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Wind Set-down Relaxation

Baran Aydın1,2 and Utku Kânoğlu3

Abstract: We developed analytical solutions to
the wind set-down and the wind set-down relax-
ation problems. The response of the ocean to
the wind blowing over a long-narrow and linearly
sloping shallow basin is referred to as wind set-
down. The shoreline exhibits oscillatory behav-
ior when the wind calms down and the resulting
problem is referred to as wind set-down relax-
ation. We use an existing hodograph-type trans-
formation that was introduced to solve the non-
linear shallow-water wave equations analytically
for long wave propagation and obtain an explicit-
transform analytical solution for wind set-down.
For the wind set-down relaxation, the nonlinear
shallow-water wave equations are solved analyt-
ically as an initial-boundary value problem, with
forced initial data derived from our wind set-down
solution.

Keyword: Wind set-down, wind set-down re-
laxation, shallow-water wave equations, hodo-
graph transformation.

1 Introduction

We consider a long-narrow and shallow basin
with a linearly sloping bottom (Fig. 1) such as the
Gulf of Suez, the Gulf of Elat or the bay of Baja
California. The mouth of the basin is connected
to the sea which is practically infinitely deep com-
pared to the basin depth at the transition. If a mod-
erate wind blows seaward, there is a steady-state
solution for the sea surface height [Nof and Paldor
(1992)]. The solution results from the balance of

1 Department of Civil Engineering, Akdeniz University,
Dumlupınar Bulvarı, Kampus/Antalya 07058, Turkey.

2 Present address: Department of Engineering Sciences,
Middle East Technical University, İnönü Bulvarı, Ankara
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the wind stress at the top of the water column with
the vertically integrated pressure gradient and the
problem is called the wind set-down. As long as
the wind remains blowing in the same direction,
the steady-state solution will continue to hold. If
the wind suddenly calms down, water accelerates
in the shoreward-direction under the pressure gra-
dient that exists because of the difference in eleva-
tion between the shoreline and the sea boundary,
since now there is no longer any wind stress. Then
the water surface exhibits oscillatory behavior and
the phenomenon is referred to as wind set-down
relaxation.

Nof and Paldor (1992) solved the steady-
state wind set-down problem and established an
implicit-analytical solution. Later, Gelb, Gottlieb,
and Paldor (1997) used the implicit-analytical
solution of Nof and Paldor (1992) as an initial
condition and solved the wind set-down relax-
ation problem numerically, employing the nonlin-
ear shallow-water wave (NSW) equations. The
main difficulty in solving the NSW equations is
the moving singularity of the equations at the
shoreline [Carrier and Greenspan (1958); Gelb,
Gottlieb, and Paldor (1997)].

Moreover, the analytical solution of the NSW
equations over a sloping beach is a classical prob-
lem in shallow-water wave dynamics. The ma-
jor advance for the analytical solution of the
NSW equations was presented by Carrier and
Greenspan (1958). Carrier and Greenspan
(1958) introduced a hodograph-type transforma-
tion which reduced the NSW equations into a sin-
gle second-order linear partial differential equa-
tion (PDE) and solved the initial value problem
(IVP) of a periodic long wave propagating over
a sloping beach. The transformation introduced
by Carrier and Greenspan (1958) had limited
application since it was not possible to use any
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given wave profile as an initial condition. Re-
cently, methodologies to handle IVP solutions
of the NSW equations were presented in Car-
rier, Wu, and Yeh (2003), Kânoğlu (2004), and
Kânoğlu and Synolakis (2006) considering more
general initial conditions. In addition, boundary
value problem (BVP) solution of the NSW equa-
tions was presented by Synolakis (1986, 1987)
for a sloping beach connected to a constant-depth
region.

In this study, we employ the hodograph-type
transformation for the spatial and the spa-
tial+temporal variables presented by Carrier, Wu,
and Yeh (2003) to solve the wind set-down and
the wind set-down relaxation problems respec-
tively. Even though it is a classical approach to
solve the NSW equations either as an IVP or a
BVP for long wave propagation problem, here we
will proceed with the initial-boundary value prob-
lem (IBVP) solution. First, we obtain an explicit-
analytical solution of the former problem in the
transform space. This solution will be called
explicit-transform solution hereon. Then we use
this solution as an initial condition to the latter
problem and obtain analytical solution, again.

2 Mathematical Formulation

The steady-state nonlinear response of the ocean
to the wind blowing over a long-narrow and shal-
low basin (Fig. 1) is referred to as wind set-down
problem and is governed by a nonlinear equation.
In dimensionless form, the governing equation is

−(h+η)ηx + γ = 0, (1)

subject to the boundary condition η(x = 1) = 0
[Nof and Paldor (1992)]. The boundary condi-
tion implies that the sea level is fixed at the transi-
tion of the basin to the much deeper and larger
sea. Nof and Paldor (1992) derived the gov-
erning equation neglecting the dynamics in the
cross-basin direction as well as the Coriolis force
in a similar fashion to the wind set-up problem
presented by Csanady (1982). Here h(x) = x
and η = η(x) represent the undisturbed water of
variable-depth and the free-surface elevation re-
spectively. The origin of the coordinate system is
chosen to be at the initial shoreline and x increases

Figure 1: Definition sketch for a long-narrow
(W̃/L̃ � 1) and shallow (D̃/L̃ � 1) basin: (a)
cross section, (b) top view.

seaward. Dimensionless variables are introduced
through

x =
x̃

L̃
, h =

h̃

D̃
, η =

η̃
D̃

, γ =
L̃ τ̃x

D̃2g̃ ρ̃w
.

Here the characteristic length and depth scales are
the basin length L̃ and the transition depth D̃ re-
spectively. γ is a parameter determined by the
geometry of the basin and the wind stress. The
dimensional quantities τ̃x, ρ̃w, and g̃ are the stress
component induced by the wind in the x-direction,
the density of the water, and the gravitational ac-
celeration respectively.

Nof and Paldor (1992) inverted the governing
equation (Eq. 1) for dx/dη , thus transforming
it into a linear equation in x. The resultant lin-
ear equation under the boundary condition η(x =
1) = 0 was solved, and the initial sea surface
height η(x) was determined implicitly [Nof and
Paldor (1992)]. Their solution can be rearranged



Wind Set-down Relaxation 151

into the following form

x = −γ −η(x)+(1+ γ)exp

(
η(x)

γ

)
, (2)

using dimensionless variables and considering
our coordinate system. It is important to note that
this implicit solution Eq. 2 requires nonlinear it-
erations to obtain η(x). In addition, the shoreline
wind set-down position can not be directly deter-
mined using Eq. 2.

Once the wind calms down, since there is no cor-
responding wind stress, the water accelerates un-
der the pressure gradient. The resulting problem
is called the wind set-down relaxation. The NSW
equations

ut +uux +ηx = 0, (3a)

[u(x+η)]x +ηt = 0, (3b)

can be used to describe the dynamics of the sub-
sequent water motion as suggested by Gelb, Got-
tlieb, and Paldor (1997). Additional nondimen-
sionalizations

t =
t̃

L̃/

√
g̃ D̃

, u =
ũ√
g̃ D̃

,

are introduced for time and velocity respectively.
Gelb, Gottlieb, and Paldor (1997) presented nu-
merical solution to the wind set-down relaxation
problem using Chebyshev and MacCormack nu-
merical schemes with the initial condition taken
from the implicit-analytical solution Eq. 2 of the
steady-state wind set-down problem given by Nof
and Paldor (1992).

We want to proceed with the analytical solution of
the wind set-down relaxation problem. However,
nonexistence of an explicit-analytical solution for
the wind set-down problem prevents proceeding
with the analytical solution. Therefore we will at-
tempt differently to obtain an explicit-transform
analytical solution to allow further analysis of this
problem.

We use the hodograph-type transformation for the
spatial variable

x = σ2 −η, (4)

as suggested by Carrier, Wu, and Yeh (2003).
Then, the governing equation (Eq. 1) takes the
form:

(σ2 + γ)ησ −2γσ = 0, (5)

for η(σ) in the transform σ -space and the bound-
ary condition is translated into η(σ = 1) = 0. The
transform governing equation (Eq. 5) has the fol-
lowing exact solution with the prescribed bound-
ary condition:

η(σ) = γ ln

(
σ2 + γ
1+ γ

)
. (6)

This is an explicit-transform solution for the
steady-state problem in terms of the transform
variable σ . Once the solution is obtained in the
transform σ -space, it is straightforward to obtain
the corresponding solution in the physical x-space
using the combination of Eq. 6 and Eq. 4. The
explicit solution (Eq. 6) can be evaluated for a
specific σ to find η(σ) and resultant η(σ) to-
gether with σ gives the corresponding x through
Eq. 4. One example of such a solution is pre-
sented in Fig. 2. Even though equal increments
are chosen for σ in the transform space, conver-
sion to the physical space generates unequal in-
crements for x (as shown in Fig. 2) because of the
nonlinear transformation. Note also that not only
the solution of the wind set-down problem does
not require nonlinear iterations to obtain η , un-
like Eq. 2, but also the shoreline position –wind
set-down position– is now defined at σ = 0, i.e.,
η(σ = 0) = γ ln(γ/(1 + γ)). Note that Eq. 6 can
be converted into Eq. 2 given by Nof and Paldor
(1992) with short algebra, using Eq. 4.

Once we obtain an explicit-transform analytical
solution for the wind set-down problem, we now
propose to solve the NSW equations as an IBVP
in order to obtain an analytical solution for the re-
laxation problem. The transformation for the spa-
tial variable x given in Eq. 4 is complemented with
the transformation for the temporal variable

t = λ +u, (7)

again as in Carrier, Wu, and Yeh (2003) in order
to proceed with the IBVP solution of the NSW
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Figure 2: The steady-state wind set-down solu-
tion for γ = 0.01. Circles and solid line represent
the explicit-transform analytical solution Eq. 6 to-
gether with Eq. 4 and the implicit-analytical solu-
tion Eq. 2 of Nof and Paldor (1992) respectively.

equations. Under the hodograph transformations
Eq. 4 and Eq. 7, the NSW equations Eq. 3a and
Eq. 3b are transformed into(
σ2u

)
σ +2σφλ = 0, (8a)

uλ +
1

2σ
φσ = 0. (8b)

Defining a potential function,

φ (σ ,λ ) = η(σ ,λ )+
1
2

[u(σ ,λ )]2 , (9)

Eq. 8a and Eq. 8b can further be reduced into a
single second-order linear PDE for φ (σ ,λ ), elim-
inating u:

4σφλλ − (σφσ )σ = 0. (10)

The nonlinear hodograph-type transformation
Eq. 4 and Eq. 7 not only reduces the NSW equa-
tions into a single second-order linear PDE, but
also the singularity of the moving shoreline is
avoided. Moreover, the moving shoreline posi-
tion where the sea surface intersects the sloping
bottom is now fixed at the point σ = 0 in the
transform (σ , λ )-space. Recently, Carrier and
Yeh (2005) considered tsunami source with finite
crest length and developed analytical solution for
its evolution over a constant depth based on lin-
ear shallow-water wave theory. Carrier and Yeh
(2005) were able to introduce a convenient change
of variables which converts the linear shallow-
water wave equation into a similar equation as

Eq. 10 and they solved with the Fourier-Bessel
transform as in Carrier, Wu, and Yeh (2003).

We will now attempt to solve Eq. 10 as IBVP. The
initial conditions are defined from the steady-state
wind set-down solution Eq. 6, i.e., initial wave
profile η(σ ,λ = 0) given in Eq. 6 with zero initial
velocity u(σ ,λ = 0) = 0. These conditions yield

φλ (σ ,λ = 0) = 0, (11a)

φ (σ ,λ = 0) = η(σ ,λ = 0), (11b)

for the potential function φ through Eq. 8a and
the definition of the potential (Eq. 9) respectively.
The importance of the requirement of an explicit-
transform analytical solution for η(σ ,λ = 0) for
the steady-state wind set-down problem is now
clear. Without the explicit analytical solution for
wind set-down, it is not possible to proceed with
the analytical solution of the NSW equations.
Note also that Eq. 7 requires λ = 0 for t = 0 since
the initial velocity is zero. In addition to these ini-
tial conditions, a bounded solution at the shoreline
and undisturbed sea surface at the toe of the slope
(at the basin mouth) η(x = 1, t) = 0 [Gelb, Got-
tlieb, and Paldor (1997)] require φ (σ ,λ ) to be
finite at the shoreline and η(σ = 1,λ ) = 0 in the
transform space respectively.

After defining proper initial and boundary condi-
tions in the transform (σ ,λ )-space, the solution
for Eq. 10 is now a classical separation of vari-
ables problem. φ (σ ,λ ) = F(σ)G(λ ) gives

4
Gλλ

G
=

Fσσ

F
+

1
σ

Fσ

F
= −4α2,

with a real constant α . The ordinary differen-
tial equation for G(λ ) is Gλλ +α2G = 0 with the
general solution G(λ )= c1 cos(αλ )+c2 sin(αλ ).
Here c1 and c2 are the arbitrary constants and
application of the initial condition Eq. 11a leads
Gλ (0) = 0. Therefore c2 = 0 implying

G(λ ) = c1 cos(αλ ). (12)

The differential equation σ2Fσσ + σFσ +
4α2σ2F = 0 for F(σ) is the Bessel’s equation
of order zero and it has the general solution
F(σ) = c3J0(2ασ) + c4Y0(2ασ). Boundness
at the shoreline requires c4 = 0. Further, the
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condition η(σ = 1,λ ) = 0 applied at λ = 0
implies φ (σ = 1,λ = 0) = 0 through the def-
inition of the potential function (Eq. 9) since
u(σ = 1,λ = 0) = 0 as explained previously. The
eigenvalues of the problem are determined from
the condition φ (σ = 1,λ = 0) = 0 as αn = zn/2
(n = 1,2,3, ...) where the constants zn are the
zeros of the Bessel function of order zero, J0(z).
So the solution for the differential equation for
F(σ) is given as:

F(σ) = c3J0(znσ). (13)

Now, we can construct the series solution of the
problem using Eq. 12 and Eq. 13 as

φ (σ ,λ ) =
∞

∑
n=1

KnJ0(znσ)cos

(
1
2

znλ
)

. (14)

The nonhomogeneous initial condition Eq. 11b
will be imposed last as usual for separation of
variables:

φ (σ ,0) = η(σ ,0) = γ ln

(
σ2 + γ
1+ γ

)
.

Therefore, the Bessel coefficients Kn are deter-
mined through

∞

∑
n=1

KnJ0(znσ) = γ ln

(
σ2 + γ
1+ γ

)
.

Multiplication of both sides with σJ0(zmσ) and
integrating [Watson (1944)] we get

Kn =
2γ

[J1(zn)]
2

∫ 1

0
ω ln

(
ω2 + γ
1+ γ

)
J0(znω)dω .

(15)

Finally, insertion of Eq. 15 into Eq. 14 gives
the complete analytical solution for the wind set-
down relaxation problem;

φ (σ ,λ ) =
∞

∑
n=1

2γ
[J1(zn)]

2 J0(znσ)cos

(
1
2

znλ
)

×
∫ 1

0
ω ln

(
ω2 + γ
1+ γ

)
J0 (znω)dω . (16)

After obtaining the solution, we can now resolve
the whole flow-field, especially the physical char-
acteristics of the shoreline motion. Combining

Eq. 8b and Eq. 16 we compute u(σ ,λ ):

u(σ ,λ ) =
1
σ

∞

∑
n=1

2γ
[J1(zn)]

2 J1(znσ) sin

(
1
2

znλ
)

×
∫ 1

0
ω ln

(
ω2 + γ
1+ γ

)
J0(znω)dω . (17)

Once u(σ ,λ ) is known, η(σ ,λ ) can be evalu-
ated through the definition of the potential func-
tion (Eq. 9) as η(σ ,λ ) = φ (σ ,λ )− 1

2 [u(σ ,λ )]2.
Back transformation to the physical (x, t)-space is
possible using Eq. 4 and Eq. 7. Since σ = 0 at the
shoreline, shoreline velocity us can be evaluated
through

us(λ ) =
∞

∑
n=1

γ zn

[J1(zn)]
2 sin(

1
2

znλ )

×
∫ 1

0
ω ln

(
ω2 + γ
1+ γ

)
J0(znω)dω ,

from Eq. 17 considering limσ→0 [J1(znσ)/σ ] =
1
2 zn. The shoreline position xs is now given as:

xs(λ ) = −ηs(λ ) =
1
2

[us(λ )]2 −φ (σ = 0,λ ),

at the respective time

t(σ = 0,λ ) = λ +us(λ ).

3 Results and Discussions

An interval of 0.01 ≤ γ ≤ 0.02 was suggested in
Gelb, Gottlieb, and Paldor (1997) for the nondi-
mensional parameter γ . We use γ = 0.01, to eval-
uate some physical properties of the wind set-
down relaxation problem, but also to compare
the analytical solution with the existing numeri-
cal solution of Gelb, Gottlieb, and Paldor (1997).
Fig. 3(a) compares the analytical solution for the
shoreline position with the numerical results. The
analytical solution agrees with the existing nu-
merical solution. Further, we evaluated the power
spectral density of the shoreline motion and pre-
sented in Fig. 3(b). The power spectral density
is defined by dk = | fk|2 where fk is the discrete
Fourier transform of the shoreline wave height ηs
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Figure 3: (a) Temporal variation and (b) power
spectral density of the shoreline position xs for
γ = 0.01. Note that xs = −ηs. Figures 3(a) and
3(b) correspond to Fig. 3 and Fig. 4 of Gelb, Got-
tlieb, and Paldor (1997) respectively.

[Gelb, Gottlieb, and Paldor (1997)]:

fk =
N−1

∑
j=1

(ηs, j −ηs,average)e−i2π jk/N;

k = 0,1, . . .,N −1.

The corresponding nondimensional frequency
is k/NΔt with Δt = T/N (T is the total time
and N = 2m with positive integer m). We again
obtain agreement with Gelb, Gottlieb, and Pal-
dor (1997). We also evaluated the spatial vari-
ation of the depth-averaged velocity and the sur-
face height at some specific times t∗ using the
Newton-Raphson iterations, as proposed by Syn-
olakis (1986, 1987) and employed recently by
Kânoğlu (2004). We determined the value λ ∗ for
which t(σ ,λ ∗)− t∗ = 0 from the algorithm

λi+1 = λi − t(σ ,λi)− t∗

1+uλ (σ ,λi)
,

for a given σ . The spatial and temporal variations
of the velocity and the free-surface elevation are
presented in Fig. 4(a) and Fig. 4(b) respectively.
The results compare well with the numerical so-
lutions of Gelb, Gottlieb, and Paldor (1997) ex-
cept when t∗ = 10. We observed that velocities
close to the shoreline exhibit difficulties for both
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Figure 4: Spatial and temporal variation of (a)
the velocity and (b) the free-surface elevation at
t∗ = 0 (solid line), 10 (dotted line), and 40 (dash-
dotted line) for γ = 0.01. Figures 4(a) and 4(b)
correspond to Fig. 8(a) and Fig. 8(b) for t∗ = 10
and Fig. 9(a) and Fig. 9(b) for t∗ = 40 of Gelb,
Gottlieb, and Paldor (1997) respectively.

Chebyshev and MacCormack methods for t∗ = 10
in the numerical solution of Gelb, Gottlieb, and
Paldor (1997).

4 Conclusions

We transformed the governing equation for the
wind set-down problem using the hodograph-type
transformation for the spatial variable and ob-
tained explicit-transform analytical solution of the
problem. This explicit-transform solution is cru-
cial to proceed with the analytical solution of
the relaxation problem since the existing solution
was an implicit one. Then we used the com-
plete hodograph-type transformation for the spa-
tial and temporal variables to reduce the NSW
equations into a single second-order linear PDE.
We provided IBVP solution to this single second-
order linear PDE, rather than the existing IVP and
BVP solutions, to obtain the wind set-down relax-
ation solution. We imposed the explicit-transform
wind set-down solution that we have developed as
an initial condition to this reduced equation with
the other proper initial and boundary conditions
to solve the IBVP. We evaluated certain physical
flow-field properties.
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