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Acoustic Scattering in Prolate Spheroidal Geometry via Vekua
Tranformation – Theory and Numerical Results

L.N. Gergidis, D. Kourounis, S. Mavratzas and A. Charalambopoulos 1

Abstract: A new complete set of scatter-
ing eigensolutions of Helmholtz equation in
spheroidal geometry is constructed in this paper.
It is based on the extension to exterior boundary
value problems of the well known Vekua trans-
formation pair, which connects the kernels of
Laplace and Helmholtz operators. The derivation
of this set is purely analytic. It avoids the implica-
tion of the spheroidal wave functions along with
their accompanying numerical deficiencies. Us-
ing this novel set of eigensolutions, we solve the
acoustic scattering problem from a soft acoustic
spheroidal scatterer, by expanding the scattered
field in terms of it. Two approaches concerning
the determination of the expansion coefficients
are extensively studied in terms of their numerical
and convergence properties. The first one mini-
mizes the L2-norm of a suitably constructed error
function and the second one relies on collocation
techniques. The robustness of these approaches is
established via the adoption of arbitrary precision
arithmetic.
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ing; Vekua Transformation; Arbitrary Precision;
L2-norm Minimization; Collocation; Mathemati-
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puting.

1 Introduction

The investigation of interior and exterior bound-
ary value problems formulated in spheroidal ge-
ometry has been receiving increased attention
from both theoretical and application point of
view. To a large extent, this is due to the fact
that a wide variety of inclusions or inhomo-
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geneities, disturbing wave propagation and en-
countered in real life applications, can be mod-
eled very accurately by either prolate or oblate
spheroidal bodies. In [Kong, Li, Leong, and Kooi
(1999)], [Kourounis, Charalambopoulos, and Fo-
tiadis (2001)] the authors model the human head
as a prolate spheroidal body, while studying the
electromagnetic interaction between a head and a
cellular phone. Scattering processes, by layered
spheroidal structures, simulating the kidney-stone
system are considered in [Charalambopoulos,
Dassios, Fotiadis, and Massalas (2001)], [Char-
alambopoulos, Fotiadis, and Massalas (2002)],
[Anagnostopoulos, Mavratzas, Charalambopou-
los, and Fotiadis (2003)]. Raindrops, can be
modeled as oblate spheroids, for the computation
of the rainfall attenuation of microwave signals
in satellite telecommunication systems. Rock-
ets, aircraft noses and guided missiles are gener-
ally considered to have spheroidal shapes. Rel-
ative works concerning burried spheroidal bod-
ies in electromagnetic scattering can be found in
[Perruson, Lambert, Lesselier, Dassios, and Char-
alambopoulos (2000)], [Perruson, Lesselier, Lam-
bert, Bourgeois, Charalambopoulos, and Dassios
(2000)], [Charalambopoulos, Dassios, Perruson,
and Lesselier (2002)].

The scattering problem of acoustic waves from
spheroidal scatterers, constitutes a generalization
of the spherical case, and gives birth to mod-
els simulating more interesting realistic problems
than these “living” in the spherical geometry. A
lot of effort has been devoted to the spheroidal
scattering problem, especially under the low fre-
quency regime (see references cited in [Char-
alambopoulos, Dassios, Fotiadis, and Massalas
(2001)]). The later approach simplifies the analy-
sis as it permits the investigation of the scattering
problem via a sequence of corresponding poten-
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tial problems referring to the underlying geome-
try. However, when the dimension of the scat-
terer is comparable with the wavelength of the in-
cident field, this approach is inadequate. Several
works rectify the problem in the resonance region,
using either separation of variables or T-matrix
techniques [Waterman (1969)], [Zhang and Han
(2005)]. In the vast majority of those approaches
the well known spheroidal wave functions domi-
nate, which emerge via the spectral investigation
of Helmholtz equation in spheroidal coordinates.

It is well known that intermediate numerical im-
plementation is required to construct the afore-
mentioned spheroidal wave functions, which be-
comes extremely complicated for spheroids with
large focal distances and small semiaxes ratio.
Drawbacks and fine new achievements on the
field of implementation of spheroidal wave func-
tions can be found in [Li, Kang, and Leong
(2001)], while analytical shortcuts to exploit
spheroidal eigenvectors in solving boundary value
problems, are presented in [Charalambopoulos,
Fotiadis, Kourounis, and Massalas (2001)].

Apart from the intrinsic numerical difficulty char-
acterizing the construction of the spheroidal wave
functions, the solvability of the scattering prob-
lem in spheroidal geometry requires a demand-
ing numerical investigation. More precisely, the
adopted methodology of expanding the scatter-
ing field in terms of spheroidal wave functions,
leads to extremely ill-conditioned matrices, in-
volved in the linear systems derived by the sat-
isfaction of the boundary conditions. It is widely
recognized, that the 64-bit and 80-bit IEEE float-
ing point arithmetic formats, currently provided
and utilized in most computer systems, are inad-
equate for the inversion of ill-conditioned matri-
ces [Trefethen and Bau (1997)]. This observation
does not only concern problems arising in scat-
tering theory but also in several scientific areas
such as Experimental Mathematics [Borwein and
Bailey (2004)], [Bailey (2004)], Climate Model-
ing, Atomic System Simulations, Computational
Geometry [Shewchuk (1997)] and Number The-
ory among many others. As already pointed out
by other researchers working on computational
studies of electromagnetic scattering, the accu-

racy of the results obtained using conventional
64-bit double precision arithmetic, significantly
restrains the range of the wave functions that
can be assessed [Barrowes, O’Neil, Grzegorczyk,
and Kong (2004)]. Consequently unless a robust
methodology is adopted for the numerical treat-
ment of the underlying systems, the numerical re-
sults obtained leave a lot to be desired.

In the present work we try to give new prospects
in both theoretical and numerical treatment of
the acoustic scattering problem from speroidal
scatterers. First we introduce a novel pure the-
oretical approach, avoiding the implication of
the spheroidal wave functions and secondly we
present a thorough numerical implementation the
core of which is based on arbitrary precision facil-
ities. More precisely, our theoretical framework,
is inspired by the concepts introduced in [Char-
alambopoulos and Dassios (2002)], where the fa-
mous Vekua transformation pair is adopted, al-
lowing so the construction of Helmholtz equation
solutions by tranforming appropriately the cor-
responding Laplace equation kernel basis func-
tions. The full development of the underlying
theory is found in [Vekua (1942)],[Vekua (1967)]
and [Vekua (1945)]. In section 2 we extend
the aforementioned methodology, to exterior do-
mains, constructing so a complete set of radiat-
ing outwards exterior solutions of the Helmholtz
equation, constituting an alternative set to the
set of spheroidal wave functions. We construct
so, a basis set for the Helmholtz equation ker-
nel for exterior problems, in a rather say, quasi-
separable form, i.e. as superpositions of separa-
ble terms. In section 3, the representative acous-
tic scattering problem of a plane wave from a soft
prolate spheroidal impenetrable scatterer is pre-
sented. The formulation of the problem incorpo-
rates the representation of the scattered field to
be determined, as a superposition of the afore-
mentioned constructed Vekua radiating eigenso-
lutions. This expansion satisfies the appropriate
differential equation and remote asymptotics. The
boundary condition treatment, leads to a dense al-
gebraic linear system the solution of which pro-
vides the expansion coefficients. In section 4,
we suggest two different approaches for the dis-
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cretization of boundary conditions. The first one
is a collocation method while the other achieves
an optimal choice of coefficients which minimizes
the L2 norm of the error representing the failure
of the boundary condition satisfaction. In sec-
tion 5, we demonstrate the robustness of those
approaches and investigate numerically their con-
vergence properties in appropriate norms. The
core of our numerical implementation relies on ar-
bitrary precision facilities, which guarantees the
solvability of severely ill-conditioned algebraic
linear systems as demonstrated in subsection 5.2.
Finally we expose the far-field pattern which usu-
ally constitutes the measured quantity in direct
scattering.

2 The Vekua Transformation in Spheroidal
Geometry

In [Vekua (1942)], [Vekua (1967)], Vekua de-
rived the general one-to-one transformation be-
tween the kernel of Laplace and Helmholtz op-
erators, for arbitrary dimension, through the for-
mulae:

u(x1,x2, ...,xn) = u0(x1,x2, ...,xn)

−
∫ 1

0
u0(tx1, tx2, ..., txn)t

n−2
2

∂
∂ t

J0(kr
√

1− t)dt

(1)

u0(x1,x2, ...,xn) = u(x1,x2, ...,xn)

+
1
2

kr
∫ 1

0
u(tx1, tx2, ..., txn)t

n−2
2 I1(kr

√
t(1− t))

dt√
t(1− t)

(2)

where u∈ ker(Δ+k2), u0 ∈ kerΔ, Jn stands for the
Bessel function of order n, In denotes the modified
Bessel function of order n, xi with i = 1,2, ..,n are
the cartesian coordinates and r the Euclidean dis-
tance of r = (x1,x2, . . .,xn) from the coordinate
origin O. The wave number k and the frequency
ω of the scattering process are interrelated via the
basic relation k = ω/c where c stands for the ve-
locity of the acoustical waves. Equation (1) gives
at first glance, the hope of constructing a family of
solutions of Helmholtz equations, from the kernel

set of Laplace operator. More precisely, in three
dimensional spaces, the first equation of the trans-
formation pair becomes

u(r)= u0(r)− kr
2

∫ 1

0
u0(tr)J1(kr

√
1− t)

√
t√

1− t
dt

(3)

while the second one gives

u0(r) = u(r)+
kr
2

∫ 1

0
u(tr)I1(kr

√
t(1− t))

dt√
1− t

(4)

where r = |r|= (x1
2 +x2

2 +x3
2)

1
2 .

The transformation presented above clearly con-
cerns regular, near the origin functions, and
concequently refers to solutions of Laplace and
Helmholtz equation in interior domains. In [Char-
alambopoulos and Dassios (2002)] special effort
has been devoted to construct an equivalent trans-
formation pair concerning functions regular at in-
finity, representing solutions of exterior boundary
value problems. Although the outcome of the fol-
lowing therein extended analysis, is formally in
accordance with the corresponding interior trans-
formation pair, the analytical manipulations how-
ever, required for the exploitation of the new tran-
formation pair, are getting rather cumbersome due
to the appearance of a complex contour integra-
tion [see Eq.(33) in Charalambopoulos and Das-
sios (2002)] which is difficult to be implemented
in spheroidal geometry. In this work, we fol-
low an alternative approach to acquire Helmholtz
equation solutions suitable to describe scattering
processes. The later avoids this exterior transfor-
mation pair, but modifies instead, in an efficient
manner, the results produced via the solutions of
the Helmholtz equation which are regular near the
origin.

More precisely, in section 3 of [Charalambopou-
los and Dassios (2002)] a lot of analysis has been
devoted to develop the structure of Helmholtz
equation kernel in spheroidal coordinates, with
purely analytical means (i.e. without intermediate
recurrence numerical schemes), for the case of in-
terior boundary value problems. We are going to
exploit this analysis to handle exterior processes
instead of alternative tranformation pairs.
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Let us consider the prolate spheroidal coordinates
μ , θ , φ connected with the cartesian ones through
the relations⎧⎨
⎩

x = α
2 sinhμ sinθcosφ 0 ≤ μ < ∞

y = α
2 sinhμ sinθ sinφ 0 ≤ θ ≤ π

z = α
2 coshμ cosθ 0 ≤ φ < 2π

⎫⎬
⎭ (5)

where α stands for the focal distance. We start
with the complete set of eigensolutions of Laplace
operator, which are the regular harmonic func-
tions at the origin

u0
nm(r) = Pm

n (coshμ)Pm
n (cosθ )eimφ ,

n = 0,1,2, . . ., |m| ≤ n (6)

expressed in spheroidal coordinates, where we
recognize the well known Legendre functions.
We substitute every member of (6) in Eq.(3) aim-
ing at constructing the corresponding eigensolu-
tion of Helmholtz equation. Then every harmonic
function u0

nm gives birth to the dynamic eigenso-
lution

unm(r) = Pm
n (coshμ)Pm

n (cosθ )eimφ

− kr
2

∫ 1

0
Pm

n (coshμ ′)Pm
n (cosθ ′)eimφ ′

J1(kr
√

1− t)√
t

1− t
dt (7)

In [Charalambopoulos and Dassios (2002)] it is
proven that unm can be decomposed as:

unm(r) = u(1)
nm(r)+u(2)

nm(r) (8)

where

u(1)
nm(r) = Pm

n (coshμ)Pm
n (cosθ )eimφ

−
[ n

2 ]

∑
p=0

[ n−2p
2 ]

∑
l=0

Bn,m,p,lP
m
n−2p−2l(coshμ)Pm

n−2p−2l(cosθ )

eimφ (9)

u(2)
nm(r) =

[ n
2 ]

∑
p=0

[ n−2p
2 ]

∑
l=0

Bn,m,p,lΓ
(

n−2p+
3
2

)

J(n−2p+ 1
2 )(kr)(

kr
2

)n−2p+1/2
Pm

n−2p−2l(coshμ)Pm
n−2p−2l(cosθ )

eimφ (10)

In the relations above, Γ stands for the well known
Gamma function, while J is the Bessel function
of first kind. In addition, the quantities Bn,m,p,l are
given by the relation

Bn,m,p,l =⎧⎪⎪⎨
⎪⎪⎩

(−1)p(n+m)!(n−2p−2l−m)!(2n−2p)!
(n−m)!(n−2p−2l+m)!p!

(n−2p−l)!(2n−4p−4l+1)
(n−p)!l!22p+2l(2n−4p−2l+1)!

|m| ≤ κ

0 |m|> κ
(11)

where κ = n−2p−2l and constitute the expan-
sion coefficients of the harmonic functions calcu-
lated at r′ = tr (t ∈ [0,1]) in terms of the same
functions at r, i.e.

Pm
n (coshμ ′)Pm

n (cosθ ′)eimφ =
[ n

2 ]

∑
p=0

[ n−2p
2 ]

∑
l=0

Bn,m,p,lt
n−2p

Pm
n−2p−2l(coshμ)Pm

n−2p−2l(cosθ )eimφ (12)

The fourth of the authors of this work was not
very attentive to remark in [Charalambopoulos
and Dassios (2002)], that evoking Eq. (12) for t =
1 leads immediately to vanishing of u(1)

nm for ev-
ery pair (n,m), and so only u(2)

nm participates in the
formation of the eigensolutions unm of Helmholtz
equation. Concequently

unm(r) =
[ n

2 ]

∑
p=0

[ n−2p
2 ]

∑
l=0

Bn,m,p,lΓ(n−2p+
3
2
)

J(n−2p+ 1
2 )(kr)

( kr
2 )n−2p+1/2

Pm
n−2p−2l(coshμ)Pm

n−2p−2l(cosθ )

eimφ (13)

Representation (13) could be an elegant for-
mula of unm(r) if the radial coordinate r was not
encountered therein. Actually the radial compo-
nent r involves both spheroidal coordinates μ ,θ
and prevents unm(r), in this form, from being ex-
pressible in terms of spheroidal coordinates sepa-
rable manner. In [Charalambopoulos and Dassios
(2002)] it is explained how this is affronted and
how we obtain pure separable forms for the inte-
rior solutions of Helmholtz equation.
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However, expression (13) is a very useful “hy-
brid” form of unm(r) as it consists of a finite super-
position of products. Each one of those products
is built by a harmonic separable part and a wave
term, incorporating the wave number k appropri-
ately accompanied by the radial distance r. This
expression is the convenient one for constructing
the exterior eigensolutionsof Helmholtz equation.
We consider separately the functions generated by
splitting eimφ to its real and imaginary parts.

{
uc

nm(r)
us

nm(r)

}
=

[ n
2 ]

∑
p=0

[ n−2p
2 ]

∑
l=0

Bn,m,p,lΓ
(

n−2p+
3
2

)

J(n−2p+ 1
2 )(kr)(

kr
2

)n−2p+1/2
Pm

n−2p−2l(coshμ)Pm
n−2p−2l(cosθ )

{
cos(mφ )
sin(mφ )

}
(14)

We replace now in the formulae above, the Bessel
function J with the corresponding outwards radi-
ating Hankel one, via the relation Hn−2p+ 1

2
(kr) =

Jn−2p+ 1
2
(kr) + iYn−2p+ 3

2
(kr), constructing so the

functions ûc
nm and ûs

nm, which are irregular in the
vicinity of r = 0 and constitute candidates for be-
ing outgoing waves obeying to Helmholtz equa-
tion. We treat only ûc

nm for simplicity. It is prefer-
able to work with the spherical Hankel functions
instead of the cylindrical ones [Bell (1967)]. Then

ûc
nm(r) =

[ n
2 ]

∑
p=0

[ n−2p
2 ]

∑
l=0

Bn,m,p,lΓ
(

n−2p+
3
2

)

2√
π

h(1)
n−2p(kr)

( kr
2 )n−2p

Pm
n−2p−2l(coshμ)Pm

n−2p−2l(cosθ )

cos(mφ) (15)

For comparison, we express uc
nm in terms of

Spherical Bessel functions obtaining

uc
nm(r) =

[ n
2 ]

∑
p=0

[ n−2p
2 ]

∑
l=0

Bn,m,p,lΓ
(

n−2p+
3
2

)

2√
π

jn−2p(kr)
( kr

2 )n−2p
Pm

n−2p−2l(coshμ)

Pm
n−2p−2l(cosθ )cos(mφ) (16)

We consider the Rayleigh’s formula [Bell (1967)]

h(1)
n (z) = −i(−1)nzn

(
1
z

d
dz

)n(eiz

z

)
, (17)

based on which, we infer that the function

f c
nm(k;r) = k2n+1(Δ+k2)ûc

nm(r) (18)

considered as a function of k, where r �= 0 is kept
fixed, is analytic in the upper half plane of the
complex plane. The real part υc

nm(k;r) of f c
nm(k;r)

is a harmonic function in its definition domain.
On the real axis (Im(k) = 0), we have

υc
nm(k;r)|k∈R = Re{k2n+1(Δ+k2)ûc

nm(r)}|k∈R

= k2n+1(Δ+k2)uc
nm(r) = 0

(19)

On the large semicircle of the upper half-plane
of radius R, the harmonic function υc

nm(k;r) takes
values decaying to zero for R→∞. This is proven
by considering formula (17) and examining the
asymptotic behavior of the crucial term eiz for
z = Reiγ r where arg γ ∈ (0,π).

Thus, the harmonic function υc
nm(k;r) vanishes

in the upper half-plane and so does clearly the
analytic function f c

nm. Then for real k, (Δ +
k2)ûc

nm(r) = 0 providing that ûc
nm belongs to

ker(Δ+k2). Similarly we treat ûs
nm(r) and finally

obtain that all ûnm(r) constitute eigensolutions of
the Helmholtz equation.

The radiating character of ûnm(r) is due to the
asymptotic behavior of the Hankel function, re-
vealing the usefulness of the “hybrid” representa-
tion introduced above, but this is going to be pre-
sented clearly in next section.

We are in position now to discuss the process of
obtaining solutions in separable form. In [Char-
alambopoulos and Dassios (2002)], the solutions
regular at origin are constructed in the following
form

unm(r) =
∞

∑
q=0

q

∑
j=0

[ n
2 ]

∑
p=0

[ n−2p
2 ]

∑
l=0

j

∑
i=− j

A(q, j,n,m, p, l, i,c)

[
(sinhμ)2q−2 jPm

n−2p−2l(coshμ)
]

Pm
n−2p−2l+2i(cosθ )eimφ (20)
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if Eq. (12) , with t=1, is taken into account. In Eq.
(20) , c = ka

2 and A(q, j,n,m, p, l, i,c) is a specific
function of its arguments [Charalambopoulos and
Dassios (2002)].

Consequently, the interior eigensolutions can be
written in a quasi-separable form as every unm is a
specific superposition of separable terms. The ex-
terior eigensolutions ûnm are handled as follows.
We remark that

ûnm(r) = unm(r)+ iũnm(r) (21)

where ũnm(r) is constructed with Bessel func-
tion of first kind in Eq.(13) replaced by the cor-
responding Neumann function. However, given
that Yn−2p+ 1

2
(kr) = (−1)n+1J−n+2p− 1

2
(kr) [Bell

(1967)], we infer that

ũnm(r) =
[ n

2 ]

∑
p=0

[ n−2p
2 ]

∑
l=0

Bn,m,p,lΓ
(

n−2p+
3
2

)

(−1)n+1J(−n+2p− 1
2 )(kr)

( kr
2 )n−2p+1/2

Pm
n−2p−2l(coshμ)

Pm
n−2p−2l(cosθ )eimφ (22)

According to the definition of Bessel function

ũnm(r) =
∞

∑
q=0

[ n
2 ]

∑
p=0

[ n−2p
2 ]

∑
l=0

Bn,m,p,lΓ
(

n−2p+
3
2

)

(−1)n+q+1 ( c
2 )2(q−n+2p)−1

q!Γ(−n+2p+ 1
2 +q)(

sinh2 μ +cos2 θ
)q−n+2p− 1

2 Pm
n−2p−2l(coshμ)

Pm
n−2p−2l(cosθ )eimφ (23)

The crucial metric function (sinh2 μ +
cos2 θ )q−n+2p− 1

2 is decomposed as follows:

(sinh2 μ +cos2 θ )q−n+2p− 1
2

= (cosh2 μ − sin2 θ )q−n+2p− 1
2

=(coshμ)2(q−n+2p)−1
∞

∑
t=0

Dq,n,p,t

t!
(−1)t

(
sinθ

coshμ

)2t

(24)

where Dq,n,p,t = (q − n + 2p − 1
2 )(q− n + 2p −

3
2 ) · · ·(q−n+2p+ 1

2 − t), t ≥ 1,Dq,n,p,0 = 1.

In addition,

sin2t θPm
n (cosθ )

=
t

∑
j=0

(−1) j

(
t
j

)
cos2 j θPm

n (cosθ )

=
t

∑
j=0

(−1) j
(

t
j

) j

∑
i=− j

β m, j
n,i Pm

n+2i(cosθ )

(25)

where β m, j
n,i are the well defined expansion coeffi-

cients introduced in [Charalambopoulos and Das-
sios (2002)] and used in fact already in the con-
struction of the coefficients A(q, j,n,m, p, l, i,c)
appeared in interior eigensolutions given by Eq.
(20) . Consequently, the functions ũnm defined by
Eq. (22) obtain the quasi-separable form (i.e. ex-
pansion in term of separable terms)

ũnm(r) =

∞

∑
q=0

∞

∑
t=0

t

∑
j=0

[ n
2 ]

∑
p=0

[ n−2p
2 ]

∑
l=0

j

∑
i=− j

Ã(q, t, j,n,m, p, l, i,c)

[
(coshμ)2(q−n+2p−t)−1Pm

n−2p−2l(coshμ)
]

Pm
n−2p−2l+2i(cosθ )eimφ (26)

with

Ã(q, t, j,n,m, p, l, i,c)= Bn,m,p,lΓ(n−2p+
3
2
)

(−1)n+q+1+ j+t ( c
2 )2(q−n+2p)−1

q!Γ(−n+2p+ 1
2 +q) j!(t− j)!

Dq,n,p,tβ m, j
n−2p−2l,i (27)

Comparing Eqs. (20) with (26) , we infer that the
eigensolutionsconstructed via the Neumann func-
tion, have additional complexity due to the pres-
ence of two infinite summations instead of one,
and this is assigned to the separation of the frac-
tional powers of the metric function (sinh2 μ +
cos2 θ ). Combining Eqs. (13) and (21) we
are in position to separate coordinates in the ex-
pression (21) representing the outwards radiat-
ing eigensolutions of Helmholtz equation. Sev-
eral issues could emerge concerning functional
theoretic properties of those functions apart from
the mentioned regularity and propagation prop-
erties. We pay attention here, on the most im-
portant property concerning completeness of the
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constructed solution set, since the purpose is to
expand our arbitrary Helmholtz equation solu-
tion to this basic solutions set. The argument we
present is purely qualitative and reveals the po-
tential of Vekua transform. More precisely, every
Helmholtz kernel space element has a unique po-
tential conjugate via the inverse vekua tranform.
Expanding this harmonic function in terms of the
complete set of potential basic eigensolutions and
taking the direct Vekua transformation to this ex-
pansion, we establish the sought ability to repre-
sent dynamic arbitrary solutions in terms of the
constructed Vekua dynamic eigensolutions.

3 Investigation of the Scattering Problem

We consider a prolate spheroidal acoustically im-
penetrable scatterer occupying a specific region
in R3, defined by the scatterers’s surface S, rep-
resented by the spheroidal surface

μ = μ0 (28)

The exterior region of the scatterer is denoted
by D and is characterized by the range μ > μ0,
0 ≤ θ ≤ π , 0 ≤ φ < 2π of spheroidal coordinates.
The scatterer is illuminated by a time harmonic
incident accoustic plane-wave, with frequency ω .
Suppressing the time dependence e−iωt in all the
physical quantities of the scattering process, the
incident field is represented by the time reduced
plane wave

uinc(r) = eikr,r ∈ D (29)

where k = kk̂, k is the wavenumber of the process
and k̂ is the direction of the incident field. The
scatterer reacts to the plane wave propagation,
producing a secondary acoustic field, the scattered
one, denoted by usc, which satisfies exactly like
the incident wave, the Helmholtz equation

Δusc(r)+k2usc(r) = 0, r ∈ D (30)

This field emanates from the scatterer and radi-
ates to infinity, satisfying uniformly over all direc-
tions, the well known Sommerfeld radiation con-
dition

∂usc(r)
∂ r

− ikusc(r) = O(
1
r2 ), r→ ∞ (31)

The total field u(r) = uinc(r) + usc(r) defined in
D = D∪S, obeys, on scatterer’s surface, to a spe-
cific type of boundary condition, depending on
the special nature of the scatterer. We focus on
the soft scatterer case implying that

u(r) = uinc(r)+usc(r) = 0,r ∈ S (32)

The methodology suggested here, is based on ex-
ploiting the eigensolutions constructed in the pre-
vious section. More precisely, these eigensolu-
tions are produced via the vekua transformation of
the complete set of the spheroidal harmonic sep-
arable solutions. From all these transformed fun-
damental solutions, we select the set of outgoing
radiating fields, since only these functions satisfy
radiation condition (31) . We expand then, the
unknown scattered field in terms of the aforemen-
tioned radiating basic solutions to obtain

usc(r) =
∞

∑
n=0

n

∑
m=−n

Anmûnm(r),r ∈ D, (33)

where the coefficients Anm absorb the unknown
character of usc(r).

The representation (33) can be exploited to pro-
vide the far-field pattern, which determines the
behavior of the scattered field far-away the scat-
terer and constitutes usually the measured quan-
tity in direct scattering. What is necessary, is
to investigate the asymptotic behavior (for r→ ∞)
of the eigensolutions ûnm(r). In the realm of
large r>>1, we apply an extended, but straight-
forward asymptotic analysis of the special func-
tions involved in the “hybrid” definition formula
of ûnm(r), i.e. in

ûnm(r) =
[ n

2 ]

∑
p=0

[ n−2p
2 ]

∑
l=0

Bn,m,p,lΓ
(

n−2p+
3
2

)

H(1)
(n−2p+ 1

2 )
(kr)

( kr
2 )n−2p+1/2

Pm
n−2p−2l(coshμ)

Pm
n−2p−2l(cosθ )eimφ (34)
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More precisely, following [Lebedev (1972)]

H(1)
ν (kr) =

(
2

πkr

) 1
2

ei[kr− 1
2 νπ− 1

4 π]

[
n

∑
s=0

( 1
2 −ν)s(1

2 +ν)s

s!
(2ikr)−s+O

(
1

(kr)n+1

)]

(35)

for kr � 1, i.e. for r large compared with the
wavelength, which is the physical characteristic
length. We remind the Pochhammer’s symbol
(z)n definition [Abramowitz and Stegun (1972)]

(z)n = z(z+1)(z+2)...(z+n−1) =
Γ(z+n)

Γ(z)

In addition, if r is large compared with the ge-
ometric characteristic length of the semiaxis, we

have r >> α
2 and then r

( α
2 ) =

√
cosh2 μ − sin2 θ �

coshμ � 1
2eμ >> 1. Then the involved Legendre

polynomials in Eq.(34) behave as

Pm
ν (coshμ) � Pm

ν

(
eμ

2

)

=
(

eμ

2

)ν (2ν)!
2νν!(ν −m)!

+O
(

eμ(ν−1)
)

, μ →∞

(36)

Replacing these expressions in formula (34) , we
obtain after some straightforward manipulations
that

ûnm(r) =
1√
π

2
kr

e−i π
4 eikr

[ n
2 ]

∑
p=0

Bn,m,p,0Γ
(

n−2p+
3
2

)
e−i 1

2 (n−2p+ 1
2 )π
(

4
kα

)n−2p

[2(n−2p)]!
2n−2p(n−2p)!(n−2p−m)!

Pm
n−2p(cosθ )eimφ

+ O

(
1
r2

)
, r → ∞. (37)

Substituting the assymptotic expressions Eq. (37)
in Eq. (33) we find that in the far-field region

usc(r) =
eikr

kr
f∞(θ ,φ )+O(

1
r2 ), r → ∞ (38)

where the far-field pattern f∞(θ ,φ ) is given by

f∞(θ ,φ ) =
∞

∑
n=0

n

∑
m=−n

2√
π

e−i π
4 Anm

[ n
2 ]

∑
p=0

Bn,m,p,0Γ
(

n−2p+
3
2

)
e−i 1

2(n−2p+ 1
2 )π
(

4
kα

)n−2p

22p−n[2(n−2p)]!
(n−2p)!(n−2p−m)!

Pm
n−2p(cosθ )e(imφ) (39)

The satisfaction of the boundary condition (32)
leads to the determination of the expansion coef-
ficients appeared in Eq (33) and hence to the so-
lution of the direct scattering problem. In other
words the well posed boundary value problem
consisting of Eqs.(30),(31), (32) is reduced to de-
termine the coefficients Anm from the equation

∞

∑
n=0

n

∑
m=−n

Anmûnm(r) = −eikr, r ∈ D (40)

There exist several approaches appropriate to treat
the boundary condition (40) . In order to com-
ment on them, we evoke here the results of the
previous section providing the basic eigensolu-
tions ûnm(r) which are written here in the follow-
ing more condensed form,

ûnm(r) =
∞

∑
q=0

[ n
2 ]

∑
p=0

[ n−2l
2 ]

∑
l=0

Pm
n−2p−2l(coshμ)

{
q

∑
j=0

j

∑
i=− j

A1(q, j,n,m, p, l,c)(sinhμ)2q−2 j

β m, j
n−2p−2l,iP

m
n−2p−2l+2i(cosθ )eimφ

+ i
∞

∑
t=0

t

∑
j=0

j

∑
i=− j

Ã1(q, t, j,n,m, p, l,c)

(coshμ)2(q−n+2p−t)−1β m, j
n−2p−2l,iP

m
n−2p−2l+2i(cosθ)

eimφ

}
(41)

where the subscript “1” indicates the correspond-
ing function divided by β m, j

n,i . (We mention that

the coefficients A, Ã are proportional to β m, j
n−2p−2l,i

as can be deduced from [Charalambopoulos and
Dassios (2002)] and previous section).
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On scatterer’s surface, we have μ = μ0 and
clearly the basis functions ûnm(r̂) = ûnm(μ0,θ ,φ )
depend only on θ ,φ through the well known
family of spherical harmonics Pm

n (cosθ )eimφ .
So, one is tempted to handle (40) by “project-
ing” the equation on these spherical harmonics
and simultaneously truncating the infinite sum
suitably to construct a sequence of linear alge-
braic systems, whose solvability and solution
convergence investigation should be the nec-
essary steps towards a thorough estimation of
the sought expansion coefficients. The ele-
ments of the so constructed algebraic systems
matrix can be calculated analytically, easily,
since as can be deduced immediately from
Eq. (41) , the determination of inner products∫ π

0

∫ 2π
0 ûnm(μ0,θ ,φ )Pm′

n′ (cosθ )e−im′φ sinθdθdφ
degenerates to the well known orthogonality pairs∫ π

0

∫ 2π
0 Pm

n−2p−2l+2i(cosθ )Pm′
n′ (cosθ )ei(m−m′)φ sinθ

dθdφ . However the so produced matrix lacks
the symmetry property, which is proved to be
useful in treating linear systems of first kind
generated by truncation processes. We are going
to suggest two alternative approaches. One
of them is based on minimization principles,
assuring the aforementioned symmetry and the
second one is the simplest possible methodology
if the requirement of symmetry is not adopted.

4 The Collocation and L2 method for the so-
lution of the scattering problem

The arguments presented in the last paragraph of
previous section are exploited herein, to the for-
mulation of appropriate schemes for the determi-
nation of the coefficients of the expansion of the
scattered field, in terms of the radiating eigenso-
lutions. We start both approaches by truncating
the expansion of the scattered field to level N and
defining the error function

εN(θ ,φ ) = usc
N (r)+uinc(r)|r∈S

=
N

∑
n=0

n

∑
m=−n

Anmûnm(μ0,θ ,φ )+eik·r(μ0,θ ,φ) (42)

representing the failure of the satisfaction of the
boundary condition due to truncation.

The L2-approach suggests the minimization of the
L2-norm of this function, given by

‖εN‖L2 =
(∫ π

0

∫ 2π

0
|εN(θ ,φ )|2 sinθdθdφ

)1/2

(43)

following the least squares framework methodol-
ogy. It is clearly deduced that, minimizing the L2-
norm of the error in the surface of the scatterer, is
equivalent to minimizing

∑
n,m

∑
n′,m′

[
AnmAn′m′(ûnm, ûn′m′)L2 +Anm(ûnm,eik·())L2

+An′m′(eik·(), ûn′m′)L2 +(eik·(),eik·())L2

]
(44)

where (, )L2 indicates the usual L2-inner prod-
uct (with conjugation in the second term) in θ ,φ
space incorporating the weight function sinθ , and
∑n,m stands for ∑N

n=0 ∑n
m=−n Minimizing expres-

sion (44) over the involved coefficients leads to
the following linear system

∑
n′,m′

(ûnm, ûn′m′)L2An′m′ +(ûnm,eik·())L2 = 0, (45)

(n = 0,1,2, ..., |m| ≤ n)

Splitting every term in real and imaginary part, we
obtain

(ûnm, ûn′m′)L2 = (uc
nm,uc

n′m′)L2 +(us
nm,us

n′m′)L2

+(ũc
nm, ũc

n′m′)L2(ũs
nm, ũs

n′m′)L2

+(ũc
nm,us

n′m′)L2 − (ũs
nm,uc

n′m′)L2

− (uc
nm, ũs

n′m′)L2 +(us
nm, ũc

n′m′)L2

+ i
{

(us
nm,uc

n′m′)L2 − (uc
nm,us

n′m′)L2

+(ũs
nm, ũc

n′m′)L2 − (ũc
nm, ũs

n′m′)L2

+(ũc
nm,uc

n′m′)L2 +(ũs
nm,us

n′m′)L2

− (uc
nm, ũc

n′m′)L2 − (us
nm, ũs

n′m′)L2

}
(46)

and

(ûnm,eik·())L2 =
(uc

nm,cos(k · ()))L2 +(us
nm, sin(k · ()))L2

− (ũs
nm,cos(k · ()))L2 +(ũc

nm, sin(k · ()))L2

+ i
{
(us

nm,cos(k · ()))L2 − (uc
nm, sin(k · ()))L2

+(ũc
nm,cos(k · ()))L2 +(ũs

nm, sin(k · ()))L2

}
(47)
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Anm = anm + ibnm (48)

we consider the basic matrix blocks

Bn′m′
nm

=
(

Re[(ûnm, ûn′m′)L2 ] Im[(ûnm, ûn′m′)L2 ]
Im[(ûnm, ûn′m′)L2 ] −Re[(ûnm, ûn′m′)L2]

)

xnm = [anm bnm]

bnm = [Re(ûnm,eik·())L2 , Im(ûnm,eik·())L2 ]

Then the system (45) obtains the matrix form

DNxN = −bN (49)

DN =⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B0,0
0,0 B1,−1

0,0 · · · B1,1
0,0 · · · BN,−N

0,0 · · · BN,N
0,0

B0,0
1,−1 B1,−1

1,−1 · · · B1,1
1,−1 · · · BN,−N

1,−1 · · · BN,N
1,−1

B0,0
1,0 B1,−1

1,0 · · · B1,1
1,0 · · · BN,−N

1,0 · · · BN,N
1,0

B0,0
1,1 B1,−1

1,1 · · · B1,1
1,1 · · · BN,−N

1,1 · · · BN,N
1,1

...
...

...
...

. . .
...

. . .
...

B0,0
N,−N B1,−1

N,−N · · · B1,1
N,−N · · · BN,−N

N,−N · · · BN,N
N,−N

B0,0
N,−N+1 B1,−1

N,−N+1 · · ·B1,1
N,−N+1 · · ·BN,−N

N,−N+1 · · ·BN,N
N,−N+1

...
...

...
...

. . .
...

. . .
...

B0,0
N,N B1,−1

N,N · · · B1,1
N,N · · · BN,−N

N,N · · · BN,N
N,N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(50)

where

xN =
(
x0,0x1,−1x1,0x1,1· · ·xN,−NxN,−N+1· · ·xN,N

)T

(51)

bN =
(
b0,0b1,−1b1,0b1,1· · ·bN,−NbN,−N+1· · ·bN,N

)T

(52)

The matrix DN is a [2(N +1)2 ×2(N +1)2] sym-
metric one consisting of inner products between
the eigensolutions, and bN is a [2(N + 1)2 × 1]
column containing the inner products between the
oscillating functions cos(k · r), sin(k · r) and the
eigensolutions. The vector xN contains the es-
timation of the first (N + 1)2 coefficients Anm =
anm + ibnm, at the truncation level N.

The inner products between the eigensolutions
can be determined via their definitions (20) , (26)
after executing the simple φ ,θ necessary integra-
tion. As an example

(uc
nm,uc

n′m′)L2 =

∞,∞

∑
q,q′=0,0

q,q′

∑
j, j′=0,0

[ n
2 ],[ n′

2 ]

∑
p,p′=0,0

[ n−2p
2 ],[ n′−2p′

2 ]

∑
l,l′=0,0

i,i′

∑
j, j′=−i,−i′

A(q, j,n,m, p, l, i,c)A(q′, j′,n′,m′, p′, l′, i′,c)[
(sinhμ0)2(q+q′)−2( j+ j′)

Pm
n−2p−2l(coshμ0)Pm

n′−2p′−2l′(coshμ0)
]

2π(n−2p−2l +2i+m)!
[2(n−2p−2l +2i)+1](n−2p−2l +2i−m)!

δ n′−2p′−2l′+2i′
n−2p−2l+2i δ m′

m (53)

(where δ i
j is the Kronecker symbol and

∑c,c′
a,a′=b,b′ = ∑c

a=b ∑c′
a′=b′)

All the inner products involved in DN have sim-
ilar forms, apparently cumbersome, but it is an
outcome of our analysis that the involved sums
converge rapidly, due mainly to the specific form
of the involved function A. In fact, it can be easily
shown that

Bn′m′
nm =

(
0 0
0 0

)
i f m �= m′ (54)

since all eigensolutions inner products are propor-
tional to δ m′

m . This fact simplifies drastically the
form of the matrix DN .

Similar expressions can be deduced for the non-
homogeneous terms of the linear system under
discussion. For instance, if we consider, for rea-
sons of brevity the case k = kẑ, then the first term
of Eq. (47) is proved to be given by

(uc
nm,cos(k · ()))L2 = 4π

∞

∑
t=0

∞

∑
q=0

q

∑
j=0

[ n
2 ]

∑
p=0

[ n−2p
2 ]

∑
l=0

j

∑
i=− j

(−1)tc2t

t!
A(q, j,n,0, p, l, i,c)[

(sinhμ0)2q−2 jPm
n−2p−2l(coshμ0)

]
β 0,t

n−2p−2l+2i,sδ
0
n−2p−2l+2i+2sδ

0
m (55)



Acoustic Scattering in Prolate Spheroidal Geometry via Vekua Tranformation 167

The role of c = 1
2ka (it is involved apart from ex-

plicitely, also in function A) is crucial in the con-
vergence rate of the infinite sums. In the reso-
nance region, only a few terms are necessary to
establish convergence in Eq.(55). Furthermore,
in next section, it will be explained how an al-
ternative numerical scheme has been constructed
leading to the determination of all the necessary
surface integrals involving in system (49).

As will be shown in next section, the L2-norm
minimization approach just exposed, turns out to
be very robust and provides extremely accurate
results even for elongated spheroidal bodies.

If we are not interested in solving such extreme
cases, then an alternative simple approach may be
followed. This methodology belongs to the gen-
eral framework of the collocation methods. Al-
though it is far more sensitive to the semi-axes ra-
tio variance, it is far more performent than the L2

approach, as it does not involve expensive quadra-
tures and it can easily handle spheroidal bod-
ies with semi-axes ratio greater than 0.9. In the
Collocation approach, an appropriately selected
grid of collocation points is constructed on the
spheroidal surface, at which the error function is
forced to be exactly zero. Then the following sys-
tem arises

CNxN = −g
N

(56)

where CN has similar structure with DN given
by Eq.(50) with the only difference that the sub-
blocks Bn′m′

nm give their places to the new matrices
En′m′

nm with

En′m′
nm =

(
Re[ûnm(rn′m′)] Im[ûnm(rn′m′)]
Im[ûnm(rn′m′)] −Re[ûnm(rn′m′)]

)
(57)

and rn′m′ are the sampling points parametrized
by the indeces n′,m′ having the same range with
the pair (n,m). Finally the non-homogeneous-
column g

N
has the same structure of bN with ele-

ments bnm replaced by

g
nm

= [cos(k · rnm), sin(k · rnm)] (58)

5 Numerical Implementation

5.1 Assembly and Solvability of the System

The core of the numerical investigation of the
present work concerns the assembly and solu-
tion of the linear systems, arising in both collo-
cation and L2 approaches. Those systems involve
extremely ill-conditioned matrices with condi-
tion numbers ranging from 1010 to 10220 as it
will be demonstrated in the sequel. For the nu-
merical treatment of those system, we have de-
veloped both Mathematica [Wolfram Research
(2004)] and C++ software. Arbitrary precision
arithmetic in C++ was provided by ARPREC li-
brary [Bailey, Yozo, Li, and Thompson (2002)].
The implementations of special functions in C++
was based on [Press, Teukolsky, Vetterling, and
Flannery (2002)], [Zhang and Jin (1996)] with
the necessary modifications and tunning to the
working precision. This involves recalculation of
all the usual parameters and mathematical con-
stants entering the definition of special functions
to the desired precision and appropriate modifi-
cations of the source code of the special func-
tions [Press, Teukolsky, Vetterling, and Flannery
(2002)], [Zhang and Jin (1996)] in order to be
evaluated to the sought precision.

Special care was taken such that both C++-Arprec
and Mathematica implementations agree in the fi-
nal results. We had to take into consideration, for
instance, that C++ and Mathematica dispose dif-
ferent generators for the Legendre functions for
arguments greater than unity. The results obtained
by both C++ and Mathematica implementations
agreed to all but the last two decimal digits in any
desired precision.

Special attention has been paid, in the framework
of the collocation approach, to generate an appro-
priate grid of points on the scatterer’s surface at
which the boundary conditions should be fulfilled.
The reason is that due to symmetries and involved
periodicity of the vekua basis functions, the gen-
eration of points on the prolate spheroidal surface,
in an equally spaced grid, results in a singular ma-
trix. To remedy such issues, we employed a “ran-
dom” point selection. More precisely, we gener-
ated a non regular grid using congruential random
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number generators [Press, Teukolsky, Vetterling,
and Flannery (2002)] for the selection of the an-
gle pair (θi,φi) characterizing every point on the
boundary.

For the solution of the linear systems we have
used Singular Value Decomposition (SVD) which
allows direct calculation of the condition num-
ber of the matrices involved. The performance
bottleneck of our approaches in contrast to clas-
sical numerical methods (Finite Elements, Finite
Volumes, Finite Differences, Spectral Elements)
and especially Boundary Element Method in scat-
tering theory [Agnantiaris and Polyzos (2003)],
[Qian, Han, and Atluri (2004)], [Qian, Han,
Ufimtsev, and Atluri (2004)], [Tsai, Lin, Young,
and Atluri (2006)] is the assembly of the linear
system, and not its solution, and thus computa-
tional overhead associated with the choice of SVD
over the classical LU decomposition was negligi-
ble.

In the scattering process under investigation we
consider a spheroidal scatterer with large semi-
axis whose reduced length is kept constant and
equal to one, while the small semiaxis suitably
varies to give birth to several aspect ratios. The
excitation of the scattering mechanism has been
accomplished with a plane wave corresponding to
the wave number propagation vector k = 0.1x̂ +
0.1ŷ+0.1ẑ (in reduced units).

5.2 Condition Number

In Fig. 1 we plot the condition number of matrices
arising from the collocation and L2 approaches
correspondingly, as a function of the truncation
level of the series N. It is evident that the condi-
tion number in both cases, is established mainly
by the truncation level of the series while the role
of the aspect-ratio (aR) of the scatterer is almost
negligible.

In Fig. 2 we keep constant the aspect-ratio of the
scatterer to 0.9 and we plot the condition number
of the matrices obtained by both approaches as a
function of the truncation level of the series N.

We observe that the matrices assembled with the
collocation discretization are better conditioned
than those obtain with the L2 minimization ap-
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Figure 1: Condition number from collocation (up-
per) and L2 (lower) approaches as a function of N
for several aR’s.
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Figure 2: Condition number from L2 and Collo-
cation approaches as a function of N.

proach by a factor approximately 1030. Once “ar-
bitrary precision” is available however, this is a
small price to pay for the increased accuracy pro-
vided by the L2 approach, which is approximately
five orders of magnitude for the specific aspect-
ratio, see Tab. 4 and Tab. 5.
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Due to the fact that those linear systems are
highly ill-conditioned, the solution obtained by
one backsubstitution is extremely inaccurate as
we can see in Tab. 1. To adjust the solution to
our working precision we used iterative refine-
ment [Quarteroni, Sacco, and Saleri (2000)]. Er-
ror and residual bounds involved in iterative re-
finement procedure, are adjusted to the working
precision. Below the desired precision was set
to 128 digits and the update (‖dx‖2) and resid-
ual (‖r‖2) Euclidean norm tolerances were 10−128

and 10−129 respectively. The number of steps

Table 1: Solution using iterative refinement.

Iteration ‖dx‖2 ‖r‖2

0 1.666402e-01 8.340997e-74
1 9.990374e-51 5.123128e-123
2 6.110645e-100 6.710668e-130
3 6.187603e-120 8.446949e-130

needed increases proportionally to the condition
number. As a rule of thumb the working pre-
cision should be tunned to log10 κ(A) [Trefethen
and Bau (1997)]. It is evident that in the first step
of iterative refinement the norm of the solution
update is still too large and unless several steps
of iterative refinement are performed, we cannot
obtain a reasonable solution to our system.

5.3 Convergence

The solution of the truncated linear systems four-
nishes the coefficients of the truncated scattered
field. Using these coefficients, we construct an
approximate scattered field, and validate the trun-
cation level by investigating the error in the sat-
isfaction of the boundary condition (32) , due to
the replacement of the exact scattered field by the
approximate one. This investigation has been im-
plemented via two methods. We have studied the
convergence in L∞ and L2-norms of the so con-
structed error function (42), defined as

‖εN‖L∞(S) =
(

esssup
S
|εN |
)

= max
S

|εN| (59)

‖εN‖L2(S) =
(∫

S
|εN |2 dS

) 1
2

(60)

For the calculation and the visualization of the
L∞-norm we used a very dense regular grid of the
prolate spheroidal surface. The error as given by
Eq. 59 is calculated at all those points and the
point where absolute value of the error attains its
maximum, provides the value of discrete equiv-
alent L∞-norm. For studying the distribution of
the error we visualized both its real and imaginary
parts on the scatterer itself as a function of the
azimuthal and polar angles. Computation of the
integrals related to the L2-norm was performed
using Gauss-Legendre quadrature [Press, Teukol-
sky, Vetterling, and Flannery (2002)]. The num-
ber of the required quadrature points was adjusted
such that the L2-norm of the error converges to the
fifth significant digit.

We examine the convergence of both approaches
in the appropriate norms, as a function of the trun-
cation level of the series, for various aspect ratios
of the prolate spheroidal scatterer. We start by the
collocation approach which is presented in Fig. 3.

It is evident that in this case, the role of the aspect-
ratio of the scatterer is as significant as that of the
truncation level of the series. In contrast to the
previous study, where its role to the determina-
tion of the condition number was negligible, we
observe that for aspect-ratios around 0.90 the con-
vergence of the method slows down significantly
and only marginally depends on the truncation
level N.

In Fig. 4, we plot the dependence on the trunca-
tion level N, for various aspect-ratios, of the L∞-
norm of the real and imaginary parts of the error
ε in the L2 method framework, while in Fig. 5 we
plot ‖ε‖L2 obtained by the same approach.

The convergence here obviously deteriorates with
smaller aspect ratios as it also happens with the
collocation method. However it is clear that the
range of aspect ratios the L2 approach can handle,
is amazingly wider. The rate of convergence of
the logarithm of all the error norms, obtained by
the L2 approach is surpisingly linear. This simpli-
fies significantly the regression analysis, for ob-
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Figure 3: ‖Re(ε)‖L∞ and ‖Im(ε)‖L∞ in Colloca-
tion method as a function of N for various aspect
ratios.

taining a formula describing the dependence of
‖ε‖L2, on the aspect ratio of the scatterer and the
truncation level of the series. This linearity can be
expressed by the formula

ln(‖ε‖L2) = C(aR)N +D(aR) (61)

where C,D are functions depending only on the
aspect ratio of the scatterer. The values of C,D
for various aspect ratios are summarized in Tab. 2.
For their determination we used the values of the
error norms obtained by the L2 approach summa-
rized in Tab. 5. The dependence of D(aR) on aR is
linear as well, with regression coefficient (slope)
equal to - 2.7081 and regression constant (inter-
cept) equal to -0.23797. The dependence of C(aR)
on aR is plotted in Fig. 6. It is clearly nonlinear
which gradually approaches zero. We are in posi-
tion to describe this dependence with correlation
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Figure 4: ‖Re(ε)‖L∞ and ‖Im(ε)‖L∞ in L2 method
as a function of N for various aspect ratios.

coefficient 0.9999 using the following formula

C(aR) = c1 −c2ec3(aR−c4) (62)

where c1,c2,c3,c4 are adjustable constant param-
eters. The values of the parameters obtained by
the non-linear curve fit are presented in Tab. 3.

In Fig. 7, we visualize the real and imaginary parts
of the error obtained with collocation approach on
the (φ ,θ ) plane with φ ∈ [0,2π), and θ ∈ [0,π ].
The aspect ratio of the scatterer is 0.9 and the trun-
cation level was set to N = 18. Figures 8, 9,
accompany the (φ ,θ ) plots to provide a detailed
description of the error distribution. Figures 10
and 11 visualize both real and imagine parts of
the error from the L2 approach for a scatterer with
aspect ratio 0.5 and truncation level N = 18.
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Table 2: C(aR) and D(aR)

aR C(aR) D(aR)
0.5 -0.11505 -1.5731
0.6 -0.20107 -1.8566
0.7 -0.32968 -2.1610
0.8 -0.53157 -2.4441
0.9 -0.89035 -2.6334

Table 3: Non-linear curve fit constants.
c1 6.839 ·10−5

c2 0.161791
c3 5.02222
c4 0.56083
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Figure 5: ‖ε‖L2 obtained by L2 approach as a
function of N for various aspect-ratios.
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Figure 7: Re(ε) and Im(ε) in L∞ method at aspect
ratio 0.90 at truncation level N=18.

Figure 8: 3D plot of Re(ε) at aspect ratio 0.90 at
truncation level N=18 (Collocation Method).
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Figure 9: 3D plot of Im(ε) at aspect ratio 0.90 at
truncation level N=18 (Collocation Method).

Figure 10: 3D plot of Re(ε) at aspect ratio 0.50 at
truncation level N=18 (L2 method).

Figure 11: 3D plot of Im(ε) at aspect ratio 0.50 at
truncation level N=18 (L2 method).

Table 4: Error norms (Collocation method)

aR N ‖Re{ε}‖L∞ ‖Im{ε}‖L∞ ‖ε‖L2

0.90 16 1.8431e-3 6.9624e-3 4.8992e-3
18 9.4445e-5 3.5835e-4 1.5952e-4
20 2.9190e-5 1.1434e-4 6.2613e-5

0.91 16 3.1972e-4 1.2407e-3 8.8066e-4
18 2.6764e-5 9.9460e-5 4.5527e-5
20 7.6146e-6 2.9449e-5 1.6011e-5

0.92 16 6.5676e-5 2.6161e-4 1.8767e-4
18 6.8419e-6 2.4772e-5 1.1722e-5
20 1.7691e-6 6.9089e-6 3.6575e-6

0.93 16 1.3360e-5 5.4589e-5 3.9676e-5
18 1.5305e-6 5.3694e-6 2.6428e-6
20 3.5403e-7 1.4014e-6 7.2211e-7

0.94 16 2.4611e-6 1.0311e-5 7.6150e-6
18 2.8629e-7 9.6558e-7 4.9977e-7
20 5.8098e-8 2.3444e-7 1.1746e-7

0.95 16 3.7795e-7 1.6256e-6 1.2213e-6
18 4.1770e-8 1.3397e-7 7.4262e-8
20 7.2820e-9 3.0258e-8 1.4631e-8

0.96 16 4.2980e-8 1.9040e-7 1.4617e-7
18 4.2283e-9 1.3474e-8 7.8024e-9
20 6.1197e-10 2.6538e-9 1.2367e-9

0.97 16 2.9469e-9 1.4153e-8 1.0732e-8
18 2.3816e-10 9.1159e-10 4.8052e-10
20 2.7100e-11 1.2582e-10 5.6887e-11

0.98 16 7.7111e-11 4.3541e-10 3.1582e-10
18 4.5167e-12 2.4106e-11 1.1671e-11
20 3.6901e-13 1.9464e-12 8.8264e-13

0.99 16 1.6798e-13 1.4764e-12 9.9074e-13
18 5.4610e-15 6.4575e-14 3.1108e-14
20 2.6998e-16 1.9304e-15 1.0411e-15

Table 5: Error norms (L2 method)

aR N ‖Re{ε}‖L∞ ‖Im{ε}‖L∞ ‖ε‖L2

0.50 16 6.5606e-2 2.5508e-2 3.2551e-2
18 5.6217e-2 2.1874e-2 2.6582e-2

0.60 16 1.2751e-2 6.1860e-3 6.4097e-3
18 9.3826e-3 4.5556e-3 4.4775e-3

0.70 16 1.1027e-3 7.1718e-4 6.0417e-4
18 6.3258e-4 4.1187e-4 3.2843e-4

0.80 14 6.9655e-5 6.8857e-5 5.0315e-5
16 2.6562e-5 2.6308e-5 1.8046e-5

0.90 14 2.1491e-7 4.3466e-7 2.7400e-7
16 3.9934e-8 8.1110e-8 4.8071e-8
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Figure 12: Real and Imaginary part of far field at
aspect ratio 0.90 and truncation level N = 18.

5.4 Far Field

The far-field pattern constitutes the basic outcome
of the analysis of the direct scattering problem. It
is determined by Eq. 39 after having substituted
the calculated expansion coefficients provided by
the precending numerical process. In Figs. 12,
13 we visualize the real and imaginary part of the
far-field pattern for the extreme elongated (aR =
0.5) as well as for the prolate spheroid with aR =
0.9.

Conclusions

In this paper, a new theoretical formulation for
the solution of the acoustic scattering problem
from prolate spheroidal scatterers has been devel-
oped. This new approach detours the well known
spheroidal wave functions and their inherent nu-
merical deficiencies. The essence of the proposed

Figure 13: Real and Imaginary part of far field at
aspect ratio 0.50 and truncation level N = 18.

method is the extension of the well known Vekua
transformation between the kernels of Laplace
and Helmholtz equation to scattering problems.
The starting point of determining the scattered
field is to express it in terms of the constructed
set of eigensolutions. The expansion coefficients
constitute the unknown of our problem and solve
a crucial linear system emergin from the bound-
ary condition satisfaction. The next fundamental
outcome of this work has been the thorough nu-
merical investigation of this system given that the
corresponding matrix is generally an extremely
ill-conditioned one. The special feature of the nu-
merical treatment is the development of arbitrary
precision techniques to our problem. Two numer-
ical schemes were suggested for the determina-
tion of the sought expansion coefficients, an er-
ror minimization and a collocation approach. The
former obtains an optimal choice of the expan-
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sion coefficients which minimizes the ‖ ·‖L2 norm
of the error introduced in the satisfaction of the
boundary condition, due to truncation. Although
it is numerically intensive, it was proved to be a
very robust and reliable scheme which could ac-
curately handle very elongated prolate spheroidal
scatterers. The second approach belongs to the
wider class of collocation methods and provides a
simple alternative, from an implementation point
of view, when the spheroidal scatterers, under in-
vestigation, have aspect ratios not far from unity.
We demonstrated that arbitrary precision arith-
metic provides an indispensible tool for this type
of problems as the condition numbers of the ma-
trices obtained by both approaches is far beyond
the one, that can be handled by conventional 64-
bit and 80-bit IEEE floating point arithmetic for-
mats.
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