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A New Local Contact Search Method Using a Multi-Layer Neural Network

Atsuya Oishi1 and Shinobu Yoshimura2

Abstract: This paper describes a new local con-
tact search method using a multi-layer neural net-
work and its application to smoothed contact sur-
face consisting of Gregory patches. A contact
search process consists of two phases: a global
search phase for finding the nearest node-segment
pair and a local search phase for finding an ex-
act local coordinate of the contact point within
the segment. In the present method, the multi-
layer neural network is utilized in the latter phase.
The fundamental formulation of the proposed lo-
cal contact search method is described in detail,
and it is applied to smoothed contact surfaces
consisting of Gregory patches. Through sample
analyses, it is proved that the proposed method
is fast and accurate enough for practical applica-
tions. Specifically, it is several times faster than
the conventional method in the case of smoothed
contact surfaces.

Keyword: Contact Search, Neural Network, Fi-
nite Element Method, Sliding Interface, Curved
Surface.

1 Introduction

A remarkable progress in the field of microelec-
tronics has increased the performance of comput-
ers. This has also helped computer simulations to
replace time-consuming and highly expensive ex-
periments. For the analyses of dynamic problems
using the finite element method (FEM) or other
methods, such as vehicle crashworthiness and
metal forming, contact-impact phenomena must
inevitably be taken into account [Zhong (1993),
Schweizerhof, Nilsson and Hallquist (1992), Vi-
gnjevic, De. Vuyst and Campbell (2006), Guz,
Menshykov, Zozulya and Guz (2007)]. In the
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contact-impact analysis, a contact point between
two objects or two parts of one identical object,
and their interaction are analyzed step by step.
Contact conditions between two objects are in
general described by the following two criteria:

Ω1 ∩Ω2 = φ (1)

Γ1 ∩Γ2 �= φ (2)

where, Ω1 and Ω2 are inner bodies of the objects,
and Γ1 and Γ2 are boundaries of the objects. Cri-
terion (1) means that no penetration occurs into
each body. In dynamic contact-impact analyses, it
must be checked at every time step whether con-
tact occurs between any locations of the two sur-
faces of the objects, i.e. the contact conditions of
criteria (1) and (2) are satisfied; this is called the
contact search.

The contact-impact algorithms in finite element
contact analyses can be divided into two phases:
the contact-searching phase and the contact inter-
face phase. First, the contact-searching algorithm
locates where contact occurs. Second, contact
forces are determined and applied to the contact
surfaces according to the contact interface algo-
rithm. The contact search phase often consumes
most of calculation time of the contact-impact al-
gorithm. Thus, fast and efficient contact search
method has been sought.

The sliding interface algorithm [Hallquist,
Goudreau and Benson (1985), Benson and
Hallquist (1990)] is the most popular, and has
been implemented in a well-known dynamic
FEM code, DYNA3D, which is an explicit
three-dimensional finite element code for ana-
lyzing dynamic response of inelastic solids and
structures with large deformation. In the sliding
interface algorithm, any two surfaces that may
come into contact must be specified prior to the
analysis. One of the two surfaces is designated
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as a master surface, while the other as the slave
surface. Contact searching is performed only
between slave nodes, i.e. the nodes on the slave
surface, and the master segments, i.e. the facets
of the elements on the master surface. The
contact search process can usually be divided
into two phases: the global search phase and the
local search phase. In the global contact search
phase, a master segment that is in close proximity
to a given slave node is picked up by checking
all the slave nodes in the whole analysis domain.
In the local contact search phase, the pair of
the segment and the slave node selected in the
global contact search phase is checked and the
local coordinates of the contact point, if any, is
determined by a time-consuming iterative method
based on Newton’s method.

Iterative methods, however, often become time-
consuming and have difficulties in convergence,
so that fast and efficient local contact search
methods without any iteration have been sought.
The approximating function described in litera-
tures [Zhong and Nilsson (1996)] and [Wang and
Nakamachi (1997)], which produces the approxi-
mate local coordinates of the contact point using
area coordinates, is one of such attempts. In the
method, the values of four kinds of shape func-
tions for the contact point are approximated by
the function of areas of four triangles made of one
slave node and two nodes on the master segment.
Though this method is adopted in several appli-
cations due to its fast calculation, it often shows
poor performance in accuracy for the cases where
related nodes are not coplanar. Pinball algorithm
[Belytschko and Neal (1991)] is also a local con-
tact search algorithm without iteration. In the pin-
ball algorithm, a pinball, i.e. a sphere, is em-
bedded in every element of the contact surfaces.
The volume of the pinball is equal to that of the
corresponding element and the center of the pin-
ball is located at the gravity center of the element.
Though this algorithm is fast, it also has some dif-
ficulties in accuracy due to its approximate repre-
sentation of contact surfaces.

Artificial neural networks that simulate the neural
system of mankind have been extensively devel-
oped [Haykin (1994), Hassoun (1995)]. Among

various artificial neural networks, the multi-layer
feed forward neural networks have the capabil-
ity of simulating any continuous functions [Fu-
nahashi (1989)] and have been successfully ap-
plied to various engineering problems, such as
crack/damage detection [Stavroulakis and Antes
(1998), Oishi, Yamada, Yoshimura, Yagawa, Na-
gai and Matsuda (2001), Liu, Huang, Sung and
Lee (2002), Zacharias, Hartmann and Delgado
(2004), Fang, Luo and Tang (2005)], model-
ing of material properties [Furukawa and Yagawa
(1998), Huber and Tsakmakis (2001), Lefik and
Schrefler (2003), Hashash, Jung and Ghaboussi
(2004)] and optimization [Papadrakakis, Lagaros
and Tsompanakis (1998), Iranmanesh and Kaveh
(1999), Cho, Shin and Yoo (2005)].

In this paper, we propose a new iteration-free
local contact search method using a multi-layer
neural network that explicitly represents the lo-
cal coordinates of the contact point. Fundamental
formulation of the proposed method is explained
in detail. Its basic performance is demonstrated
through sample analyses. Finally, the proposed
method is applied to the local contact search pro-
cess for smoothed contact surface consisting of
Gregory patches.

2 Contact Search Algorithms in Sliding In-
terface Algorithm

Each segment is assumed to be a quadrilateral
facet of an 8-noded hexahedral isoparametric ele-
ment on a contact surface. As for shell elements,
both surfaces of the element are regarded as two
different segments. Figure 1 shows a configura-
tion of the segment and the slave node, where Ps

denotes the slave node and the quadrilateral A(Pm)
BCD does the segment. Pm usually belongs to sev-
eral segments. The segment that Ps hits can be
found by checking the following criteria:

(�c1 ×�r) · (�c1 ×�c2) > 0 (3)

(�c1 ×�r) · (�r×�c2) > 0 (4)

As shown in Figure 1,�c1 and�c2 are vectors drawn
from Pm to the neighboring node on the segment
counterclockwise or clockwise, respectively. �r is
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a vector defined as:

�r =�t −(
�t ·�m) ·�m (5)

�m =
�c1 ×�c2

|�c1 ×�c2| , (6)

where�t is a vector drawn from Pm to Ps. The seg-
ment that meets the criteria (3), (4) is picked up
as a target segment.

Figure 1: Local Contact Search

After the target segment is located, local coordi-
nates (ξ ,η) of the contact point on the segment
has to be identified accurately. One of the method
to do so is solving the following set of equa-
tions with Newton’s method [Hallquist, Goudreau
and Benson (1985), Benson and Hallquist (1990),
Oishi, Yoshimura and Yagawa (2002)]:

∂�r
∂ξ

(ξc,ηc) ·
{
�t −�r (ξc,ηc)

}
= 0 (7)

∂�r
∂η

(ξc,ηc) ·
{
�t −�r (ξc,ηc)

}
= 0 (8)

Further, a penetration depth g is calculated as fol-
lows.

g = �m · (�t −�r (ξc,ηc)
)

(9)

g > 0 means that the node and the segment are
not in contact but in proximity. If g < 0, contact
forces acting between the slave node Ps and mas-
ter nodes on the segment are calculated as

�fs = −gk�m (10)

�f i
m = φi (ξc,ηc) ·�fs, (11)

where �fs is the contact force vector for the slave
node Ps, �f i

m is the contact force assigned to the

i-th node on the target segment, k is the factor
determined by geometry and material properties
of the element including the target segment, and
φi (ξc,ηc) is the shape function.

Though the above method is widely used, solving
Eqs.(7) and (8) is time-consuming, and it some-
times takes much longer for some cases than for
other cases depending on the relative locations
of corresponding nodes. Therefore fast contact
search methods have been sought.

3 Multi-Layer Neural Networks

The multi-layer neural network consists of lay-
ered units. The processing unit is modeled after
a nerve cell, and takes multiple input values and
outputs a single value. Taking the sigmoid func-
tion as an activating function, an input-output re-
lation of the unit is formulated as follows:

O j = f (Uj) =
1

1+exp (−2Uj/U0)
(12)

Uj =
l

∑
i=1

Wji × Ii −θ j (13)

where O j is the output signal of the j-th unit, Uj

is the internal potential of the j-th unit, f (x) is the
activation function, i.e. the sigmoid function here,
U0 is the constant of the sigmoid function, Wji is
the connection weight between the j-th unit and
the i-th unit in the layer beneath, Ii is the input
signal from the i-th to the j-th units, θ j is the bias
value of the j-th unit, and lis the number of input
signals.

Figure 2 shows the multi-layer neural network.
All the units are formed into multiple layers, i.e.
an input layer, intermediate (hidden) layers, and
an output layer. No connections exist among units
in the same layer, while every two units in the
neighboring layers have a connection.

The fundamental idea of training the neural net-
work is as follows. First the following error E is
defined:

E = Ep =
1
2

n

∑
k=1

(
T p

k −Op
k

)2
(14)

where Ep is the square error for the p-th training
pattern, T p

k is the teacher signal to the k-th unit
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Figure 2: Multi-Layer Neural Network

in the output layer for the p-th training pattern,
Op

k is the output signal from the k-th unit in the
output layer for the p-th training pattern, and n is
the number of output units.

In the training process, the connection weights
Wji and the bias values θ j are modified iteratively
based on the steepest-descent method to minimize
the above error. This training algorithm is called
the back-propagation (BP). In this study, the or-
dinary BP algorithm combined with the moment
method, which accelerates learning speed, is em-
ployed.

It is proved that the multi-layer neural network
can simulate any nonlinear mapping. However,
the network has some limitations in reality, due
to poor convergence in training process when the
numbers of hidden layers and units increase. In
the present study, an appropriate size of the net-
work is determined through trial and error as in
many practical applications..

4 Local Contact Search Using Multi-Layer
Neural Networks

Local coordinate values of a contact point are
obtained by solving Equations (7), (8). Solv-
ing Equations (7), (8) is, in other words, finding
the mapping f and g from fifteen coordinate val-
ues, xA,yA, zA, · · · ,xD,yD, zD,xS,yS, zS, of the five
nodes, A, B, C, D, Ps in Figure 1 to the local co-
ordinate values ξc and ηc of the contact point, re-
spectively. The mapping functions f and g are

written as follows:

ξc = f (xA,yA, zA, · · · ,xS,yS, zS) (15)

ηc = g(xA,yA, zA, · · · ,xS,yS, zS) (16)

For input variables of the functions f and g,
we should not use absolute coordinate values of
nodes, but values calculated from relative posi-
tions of the nodes. This is based on the fact
that the local coordinate values ξc and ηc do not
change by affine transformation, such as transla-
tion, rotation, expansion and reduction. Refer-
ring to Figure 1, the transformation procedures
adopted in this research is specifically described
as follows:

(1) Node A is translated to the origin (0,0,0) and
other nodes are also translated in the same
manner.

(2) All the nodes are rotated and the node B is
placed on the x-axis.

(3) All the nodes are rotated around the x-axis
and the node D is placed on the x-y plane.

(4) Using the distance between the node A and
the node B as a measure, all the coordinate
values of nodes are expanded or reduced until
the coordinate values of the node B is set to
(1.0,0,0).

By this transformation, 15 coordinate values,
xA,yA, zA, · · · ,xD,yD, zD,xS,yS, zS for input vari-
ables of the function f and g can be reduced to 8
coordinate values xC ,yC, zC, xD,yD, xS,yS, zS, and
the equations (15),(16) are rewritten as follows:

ξc = f (xC,yC, zC,xD,yD,xS,yS, zS) (17)

ηc = g(xC ,yC, zC,xD,yD,xS,yS, zS) (18)

Though exact representations of the functions f
and g are unknown, they can be approximated by
a multi-layer neural network.

The procedure of the local contact search with a
neural network can be summarized as follows:

(1) A lot of configurations of five nodes shown
in Figure 1, i.e. one slave node Ps and four
nodes on the opposite master segment, are
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considered. The local coordinate values of
the contact point for every configuration are
calculated by Newton’s method. This makes
many data pairs of the coordinate values of
nodes and the local coordinate values of the
correspondent contact point.

(2) A multi-layer neural network is trained us-
ing a lot of data pairs obtained in the previ-
ous process: i.e. using the coordinate values
of nodes as input data and the local coordi-
nate value of the correspondent contact point
as the teacher signal for the multi layer neural
network. It results in the trained neural net-
work that outputs the local coordinate values
of the contact point from the input data of the
coordinate values of the slave node and the
nodes on the master segment.

(3) The multi-layer neural network trained in the
previous process is implemented into the code
for contact analyses. It replaces the conven-
tional local contact search procedure.

5 Numerical Examples

5.1 Data Preparation

Basic performance of the proposed local contact
search algorithm is tested through sample analy-
ses of the following test problem shown in Figure
3. A slave node Ps and its corresponding four-
node quadrilateral master segment ABCD are lo-
cated as shown in the figure. The master node A,
which is the nearest to the slave node Ps, is lo-
cated on the origin of the coordinate axes, (0.0,
0.0, 0.0). The node B is located at (1.0, 0.0, 0.0).
The node D is located somewhere on the x − y
plane, i.e. its z-coordinate is set to zero. The x, y
coordinates of the nodes C, D, Ps are in the range
of (-2.0, 2.0). The z coordinate of the node C and
Ps is in the range of (-0.3, 0.3). Moreover, the
following condition on the configuration of nodes
is added: the length of the edge AD is equal to
or shorter than that of AB (= 1.0). This condition
reduces the number of node configurations to be
considered without any loss of generality, which
greatly improves the trainability of the neural net-
work.

With the above conditions, almost 740000 pat-
terns of configurations are obtained. Among
them, 1000 patterns are randomly selected for
training.

Figure 3: Configuration of nodes

5.2 Configurations and Training of Neural
Network

In this example, input data to the neural network
for local contact search consists of eight coordi-
nate values of nodes: x, y coordinate values of the
node D, x, y, z coordinate values of the node C
and Ps. Output data from the neural network con-
sists of two local coordinate values of the contact
(or projection) point: ξC and ηC. This causes us
to adopt the multi-layer neural network with two
units in the output layer and eight units in the in-
put layer. The optimal number of the units in the
intermediate (hidden) layer is not known a priori.
In this study, the number of units in the intermedi-
ate layer is set to 8 through several test analyses.

As for the training of the neural network, ba-
sic back propagation training with the momentum
method is adopted. Training iterations are limited
within 10000.

5.3 Results

5.3.1 Accuracy

To test accuracy in the estimation of the lo-
cal coordinate values of the contact point, the
trained neural network is tested for a whole, al-
most 740000, patterns of configurations. Figure
4 shows the distributions of approximation er-
rors in the local coordinate values for the 740000
patterns. The vertical axis designates frequency,
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Figure 4: Accuracy of the present method

while the horizontal axis does the error, i.e. the
difference between the local coordinate value ob-
tained by the trained neural network and that
by Newton’s method. Figure 4 indicates that
the well-trained neural network in the proposed
method can produce very accurate estimation of
local coordinate values of contact points.

5.3.2 Speed

CPU time to obtain local coordinate values is
compared between the proposed method and the
ordinary method based on Newton’s method. The
CPU time for the proposed method is on aver-
age equal to that of seven iterations in Newton’
method. The CPU time to obtain the local co-
ordinate values by the trained neural network is
constant for all patterns of configurations, while
that by Newton’s method varies depending on the
pattern of configurations, and more than ten itera-
tions are sometimes required to converge in New-
ton’s method.

6 Neural Network based Local Contact
Search Method for Smoothed Contact Sur-
face

6.1 Smoothed Contact Surface

Ordinary contact surfaces consist of facets, each
of which is one face of elements exposed to the

Figure 5: Patch derived from Isoparametric Ele-
ment

contact surface as shown in Figure 5.

For a bi-linear isoparametric element, the facet, or
the patch, is represented by the following equa-
tion:

P(u,v) =
4

∑
i=1

Ni(u,v)Pi (−1 ≤ u,v ≤ 1) (19)

where Pi is the coordinate of the corner node of
the patch, u and v are local coordinate values and
Ni(u,v) is the shape function as:

N1(u,v) =
1
4
(1−u) (1−v) (20)

N2(u,v) =
1
4

(1+u) (1−v) (21)

N3(u,v) =
1
4

(1+u) (1+v) (22)

N4(u,v) =
1
4
(1−u) (1+v) (23)

There exists discontinuity of the tangents of the
facets at the boundary between two facets that
arise from the bi-linear elements, and this discon-
tinuity often causes some difficulties in numeri-
cal stability and convergence of contact analyses.
Therefore, contact smoothing has been sought
[Wang, Cheng and Yao (2001), Puso and Laursen
(2002)].

As for surface smoothing, intensive research has
been done in such fields as CAGD (Computer
Aided Geometric Design) and CG (Computer
Graphics) [Farin (2002)]. Bezier surfaces, which
are typical smoothing ones, can be represented
by the set of Bezier patches, which are quadri-
lateral facets made from four vertex points and
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additional control points. A contact surface con-
sists of quadrilateral facets, i.e. faces of elements
that reside in the surface, each of which can be re-
garded as the 3rd order Bezier patch if twelve con-
trol points are added. Figure 6 shows the 3rd order
Bezier patch, in which P11, P21, P22, P12 are called
inner control points and others are called bound-
ary control points. The 3rd order Bezier patch is
represented by the following equation:

P(u,v) =
3

∑
i=0

3

∑
j=0

B3
i (u)B3

j(v)Pi j (0 ≤ u,v ≤ 1)

(24)

where Bn
i ( ) is the n-th order Bernstein Polynomial

defined as:

Bn
i (u) = nCi ·ui · (1−u)n−i (25)

Bezier patches construct smoothing surface of
only C0 continuity at the boundary between
patches, which is insufficient for numerical stabil-
ity and convergence. Furthermore, it appears very
difficult to apply the Bezier patches into surfaces
made from unstructured mesh.

Figure 6: Control Points for Bezier Patch

In contrast to the Bezier patches, Gregory patches,
which can be derived from the Bezier patches by
modifying their internal control points, can con-
struct smoothing surface of G1 continuity at the
boundary between patches, which reduces dif-
ficulties in numerical stability and convergence
property, and can be applied to the contact sur-
face arisen from unstructured meshes [Puso and
Laursen (2002), Chiyokura and Kimura (1983)].
The G1 continuity at the boundary between two

patches means that they have a continuously vary-
ing tangent plane along the boundary, in other
words the continuity of the unit normal vector
of the patches at the boundary. Figure 7 shows
the Gregory patch. Internal control points in the
Bezier patch, P11, P21, P22, P12, are divided into
two separate control points in the Gregory patch,
P110, P111, P210, P211, P220, P221, P120, P121, respec-
tively. Control points of the Gregory patch con-
sists of 20 points. Control points other than the
four corner nodes can be generated by the calcu-
lation using the coordinate values of the four cor-
ner nodes and normal vectors at the corner nodes
as shown in Figure 8 [Puso and Laursen (2002)].
The node normal vector �nA at the corner node A
is defined by the following equation as illustrated
in Figure 9,

�nA =
∑
i

(
�c(i)

1 ×�c(i)
2

)

∣∣∣∣∑
i

(
�c(i)

1 ×�c(i)
2

)∣∣∣∣
(26)

where �c(i)
1 and �c(i)

2 are vectors that stem from the
node along the edge of the i-th element that shares
the node.

Figure 7: Control Points for Gregory Patch

The Gregory patch is represented by the same
equation as the Bezier Patch as follows:

P(u,v) =
3

∑
i=0

3

∑
j=0

B3
i (u)B3

j(v)Pi j(u,v) (27)

where Bn
i ( ) is the n-th order Bernstein polyno-

mial and P11, P21, P22, P12 are actually the linear
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Figure 8: Data Required for Controll Points of
Gregory Patch
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combinations of two control points as:

P11(u,v) =
uP110 +vP111

u+v
(28)

P12(u,v) =
uP120 +(1−v)P121

u+(1−v)
(29)

P21(u,v) =
(1−u)P210 +vP211

(1−u)+v
(30)

P22(u,v) =
(1−u)P220 +(1−v)P221

(1−u)+(1−v)
(31)

Using Gregory patches for contact surface
smoothing, numerical stability and convergence
property are improved significantly.

6.2 Neural Network based Local Contact
Search Method for Smoothed Contact Sur-
face

In the node-segment type contact algorithm, the
foot of the perpendicular from the slave node to
the master segment should be calculated by solv-
ing Equations (7), (8). While the ordinary bi-
linear patch that arises from a bi-linear isopara-
metric element is represented by Equation (19),

the Gregory patch is represented by a more com-
plicated equation, i.e. Equation (27). This makes
it very time-consuming to solve Equations (7), (8)
by iterative methods.

The local contact search process for the smoothed
surfaces, however, can still be regarded as the
mapping from the coordinate values of the related
nodes to the local coordinate values of the contact
point. Constructing this mapping on the multi-
layer neural network can perform the local contact
search for the smoothed surfaces.

The proposed method avoids the time-consuming
iterative calculation of Equations (7), (8) with
Equation (27) in the application phase described
in Section 4, it leads to fast calculations of the
contact point in the application phase.

6.3 Numerical Examples

6.3.1 Data Preparation

Performance of the proposed local contact search
algorithm for smoothed contact surfaces is tested
through sample analyses of the following test
problem shown in Figure 3. Almost the same set-
ting as in Section 5.1 is adopted for generating
sample patterns. As for the shape of the gener-
ated segments, a condition that all interior angles
of the segment should range within from 60 to
120 degrees is newly added. This condition not
only omits heavily distorted segments, which are
not appropriate for analyses either, but also re-
duces the total number of patterns to accelerate
the training process significantly. On these con-
ditions, 46631 patterns of configuration of related
nodes are generated. For each pattern of the above
configuration, twenty different patterns are gener-
ated. Additional condition is that the tangent of
the angle between the node normal vector and the
corresponding normal vector of the each segment
that shares the node is below 0.2. The node nor-
mal vectors at the four corner nodes of the gen-
erated patterns are randomly set to meet this con-
dition. Totally 835906 patterns of configurations
are generated, and 83552 patterns out of them are
selected at random for the test patterns for training
the neural network.
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6.3.2 Configuration and Training of Neural Net-
work

In this case, input data to the neural network for
local contact search consists of eight coordinate
values of nodes: x, y coordinate values of the node
D, x, y, z coordinate values of the node C and
Ps and eight components of node normal vectors,
i.e. two components for each node normal vector.
Ratios of the x-component and the y-component
to the z-component are adopted as the two com-
ponents for the node normal vector, respectively.
Output data from the neural network consist of
two local coordinate values of the contact (or pro-
jection) points: u and v. Thus, we adopt the
multi-layer neural network with two units in the
output layer and sixteen units in the input layer.
As for the number of units in the intermediate
(hidden) layer, 32 and 48 are tested. Basic back
propagation training with a momentum method is
adopted, and training iterations are limited within
10000.

6.3.3 Results

Accuracy: To test accuracy in the estimation of
the local coordinate values of the contact point,
the trained neural network is tested for a whole
835906 patterns of configurations. Table 1 shows
the relationship between accuracy of the trained
neural networks in the estimation of the local co-
ordinate values of the contact point and the num-
ber of units in the intermediate layer. Neuro32
and Neuro48 in Table 1 designate the neural net-
work with 32 units in the intermediate layer and
that with 48 units, respectively. The average error
is defined as the average of the absolute values
of the difference between the value by the trained
neural network and that by Newton’s method. Ta-
ble 1 indicates that both Neuro32 and Neuro48
show good performance in accuracy. Figure 10
shows the distributions of estimation errors of
the Neuro48 in the local coordinate values for
all patterns. The vertical axis designates fre-
quency, while the horizontal axis does the error,
i.e. the difference between the local coordinate
value obtained by the trained neural network and
that by Newton’s method. Figure 10 indicates that
the well-trained neural network in the proposed

Table 1: Accuracy of the Present Method

Error
Average Standard Deviation

u v u v
Neuro32 0.00493 0.00758 0.00444 0.00902
Neuro48 0.00392 0.00479 0.00369 0.00766

Figure 10: Distribution of Error
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Figure 11: Speed of the Present Method

method can produce very accurate estimation of
local coordinate values of contact points.

Speed: CPU time to obtain the local coordi-
nate values is compared between the proposed
method and the ordinary method based on New-
ton’s method. Figure 11 shows the results. The
vertical axis designates the ratio of the CPU time
to the CPU time of the conventional Newton’s
method with iteration count set to five, with which
most configurations showed convergence in sam-
ple analyses. The CPU time of the neural network
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includes the time for preprocessing described in
Section 4. Figure 11 clearly shows that the pro-
posed method is several times faster than the con-
ventional method based on Newton’s method.

7 Conclusions

A new local contact search method using a multi-
layer neural network is proposed. Contact search
process consists of two phases: a global search
phase for finding the nearest node-segment pair
and a local search phase for finding an exact lo-
cal coordinate of the contact point within the seg-
ment. The local search phase can be regarded
as the mapping from coordinate values of related
nodes to the local coordinate values of the contact
point. In the proposed method, this mapping is
implemented on the multi-layer neural network as
its weight values through error back-propagation
training. The performance and characteristics of
the proposed method are tested and its remarkable
features are summarized as follows:

(1) The well-trained neural network can deliver
local coordinate values of the contact point
that are accurate enough for analyses.

(2) Unlike the conventional method based on
Newton’s method, the proposed method can
deliver local coordinate values of the contact
point in the same CPU time for any configu-
ration of nodes.

The proposed method is also successfully applied
to the local contact search process for smoothed
contact surfaces with Gregory patches. The re-
sults are summarized as follows:

(1) The well-trained neural network can deliver
accurate local coordinate values of the contact
point for smoothed contact surfaces.

(2) The proposed method is significantly faster
than the conventional method based on New-
ton’s method.
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