solution is obtained by approximating
the fluid body surface by triangular patches and
adopting the method of moments (MoM) solution
procedure. Finally, several numerical examples
have been presented to highlight the capabilities
of the present work.

Keyword: acoustic scattering, fluid bodies, ar-
bitrary shape

1 Introduction

The accurate calculation of scattered/penetrated
acoustic fields by a fluid body immersed in an in-
finite, homogeneous, non-viscous medium, such
as a fish in a large pond, has commercial/defense
applications in many different areas such as med-
ical electronics, marine navigation, sonar, and so
on. The solution to these type of problems is usu-
ally obtained using numerical methods since the
object shape can be arbitrary. Fortunately, the nu-
merical methods, although approximate, can yield
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highly accurate results mainly due to the recent
advances in the computer industry.

In so far as the numerical methods are concerned,
the most popular techniques deal with either dif-
ferential equation (DE) solution methods or inte-
gral equation (IE) solution methods. Note that,
for the type of problems discussed in this work,
IE solution methods are more efficient than DE
methods, simply because in case of IE methods
one needs to describe only the body surface to
the computer whereas for a DE solution the vol-
ume, both outside as well as inside, need to be
descretized.

For the IE solution methods, the most popu-
lar numerical technique is the so-called bound-
ary integral equation (BIE) method [Toboc-
man(1984a), Tobocman(1984b), and Seybert and
Casey (1988)] based on the application of
Helmholtz integral equation to fluid body scat-
tering problems. Also, the same problem was
solved [Rao, Raju, and Sun (1992)] via poten-
tial theory [Kellog (1929)] and the method of mo-
ments (MoM) [Harrington (1968)]. Previously,
alternate integral equations, viz. PFIE, VFIE
and CFIE, were developed [Sun (1991) and Rao,
Raju, and Sun (1991)] to tackle resonance prob-
lem associated with fluid body scattering. How-
ever, they presented only 2D case and it’s ex-
tension to 3D case need to be investigated. Al-
though these methods are quite general and ap-
plicable to arbitrary bodies, the methods fail at
certain discrete frequencies referred to as it char-
acteristic frequencies. Note that the characteris-
tic frequencies are simply the resonance frequen-
cies of a same shaped cavity as that of the scat-
terer. Further, when the frequency of the inci-
dent field is in the vicinity of any one frequency
of the characteristic frequency set, then the solu-
tion tends to he highly erroneous. In fact, this
problem is quite severe at higher frequencies since
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the discrete characteristic frequencies are densely
packed in this range and there is no way of as-
sessing the accuracy of the solution. More de-
tails regarding the fictitious frequencies can be
found in [Chen, Chen, and Chen (2006) and Chen
(2006)]. A remedy proposed for this problem
is to apply the CHIEF method [Schenck (1968)
and Benthien and Schenck (1997)]. In fact, the
CHIEF method was applied only to rigid bodies
and extremely cumbersome for fluid bodies. Leis
[Leis (1965)], Panich [Panich (1965)], Brakhage
and Werner [Brakhage and Werner (1965)] and
Burton and Miller [Burton and Miller (1971)]
demonstrated that by combining the single layer
and double layer potentials with a complex cou-
pling parameter, the non-uniqueness problem can
be averted. Many researchers [Amini andWilton
(1986),Meyer, Bell, Zinn, and Stallybras (1978),
Chien, Raliyah and Alturi (1990), Yan, Cui and
Hung (2005)] attempted to implement the BM
procedure to overcome the internal resonance
problem. The usual procedure is to regularize the
hypersingular integral and the regularization tech-
nique is computationally very expensive and it is
difficult to incorporate in a general-purpose code.
Also, there are other methods which reduce the
hyper singular kernel to a strongly singular kernel
and their solution is based on based on Petrov-
Galerkin schemes [Qian, Han, and Atluri (2004)]
and collocation-based boundary element method
[Qian, Han, Ufimtsev, and Atluri (2004)]. A de-
singularized boundary integral formulation is also
one of the recently proposed method [Callsen,
von Estorff, and Zaleski (2004)] to overcome the
problems of singularity. Recently, an alternate
method was presented in [Chandrasekhar and Rao
(2004)] to overcome the non-uniqueness problem
based on the work of Burton and Miller [Burton
and Miller (1971)]. However, the method pre-
sented in [Chandrasekhar and Rao (2004)] is ap-
plicable to rigid bodies only. In the present work,
this method is extended to fluid bodies.

2 Mathematical Formulation

Consider an arbitrarily shaped three-dimensional,
homogeneous, non-viscous, fluid body with den-
sity and acoustic velocity given by ρ2 and c2, re-

Figure 1: Arbitrary fluid body excited by an
acoustic plane wave.

spectively. The body is placed in an infinite, ho-
mogeneous, non-viscous medium of density ρ1

and velocity c1 as shown in Fig. 1. A sound wave,
propagating in medium 1, is incident on the ob-
stacle.

Let (p1,u1) and (p2,u2) represent the total pres-
sure and velocity fields in the media 1 and 2, re-
spectively. In medium 1, p1 and u1 represent the
sum of the incident,

(
pi,ui

)
, and scattered pres-

sure and velocity fields, (ps,us), given by p1 =
pi + ps and u1 = ui + us. In medium 2, p2 and u2

represent the fields penetrated into the obstacle. It
is important to note that the incident fields are de-
fined in the absence of the scatterer. It is custom-
ary to introduce a velocity potential Φi, i = 1,2
such that ui = ∇Φi and pi = − jωρiΦi, assuming
harmonic time variation.

The acoustic scattering problem is solved by as-
suming two independent scalar source distribu-
tions σ1 and σ2. The source distributions σ1 and
σ2 are slightly outside and inside of the surface S,
respectively. The two source distributions com-
pletely describe the acoustic pressure and velocity
fields both inside and outside the scatterer. Note
that the outside fields p1 and u1 are generated by
σ1 and inside fields p2 and u2 are generated by
σ2, respectively. Using the potential theory and
free space Green’s function, the scattered velocity
potential may be defined as

Φs
i =

∫
S

σi(r′) Gi(r, r′) ds′ (1)
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for the single layer formulation (SLF) case,

Φs
i =

∫
S

σi(r′)
∂Gi(r, r′)

∂n′
ds′ (2)

for the double layer formulation (DLF) case, and

Φs
i =∫

S

σi(r′)
[

jαGi(r, r′)+ j(1−α)
∂Gi(r, r′)

∂n′

]
ds′

(3)

for the combined layer formulation (CLF) case,
respectively. Note that, in Eq. (3), α is a combi-
nation constant typically chosen between 0 and 1.
CLF reduces to the case of SLF when α is one
and to the DLF when α is zero.

In Eqs. (1), (2), and (3)

Gi(r, r′) =
e− jkiR

4πR
, i = 1,2 (4)

and

R =
∣∣r− r′

∣∣ , (5)

r′, r and ki = ω/ci represent the locations of the
source point, location of the observation point,
and the wave number in the i th medium, respec-
tively. Both r and r′ are defined with respect to
a global coordinate origin ©. Also, note that
in Eqs. (2) and (3), ∂/∂n′ represents the normal
derivative with respect to the source point r′.
The velocity potentials Φs

i , i = 1 and 2, are related
to the pressure and velocity fields given by,

p1 = − jωρ1
(
Φs

1 +Φi) (6)

p2 = − jωρ2Φs
2 (7)

u1 = ∇
(
Φs

1 +Φi) (8)

and

u2 = ∇Φs
2. (9)

The boundary conditions on the scatterer surface
require the pressure and normal component of ve-
locity fields to be continuous at the interface. By
enforcing the continuity conditions of pressure

and velocity fields at the surface S, the following
set of coupled integral equations may be derived:

ρ1
(
Φs

1 +Φi) = ρ2Φs
2 (10)

and

∂
∂n

(
Φs

1 +Φi) =
∂Φs

2

∂n
(11)

which implies

ρ1Φs
1−ρ2Φs

2 = −ρ1Φi (12)

and

∂Φs
1

∂n
− ∂Φs

2

∂n
= − ∂Φi

∂n
(13)

Substituting the Eqs. (1), (2) and (3) in Eqs. (12)
and (13), we have

ρ1

∫
S

σ1(r′) G1(r, r′) ds′

−ρ2

∫
S

σ2(r′) G2(r, r′) ds′ = − ρ1Φi
(14)

∂
∂n

∫
S

σ1(r′) G1(r, r′) ds′

− ∂
∂n

∫
S

σ2(r′) G2(r, r′) ds′ = −∂Φi

∂n

(15)

for the SLF case,

ρ1

∫
S

σ1(r′)
∂G1(r, r′)

∂n′
ds′

−ρ2

∫
S

σ2(r′)
∂G2(r, r′)

∂n′
ds′ = − ρ1Φi

(16)

∂
∂n

∫
S

σ1(r′)
∂G1(r, r′)

∂n′
ds′

− ∂
∂n

∫
S

σ2(r′)
∂G2(r, r′)

∂n′
ds′ = −∂Φi

∂n

(17)

for the DLF case, and

jα [LHS of Eq. (14)]

+ j(1−α) [LHS of Eq. (16)] = − ρ1Φi (18)
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jα [LHS of Eq. (15)]

+ j(1−α) [LHS of Eq. (17)] = −∂Φi

∂n

(19)

for the CLF case, respectively.

In the following,the mathematical steps are de-
scribed, in detail, to obtain a numerical solution
to SLF, DLF and CLF based on triangular patch
modeling and MoM. The basic definitions regard-
ing the patch model and the basis/testing func-
tions required for MoM solution are same as de-
scribed in [Chandrasekhar and Rao (2004)] and
outlined here for the sake of completeness.

Assuming a suitable triangular patch model of the
body, the basis function, defined over an edge
connecting two triangles T +

n and T−
n , is given by

fn(r) =

{
1, r ∈ Sn,

0, otherwise
(20)

where Sn represents the region obtained by con-
necting the centroids of triangles T±

n to the nodes
of edge n. Using these basis functions, the un-
known source distribution σ1 and σ2 in Eqs. (14) -
(19) may be approximated as

σi(r) =
Ne

∑
n=1

xn,i fn(r) (21)

for i = 1 and 2. In Eq. (21), xn,i represents the
unknown coefficient to be determined.

3 Numerical Solution of SLF

In this section, the detailed derivation of the ma-
trix equation generated in the solution of SLF is
presented. Next, the equations for the far-field and
near-fields are also derived.

3.1 Derivation of Matrix Equations

In this section, the integral equation, defined in
Eqs. (14) and (15), is tranformed into a matrix
equation using the MoM procedure presented in
[Chandrasekhar and Rao (2004)].

Applying the testing procedure, Eq. (14) may be

written as

ρ1 < wm,

∫
S

σ1(r′) G1(r, r′) ds′ >

−ρ2 < wm,

∫
S

σ2(r′) G2(r, r′) ds′ >

= −ρ1 < wm,Φi > .

(22)

for m = 1,2, · · · ,Ne. We observe that

< wm,
∫

S
σi(r′) Gi(r, r′) ds′ >

=
∫

S

∫
S

σi(r′) Gi(r, r′) ds′ds

=
A+

m

3

∫
S

σi(r′) Gi(rc+
m , r′) ds′

+
A−

m

3

∫
S

σi(r′) Gi(rc−
m , r′) ds′

(23)

where A±
m and rc±

m represents the area and the posi-
tion vector to the centroid of S±m connected to the
mth-edge, respectively. Note that the surface in-
tegration over the testing functions in Eq. (23) is
approximated by the integrand at the centroid of
S±m and multiplying by the area of the subdomain
patch. This approximation is justified because the
subdomains are sufficiently small which is a nec-
essary requirement to obtain an accurate solution
using the MoM. In a similar fashion, assuming the
incident field to be a slowly varying function, the
right hand side of Eq. (22) may be approximated
as

< wm,Φi > =
∫

S
wm(r) Φi(r) ds

≈ A+
m

3
Φi(rc+

m )+
A−

m

3
Φi(rc−

m ). (24)

Next, rewrite the Eq. (15), after extracting the
principal value term, as

−σ1

2
+ �

∫
S
σ1(r′)

∂G1(r, r′)
∂n

ds′ − σ2

2

−�
∫

S
σ2(r′)

∂G2(r, r′)
∂n

ds′ = −∂Φi,

∂n

(25)

where �∫ S represents the integration over the sur-
face excluding the principal value term i.e. r = r′.
Here, note that the �∫ S represents a well-behaved
integral which can be evaluated using standard in-
tegration algorithms.
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Then, the testing equation may be written as

− < wm,
σ1

2
>

+ < wm, �
∫

S
σ1(r′)

∂G1(r, r′)
∂n

ds′ >

− < wm,
σ2

2
>

− < wm, �
∫

S
σ2(r′)

∂G2(r, r′)
∂n

ds′ >

= − < wm,
∂Φi

∂n
> (26)

for m = 1,2, · · · ,Ne. Observe that

< wm,
σi

2
>=

1
2

[
A+

mσi(rc+
m )+A−

mσi(rc−
m )

3

]
(27)

and,

< wm, �
∫

S
σi(r′)

∂Gi(r, r′)
∂n

ds′ >

=
∫

S
�
∫

S
σi(r′)

∂Gi(r, r′)
∂n

ds′ds

=
A+

m

3
�
∫

S
σi(r′)

∂Gi(rc+
m , r′)

∂n+ ds′

+
A−

m

3
�
∫

S
σi(r′)

∂Gi(rc−
m , r′)

∂n−
ds′

(28)

Similarly, approximate the right hand side of
Eq. (25) as

< wm,
∂Φi

∂n
> =

∫
S

wm(r)
∂Φi(r)

∂n
ds

≈ A+
m

3
∂Φi(rc+

m )
∂n

+
A−

m

3
∂Φi(rc−

m )
∂n

(29)

Thus, using Eqs. (23), (24), (27), (28), and (29),
the testing equations may be written as

ρ1

[
A+

m

3

∫
S

σ1(r′) G1(rc+
m , r′) ds′

+
A−

m

3

∫
S

σ1(r′) G1(rc−
m , r′) ds′

]

−ρ2

[
A+

m

3

∫
S

σ2(r′) G2(rc+
m , r′) ds′

+
A−

m

3

∫
S

σ2(r′) G2(rc−
m , r′) ds′

]

= −ρ1

[
A+

m

3
Φi(rc+

m )+
A−

m

3
Φi(rc−

m )
]

(30)

and

− 1
2

[
A+

mσ1(rc+
m )+A−

m σ1(rc−
m )

3

]

+
A+

m

3
�
∫

S
σ1(r′)

∂G1(rc+
m , r′)

∂n+ ds′

+
A−

m

3
�
∫

S
σ1(r′)

∂G1(rc−
m , r′)

∂n−
ds′

− 1
2

[
A+

mσ2(rc+
m )+A−

m σ2(rc−
m )

3

]

− A+
m

3
�
∫

S
σ2(r′)

∂G2(rc+
m , r′)

∂n+ ds′

− A−
m

3
�
∫

S
σ2(r′)

∂G2(rc−
m , r′)

∂n−
ds′

= −
[

A+
m

3
∂Φi(rc+

m )
∂n

+
A−

m

3
∂Φi(rc−

m )
∂n

]

(31)

for m = 1,2, · · · ,Ne.

Substituting Eq. (21) into Eqs. (30) and (31), the
matrix equation can be written as

Zsl f X = Y (32)

where

Zsl f =
[

Za Zb

Zc Zd

]
(33)

is a matrix of size 2Ne ×2Ne, and Za, Zb, Zc, and
Zd are submatrices of size Ne × Ne. Further in
Eq. (32), X and Y are column vectors of size 2Ne

given by

X =
[

xm,1

xm,2

]
and Y =

[
ym,1

ym,2

]
. (34)

for m = 1,2, · · · ,Ne.

The matrix elements of Za, Zb, Zc, and Zd are
given by

za
mn = ρ1

[
P+

1,mn +P−
1,mn

]
(35)

zb
mn = −ρ2

[
P+

2,mn +P−
2,mn

]
(36)

zc
mn =

{
−A+

m+A−
m

6 +Q+
1,mn +Q−

1,mn for m = n

Q+
1,mn +Q−

1,mn for m �= n

(37)

zd
mn =

{
−A+

m+A−
m

6 −Q+
2,mn −Q−

2,mn for m = n

−Q+
2,mn −Q−

2,mn for m �= n

(38)
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where

P±
i,mn =

A±
m

3

[∫
S+

n

Gi(rc±
m , r′) ds′+

∫
S−n

Gi(rc±
m , r′) ds′

]
(39)

Q±
i,mn =

A±
m

3

[
�
∫

S+
n

∂Gi(rc±
m , r′)

∂n±
ds′+ �

∫
S−n

∂Gi(rc±
m , r′)

∂n±
ds′

]
(40)

for m = 1,2, · · · ,N and i = 1 and 2. Integrals, ap-
pearing in Eqs. (39) and (40), are straight forward
integrals over a triangular region. However, it is
cautioned that the integrals have singular kernels
and, for accurate solution, may be evaluated us-
ing the methods described in [Wilton, Rao, Glis-
son, Schaubert, Al-Bundak and Bulter (1984) and
Hammer, Marlowe and Stroud (1956)].

The elements of the column vector Y are given by

ym,1 = −ρ1

[
A+

m

3
Φi(rc+

m )+
A−

m

3
Φi(rc−

m )
]

ym,2 = −A+
m

3
∂Φi(rc+

m )
∂n+ − A−

m

3
∂Φi(rc−

m )
∂n−

(41)

for m = 1,2, · · · ,Ne.

Once the elements of the moment matrix Z and
the forcing vector Y are determined, one may
solve the resulting system of linear equations,
Eq. (32), for the unknown column vector X .

3.2 Far-field Solution

Using simple algebra, for r → ∞, Eq. (1) may be
written as

Φs =
e− jk1r

4πr

∫
S

σ1(r′) e jk1ar·r′
ds′ (42)

where ar is the unit vector along the direction
joining the cooridnate origin and the observation
point. Next, utilizing Eq. (21), the far-scattered

velocity potential may be written as

Φs =
e− jk1r

4πr

∫
S

N

∑
n=1

xn,1 fn(r′) e jk1ar·r′
ds′

=
e− jk1r

4πr

N

∑
n=1

xn,1

∫
Sn

e jk1ar·r′
ds′

=
e− jk1r

4πr

N

∑
n=1

xn,1

(
A+

n

3
e jk1ar ·rc+

n +
A−

n

3
e jk1ar·rc−

n

)

(43)

Finally, scattering cross section S may be defined
as

S = 4πr2

∣∣∣∣Φs

Φi

∣∣∣∣
2

=
1

4π

∣∣∣∣∣
N

∑
n=1

xn,1

(
A+

n

3
e jk1ar ·rc+

n +
A−

n

3
e jk1ar·rc−

n

)∣∣∣∣∣
2

(44)

assuming |Φi| = 1.

3.3 Near-field Solution

Once the source distribution on the object is
known, the scattered velocity potential at any
point in space may be calculated using Eq. (1).
Obviously, for the near-field calculation i.e. at any
point whose farthest distance from the scatterer
is small compared to wavelength, the integrals
in Eq. (1) may be evaluated using the numeri-
cal procedures developed in [Wilton, Rao, Glis-
son, Schaubert, Al-Bundak and Bulter (1984) and
Hammer, Marlowe and Stroud (1956)].Note that,
although the integrals involved are not singular
the evaluation of these must be done carefully to
obtain accurate results. Alternatively, the follow-
ing simple numerical procedure may be employed
to calculate the near-fields which is sufficient for
many situations.

Let P denote the point of observation which may
be outside or inside the scatterer. Let rp represent
the the position vector to P. Then, using Eq. (1),
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we have

Φs
i (r) =

∫
S

σi(r′) Gi(rp, r′) ds′

≈
N

∑
n=1

xn,i

[
Gi(rp, rc+

n )A+
n

3
+

Gi(rp, rc−
n )A−

n

3

]
(45)

Note that since xn,i, i = 1 and 2 is known, we can
evaluate the expression Eq. (45) very easily.

4 Numerical Solution of DLF

In this section, a detailed derivation of the ma-
trix equation generated in the solution of DLF
along with the far-field and near-field calculations
is presented.

4.1 Derivation of Matrix Equations

First of all, note that the LHS of the integral
equation Eq. (16) is very similar to the LHS of
Eq. (15) except some multiplication constants.
Hence, the numerical processing of this equation
follows similar steps as of Eq. (15). Thus, the fi-
nal equation, after testing, leaving out the details,
is given by

− ρ1

2

[
A+

mσ1(rc+
m )+A−

m σ1(rc−
m )

3

]

+
ρ1 A+

m

3
�
∫

S
σ1(r′)

∂G1(rc+
m , r′)

∂n′+
ds′

+
ρ1 A−

m

3
�
∫

S
σ1(r′)

∂G1(rc−
m , r′)

∂n′−
ds′

− ρ2

2

[
A+

mσ2(rc+
m )+A−

m σ2(rc−
m )

3

]

− ρ2 A+
m

3
�
∫

S
σ2(r′)

∂G2(rc+
m , r′)

∂n′+
ds′

− ρ2 A−
m

3
�
∫

S
σ2(r′)

∂G2(rc−
m , r′)

∂n′−
ds′

= −ρ1

[
A+

m

3
Φi(rc+

m ) +
A−

m

3
Φi(rc−

m )
]

(46)

for m = 1,2, · · · ,Ne.

Next, following the procedures developed in
[Maue and Mitzner (1966)], Eq. (17) may be re-

written as∫
S

an •a′nk2
1σ1G1ds′

+
∫
S

(
a′n ×∇σ1

)• (an ×∇G1)ds′

−
∫

S
an •a′nk2

2σ2G2ds′

−
∫
S

(
a′n ×∇σ2

)• (an ×∇G2)ds′

= an •∇Φi

(47)

where an and a′n represent the unit normal vectors
at r and r′, respectively.

Testing the Eq. (47) with the testing functions de-
fined in Eq. (20), we have

< wm,

∫
S

an •a′n k2
1σ1 G1 ds′ >

+ < wm,

∫
S
(a′n ×∇σ1)• (an ×∇G1) ds′ >

− < wm,

∫
S

an •a′n k2
2σ2 G2 ds′ >

− < wm,

∫
S
(a′n ×∇σ2)• (an ×∇G2) ds′ >

=< wm,an •∇Φi >

(48)

for m = 1,2, · · · ,Ne. By using similar approxima-
tion as for Eq. (23), the first and the third terms of
Eq. (48) may be re-written as

< wm,

∫
S

an •a′n k2
i σi Gi ds′ >

=
∫

S
wm(r)

∫
S

an •a′n k2
i σi(r′)Gi(r, r′)ds′ds

≈ A+
m

3
a+

m •
∫

S
a′n k2

i σi(r′)Gi(rc+
m , r′)ds′

+
A−

m

3
a−m •

∫
S

a′n k2
i σi(r′)Gi(rc−

m , r′)ds′

(49)

Next, consider the evaluation of second and fourth
terms of Eq. (48). Following the numerical
procedure developed in [Chandrasekhar and Rao
(2004)], we have

< wm,
∫

S
(a′n ×∇σi)• (an ×∇Gi) ds′ >

= �m • [
Ai(rcp−

m )−Ai(rcp+
m )

] (50)
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where �m is the vector along the edge m and

A =
∫

S
an ×∇σ G ds′ (51)

Again, note that the RHS of Eq. (48) is the same
as in the case of SLF, given by Eq. (31).

Thus, using Eqs. (49) and (50), Eqs. (48) may be
re-written as

A+
m

3
a+

m •
∫

S
a′n k2

1σ1(r′)G1(rc+
m , r′)ds′

+
A−

m

3
a−m •

∫
S

a′n k2
1σ1(r′)G1(rc−

m , r′)ds′

+�m • [
A1(rcp−

m )−A1(rcp+
m )

]
− A+

m

3
a+

m •
∫

S
a′n k2

2σ2(r′)G2(rc+
m , r′)ds′

− A−
m

3
a−m •

∫
S

a′n k2
2σ2(r′)G2(rc−

m , r′)ds′

−�m • [
A2(rcp−

m )−A2(rcp+
m )

]
= −

[
A+

m

3
∂Φi(rc+

m )
∂n

+
A−

m

3
∂Φi(rc−

m )
∂n

]

(52)

for m = 1,2, · · · ,Ne.

Substituting Eq. (21) into Eqs. (46) and (52), the
matrix equation can be written as

Zdl f X = Y (53)

where

Zdl f =
[

Za Zb

Zc Zd

]
(54)

is a matrix of size 2Ne ×2Ne, and Za, Zb, Zc, and
Zd are submatrices of size Ne × Ne. Further in
Eq. (54), X and Y are coloumn vectors of size 2Ne

given by

X =
[

xm,1

xm,2

]
and Y =

[
ym,1

ym,2

]
. (55)

for m = 1,2, · · · ,Ne.

The matrix elements of Za, Zb, Zc, and Zd are

given by

za
mn =

⎧⎨
⎩

ρ1

[
A+

m+A−
m

6 +Q+
1,mn +Q−

1,mn

]
for m = n

ρ1

[
Q+

1,mn +Q−
1,mn

]
for m �= n

(56)

zb
mn =

⎧⎨
⎩

ρ2

[
A+

m+A−
m

6 −Q+
2,mn −Q−

2,mn

]
for m = n

−ρ2

[
Q+

2,mn +Q−
2,mn

]
for m �= n

(57)

zc
mn = P+

1,mn +P−
1,mn +�m •

[
A+

1,mn −A−
1,mn

]
(58)

zd
mn = −P+

2,mn −P−
2,mn −�m •

[
A+

2,mn−A−
2,mn

]
(59)

P±
i,mn =

k2
i A±

m

3
a±m •

[∫
S+

n

a′n Gi(rc±
m , r′) ds′

+
∫

S−n
a′n Gi(rc±

m , r′) ds′
] (60)

Q±
i,mn =

A±
m

3

[
�
∫

S+
n

∂Gi(rc±
m , r′)

∂n′+
ds′

+�
∫

S−n

∂Gi(rc±
m , r′)

∂n′−
ds′

] (61)

A±
i,mn = �n

[
1

A+
n

∫
T +

n

Gi(rcp±
m , r′)ds′

+
1

A−
n

∫
T−

n

Gi(rcp±
m , r′)ds′

] (62)

for m = 1,2, · · · ,N and i = 1 and 2. Further, the
elements of the column vector Y are same as in
the case of SLF and given by Eq. (41).

The integrals, appearing in Eqs. (60) - (62), are
straight forward integrals over a triangular re-
gion. However, it is cautioned that the integrals
have singular kernels and, for accurate solution,
may be evaluated using the methods described in
[Wilton, Rao, Glisson, Schaubert, Al-Bundak and
Bulter (1984) and Hammer, Marlowe and Stroud
(1956)].Once the elements of the moment matrix
Z and the forcing vector Y are determined, one
may solve the resulting system of linear equa-
tions, Eq. (32), for the unknown column vector
X .

4.2 Far-field Solution

The numerical evaluation of the far-fields for this
case follow the similar steps as in the SLF case.
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Thus,

∂G1(r, r′)
∂n′

=
1+ jk1R

R2

e− jk1R

4πR

[
a′n · (r− r′)

]
≈ e− jk1r

4πr
e jk1ar·r′ (

jk1 a′n · r′
)

(63)

Next, for a far-field observation point, using
Eq. (63), Eq. (2) may be written as

Φs =
e− jk1r

4πr

∫
S

σ1(r′) jk1 (a′n · r′) e jk1ar ·r′
ds′

(64)

Utilizing Eq. (21), the far-scattered velocity po-
tential may be written as

Φs =
e− jk1r

4πr

∫
S

N

∑
n=1

x1,n fn(r′) jk1(a′n · r′)e jk1ar·r′
ds′

=
e− jk1r

4πr

N

∑
n=1

x1,n

∫
Sn

jk1(a′n · r′)e jk1ar ·r′
ds′

=
jk1e− jk1r

4πr

N

∑
n=1

x1,n

3

(
A+

n a+
n · rc+

n e jk1ar·rc+
n

+A−
n a−n · rc−

n e jk1ar·rc−
n

)

(65)

Finally, scattering cross section S is given by

S = 4πr2

∣∣∣∣Φs

Φi

∣∣∣∣
2

=
k2

1

4π

∣∣∣∣∣
N

∑
n=1

x1,n

3

(
A+

n a+
n · rc+

n e jk1ar·rc+
n

+A−
n a−n · rc−

n e jk1ar·rc−
n

)∣∣∣2

(66)

assuming |Φi| = 1.

4.3 Near-field Solution

Let P denote the point of observation and let rp

represent the position vector to P. Then, using

Eq. (2),

Φs
i (r) =

∫
S

σi(r′)
∂Gi(rp, r′)

∂n′
ds′

≈
N

∑
n=1

x1,n
1
3

{
∂Gi(rp, rc+

n )
∂n+ A+

n +
∂Gi(rp, rc−

n )
∂n−

A−
n

}

(67)

Note that, the normal derivatives, ∂Gi(rp,rc±
n )

∂n± in
Eq. (67) may be analytically evaluated. Thus,
since x1,n are available from the matrix solution,
one can calculate the near scattered fields in an
easy manner.

5 Numerical Solution of CLF

In this section, the numerical solution of the CLF,
presented in Eq. (16) and Eq. (17), is developed.
Note that the CLF is basically a linear combina-
tion of the SLF and the DLF presented in sections
III and IV, respectively. Thus, the moment solu-
tion to the CLF is as follows:

Derivation of Matrix Equations

Using the numerical procedures developed in Sec-
tions III and IV, the matrix equation for the CLF
case may be given as

Zcl f X = Y (68)

where Z is an 2Ne ×2Ne matrix and X and Y are
column vectors of length 2Ne. Elements of Z-
matrix are given by

Zcl f = jαZsl f + j(1−α)Zdl f (69)

Lastly, note that the elements of Y -matrix are
same as that of the SLF and the DLF cases and
given by Eq. (41).
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Far-field Solution

For far-field observation point, Eq. (3) may be
written as

Φs =
e− jk1r

4πr

∫
S

σ1(r′)
{

jα + j(1−α)
[

jk1a′n · r′
]}

e jk1ar·r′
ds′

=
e− jk1r

4πr

∫
S

σ1(r′)
{

jα − (1−α)
[
k1a′n · r′

]}
e jk1ar·r′

ds′

(70)

Next, utilizing Eq. (70), the far-scattered velocity
potential may be written as

Φs

=
e− jk1r

4πr

∫
S

N

∑
n=1

x1,n fn(r′)
{

jα−k1(1−α)(a′n · r′)
}

e jk1ar ·r′
ds′

=
e− jk1r

4πr

N

∑
n=1

x1,n

∫
Sn

{
jα −k1(1−α)(a′n · r′)

}

e jk1ar ·r′
ds′

=
e− jk1r

4πr

N

∑
n=1

x1,n

3

[
jα

(
A+

n e jk1ar·rc+
n +A−

n e jk1ar ·rc−
n

)
−k1(1−α)(

A+
n a+

n · rc+
n e jk1ar·rc+

n +A−
n a−n · rc−

n e jk1ar·rc−
n

)]

(71)

Finally, scattering cross section S is given by

S = 4πr2

∣∣∣∣Φs

Φi

∣∣∣∣
2

=
1

4π

∣∣∣∣∣
N

∑
n=1

x1,n

3

[
jα

(
A+

n e jk1ar ·rc+
n +A−

n e jk1ar·rc−
n

)

−k1(1−α)
(

A+
n a+

n · rc+
n e jk1ar·rc+

n

)

−k1(1−α)
(

A−
n a−n · rc−

n e jk1ar ·rc−
n

)]∣∣∣∣∣
2

(72)

assuming |Φi| = 1.

Near-field Solution

Let P denote the point of observation and let r
represent the the position vector to P. Then, using
Eq. (3),

Φs
i (r)

=
∫
S

σi(r′)
{

jαGi(rp, r′)+ j(1−α)
∂Gi(rp, r′)

∂n′

}
ds′

≈
N

∑
n=1

xi,n

3

{
Gi(rp, rc+

n )A+
n +Gi(rp, rc−

n )A−
n

}
+ j(1−α)

xi,n

3

{
∂Gi(rp, rc+

n )
∂n+ A+

n +
∂Gi(rp, rc−

n )
∂n−

A−
n

}

(73)

5.1 Incident Field Equation

For the plane wave incidence,

Φi = e jkk·r (74)

where the propagation vector k is

k = sinθo cosφ0ax + sinθo sinφ0ay +cos θoaz

(75)

and (θ0,φ0) defines the angle of arrival of the
plane wave in terms of the usual spherical coor-
dinate convention.

6 Numerical Results

In this section, several numerical results for the
edge-based solution of SLF, DLF and CLF for
fluid bodies, discussed so far in this work, is pre-
sented. The CLF numerical results are based on
BM approach and the α is taken as j0.1 The ex-
amples considered are: a) a sphere, b) a cube and
c) a marine body such as a fish. For all cases,
the body is placed at the center of the coordinate
system and the plane wave is traveling along the
−Z-axis. For spherical geometry, the numerical
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results are validated by comparing with the exact
solution [Bowman, Senior and Uslenghi (1969)].

As a first example, consider a air bubble of ra-
dius 1m suspended in water. For numerical pur-
poses, the spherical air bubble is modeled by 308
triangular patches and 462 edges resulting in a
924×924 matrix. The modeling is done by first
dividing the θ and φ directions into 12 and 14
equal segments each, respectively. This results in
triangular patches at the sphere caps and quadri-
lateral patches in between. By joining the diag-
onal of the quadrilateral patch, the triangular dis-
cretization may be obtained. The density of air
in the bubble is 1.3 kg/m3 and the velocity of
sound as 331.45 m/s. Similarly, density of wa-
ter is 1000 kg/m3 and the velocity of sound as
1510.6 m/s. Fig. 2 shows the scattering cross sec-
tion S as a function of the polar angle θ for spher-
ical air bubble suspended in water for the case of
k = 1 m−1. It is evident from the figures that the
edge-based methods compare very well with the
exact solution.

As a next example, consider a Carbon Tetrachlo-
ride (CCl4) spherical inclusion of radius 1 m sus-
pended in water. The spherical inclusion is mod-
eled in the same way as in the previous example.
The density of spherical inclusion is 1594 kg/m3

and the velocity of sound as 930 m/s. Similarly,
the density of water is 1000 kg/m3 and the ve-
locity of sound as 1510.6 m/s. Fig. 3 shows the
scattering cross section S as a function of the po-
lar angle θ for spherical air bubble suspended in
water for the case of k = 1 m−1. Again, a good
comparison is noted with the exact solution.

Next, consider the case of a cube filled with water
with side length l= 1.0 m suspended in air. The
case of a cube presents a challenging task of han-
dling sharp edges and corners. To obtain a tri-
angular patch model, each side of the cube is di-
vided into 4 equal segments resulting in 96 square
patches on the cube. By joining the diagonals,
one gets 192 triangular patches and 288 edges re-
sulting in a 576× 576 matrix. Fig. 4 show the
scattering cross section S as a function of θ in the
yz-plane. For comparison, the patch-based MoM
solution [Rao Raju and Sun (1992)] is also pre-
sented. It is evident from the figures that both re-

Figure 2: Scattering cross section ver-
sus polar angle for a plane wave incident
on a spherical air bubble (k1a = 1,ρ2 =
1.3 kg/m3,c2 = 331.45 m/s) suspended in water
(ρ1 = 1000 kg/m3,c1 = 1510.6 m/s).

Figure 3: Scattering cross section versus
polar angle for a plane wave incident on
a spherical inclusion CCL4 (k1a = 1,ρ2 =
1594 kg/m3,c2 = 930 m/s) suspended in water
(ρ1 = 1000 kg/m3,c1 = 1510.6 m/s).

Figure 4: Scattering cross section versus polar
angle for a plane wave incident on a water-filled
cube (k1� = 1,ρ2 = 1000 kg/m3,c2 = 1510.6 m/s)
suspended in air (ρ1 = 1.3 kg/m3,c1 =
331.45 m/s).
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sults compare very well with each other.

As a last example, consider an highly arbitrarily-
shaped, complex body, a dolphin as shown in
Fig. 5, located in water. Note that the dolphin is
not a fluid body in reality. However, we treat this
case as a fluid body to show the ease of model-
ing and solving such complex problems with the
present method. Although there is no comparison
to make, this example to illustrates the applicabil-
ity of present method to highly complex objects
such as marine life. The maximum dimensions
of the dolphin in length, width, and thickness are
1.5 m , 0.4 m, and 0.4 m, respectively. The ma-
rine object is modeled by 1646 triangular patches
resulting in 2469 edges. Hence, in this solution
scheme, the matrix dimension is 4938. The dol-
phin is placed in the coordinate system such that
the center line along the body is at 45◦ elevation
angle. The body excited by the plane wave given
by Eq. (75). Figs. 6 and 7 show the scattering
cross section in the elevation plane and azimuthal
plane, respectively. Observe that the scattering
cross section is low since for the material values
chosen, the reflection coefficient of the dolphin is
of the order of 0.1.

Figure 5: Trinagulated model of a dolphin.

Finally, in Fig. 8, the inverse condition number vs
frequency for an air bubble of the first example for
three different formulations is presented. Notice
that both the SLF and the DLF exhibit instability
problems at respective characteristic frequencies.
However, the CLF is free from these problems.
Although not reported, a similar trend for other
geometries also noted.

Figure 6: Scattering cross section versus polar
angle for a plane wave incident on a dolphin
(ρ2 = 1100 kg/m3,c2 = 1700 m/s) in water (ρ1 =
1000 kg/m3,c1 = 1510.6 m/s).

Figure 7: Scattering cross section versus polar
angle for a plane wave incident on a dolphin
(ρ2 = 1100 kg/m3,c2 = 1700 m/s) in water (ρ1 =
1000 kg/m3,c1 = 1510.6 m/s).

Figure 8: Inverse condition number vs. fre-
quency for a spherical air bubble (k1a = 1,ρ2 =
1.3 kg/m3,c2 = 331.45 m/s) suspended in water
(ρ1 = 1000 kg/m3,c1 = 1510.6 m/s).
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7 Conclusions

In this work, a numerical solution, based on the
method of moments, is presented to the acoustic
scattering problem by arbitrarily-shaped, three-
dimensional, fluid bodies. The governing integral
equations are derived using the source distribution
concept and the potential theory. Three different
formulations viz. SLF, DLF and CLF methods
are presented. Note that the CLF method is valid
at all frequencies free from the so-called internal
resonance problem. Further, the methodology is
simple, efficient and applicable to a large class of
problems.
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