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On Hole Nucleation in Topology Optimization Using the Level Set Methods

S.Y. Wang1,2 , K.M. Lim2,3, B.C. Khoo2,3 and M.Y. Wang4

Abstract: Hole nucleation is an important is-
sue not yet fully addressed in structural topology
optimization using the level set methods. In this
paper, a consistent and robust nucleation method
is proposed to overcome the inconsistencies in
the existing implementations and to allow for
smooth hole nucleation in the conventional shape
derivatives-based level set methods to avoid get-
ting stuck at a premature local optimum. The ex-
tension velocity field is constructed to be consis-
tent with the mutual energy density and favorable
for hole nucleation. A negative extension velocity
driven nucleation mechanism is established due
to the physically meaningful driving force. An
extension velocity filtering approach is developed
to allow for nucleation of new holes at the sites
where the material is ineffectively used while the
ill-posed topology optimization problem can be
regularized. To overcome the numerical instabili-
ties caused by the level set evolution, the gradients
of the level set function are kept bounded using a
rescaling-based reinitialization scheme based on
a global representation technique without mov-
ing the free boundary. Inconsistencies with the
regularization and reinitialization techniques are
eliminated and smooth nucleation of new holes
becomes possible. The level set-based topology
optimization would become more accurate and
efficient. The success of the present method is
demonstrated with the classical examples in min-
imum compliance design.
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1 Introduction

Structural topology optimization has become an
attractive design tool for obtaining more efficient
structures. An optimal topology can be reached
by iterative modifications of holes and connectiv-
ities in the design domain [Akin and Arjona-Baez
(2001); Bendsøe and Kikuchi (1988)]. Topol-
ogy optimization has the highest importance in
the developing process of all structural optimiza-
tion methods due to its maximum savings [Roz-
vany (2001); Bendsøe and Kikuchi (1988); Xie
and Steven (1993); Wang, Tai, and Wang (2006);
Wang and Wang (2006a)]. Further improvement
due to shape or sizing optimization is only pos-
sible with greater effort with respect to time and
cost. Nevertheless, structural topology optimiza-
tion has been recognized as one of the most
challenging tasks in structural design [Rozvany
(2001); Bendsøe and Sigmund (2003)].

Recently, the level set methods, first introduced
by Osher and Sethian in [Osher and Sethian
(1988)], have been applied to structural shape
and topology optimization problems based on
the moving free boundaries (dynamic interfaces)
[Sethian and Wiegmann (2000); Osher and San-
tosa (2001); Wang, Wang, and Guo (2003); Al-
laire, Jouve, and Toader (2004)]. It is well
known that the level set method itself is a sim-
ple and versatile technique for computing and
analyzing the motion of an interface in two or
three dimensions [Sethian (1999); Osher and Fed-
kiw (2002); Lowengrub, Xu, and Voigt (2002);
Sheen, Seo, and Cho (2003); Cheng, Kang, Os-
her, Shim, and Tsai (2004); Mai-Duy, Mai-Cao,
and Tran-Cong (2007)]. Since these interfaces
may easily develop sharp corners, break apart,
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merge together and even disappear in a stable
manner [Tsai and Osher (2003)], the level set
method can be quite convenient and effective
to handle drastic topological changes in topol-
ogy optimization. Sethian and Wiegmann (2000)
[Sethian and Wiegmann (2000)] first extended the
level set method of Osher and Sethian [Osher
and Sethian (1988)] to capture the free bound-
ary of a structure on a fixed Eulerian mesh. Os-
her and Santosa [Osher and Santosa (2001)] in-
vestigated a two-phase optimization of a mem-
brane modeled by a linear scalar partial differen-
tial equation (PDE). More closely related works
on the level set-based structural topology opti-
mization can be found in [Wang, Wang, and Guo
(2003); Allaire, Jouve, and Toader (2004)]. Wang
et al. [Wang, Wang, and Guo (2003)] imple-
mented a level set method for structural topol-
ogy optimization by establishing the normal ve-
locities in terms of the variational Frechét shape
sensitivity as a physically meaningful link be-
tween the general structural topology optimiza-
tion process and the universal level set methods.
It was shown that using the level set methods for
structural topology optimization has the potentials
in flexibility of handling topological changes, fi-
delity of boundary representation and degree of
automation. Allaire et al. [Allaire, Jouve, and
Toader (2004)] proposed an implementation of
the level set methods for structural topology op-
timization in which the classical shape deriva-
tives [Sokolowski and Zolesio (1992)] for struc-
tural elasticity analysis were introduced in a math-
ematically rigorous manner. It was illustrated that
drastic topological changes can be achieved dur-
ing the level set evolution, but the final designs
may be quite sensitive to the initial guess. Since
there was no nucleation mechanism in the conven-
tional level set methods (at least for 2D cases), it
would be difficult for a level set-based topology
optimization method to generate new holes to es-
cape from a premature local optimum with fewer
holes [Allaire, Jouve, and Toader (2004); Burger,
Hackl, and Ring (2004)]. More recently, this
important issue has been further investigated by
many researchers [Allaire, Gournay, Jouve, and
Toader (2004); Burger, Hackl, and Ring (2004);
Wang, Mei, and Wang (2004); Allaire, de Gour-

nay, Jouve, and Toader (2005); Wang and Wei
(2005); Wang and Wang (2006b); Hintermuller
(2005); Amstutz and Andrä (2006); He, Kao, and
Osher (2007)].

A direct method to resolve this issue is to incor-
porate the classical topological derivatives into
the conventional shape derivatives-based level
set methods, as implemented by most of the
researchers in the literature [Allaire, Gournay,
Jouve, and Toader (2004); Burger, Hackl, and
Ring (2004); Wang, Mei, and Wang (2004); Al-
laire, de Gournay, Jouve, and Toader (2005);
Wang and Wei (2005); Hintermuller (2005); Am-
stutz and Andrä (2006)]. The classical topological
derivative [Sokolowski and Żochowski (2001)] is
a sensitivity measure with respect to the opening
of a small hole at a certain position in the design
domain. Incorporating the topological derivatives
into the shape derivatives-based level set meth-
ods establishes one possibility of creating new
holes in the design domain, however, nucleation
of new holes cannot be guaranteed due to the re-
sulting inconsistencies with the well-established
techniques such as regularization and reinitializa-
tion [Allaire, Jouve, and Toader (2004); Wang
and Wang (2004a)] to overcome the numerical
instabilities in the conventional level set-based
topology optimization, which may prevent the oc-
currence of small holes. Ignoring or weakening
those techniques may allow for nucleation of new
holes, as shown in [Allaire, Gournay, Jouve, and
Toader (2004); Burger, Hackl, and Ring (2004);
Wang, Mei, and Wang (2004); Allaire, de Gour-
nay, Jouve, and Toader (2005); Wang and Wei
(2005); Wang and Wang (2006b); Hintermuller
(2005); Amstutz and Andrä (2006); He, Kao, and
Osher (2007)], but significant numerical instabili-
ties may occur. Hence, further address on the in-
consistencies becomes necessary to develop a ro-
bust and consistent hole nucleation method.

It is well-known that the structural topology
optimization problem is ill-posed in its gen-
eral continuum setting [Bendsøe (1995); Bend-
søe and Sigmund (2003)] and thus existence of
solutions cannot be guaranteed. To ensure ex-
istence of solutions and mesh-independent de-
signs, a perimeter control method was usually
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adopted in the level set-based topology optimiza-
tion [Allaire, Jouve, and Toader (2004); Wang and
Wang (2004b)] to regularize the ill-posed prob-
lem. The perimeter control method would intro-
duce a perimeter constraint on the admissible de-
sign configurations and may thus prevent the oc-
currence of small holes since small holes would
be taken as undesirable noises in the perimeter
control method. Hence, nucleation of new holes
in the design domain can be inconsistent with this
popular regularization technique.

Reinitialization is a technique for the conven-
tional level set methods [Sethian (1999); Osher
and Fedkiw (2002)] to maintain stable evolution.
Periodic reinitialization can avoid the develop-
ment of a steep/flat level set function to destroy
the numerical stability. The usual implementa-
tions of a reinitialization scheme, such as the one
using the Godunov scheme to reinitialize the level
set function into a signed distance function [Os-
her and Fedkiw (2002)], can be efficient but shift
of the interface may be unavoidable, especially
when drastic topological changes are involved due
to nucleation of new holes. As noted in [Tsai
and Osher (2003)], the usual reinitialization pro-
cedure may even take the small holes as unde-
sirable numerical errors and thus prevent the oc-
currence of the small holes. Hence, nucleation
of new holes can be inconsistent with the pop-
ular reinitialization schemes that may shift the
free boundary. It should be noted that most of
the reinitialization schemes are not robust and
efficient enough to account for drastic topolog-
ical changes. A reinitialization scheme that al-
lows for significant topological changes without
moving the free boundary may require prohibitive
computation and might be complex to implement
[Marchandise, Remacle, and Chevaugeon (2006);
He, Kao, and Osher (2007)] and thus destroy the
efficiency and simplicity of the conventional level
set methods.

The classical topological derivative [Sokolowski
and Żochowski (2001)] is with respect to the
opening of a small (infinitesimal) hole. How-
ever, the sizes of new holes were not properly
defined and may even be arbitrarily large [Wang,
Mei, and Wang (2004)] in the current implemen-

tations using the topological derivatives for hole
nucleation. This apparent inconsistency may not
only weaken the theoretical basis for hole nucle-
ation but also violate the optimality conditions.
The trial and error procedure to alleviate this in-
consistency recommended in [Allaire, Gournay,
Jouve, and Toader (2004); Burger, Hackl, and
Ring (2004); Wang, Mei, and Wang (2004); Al-
laire, de Gournay, Jouve, and Toader (2005);
Wang and Wei (2005)] cannot be efficient in gen-
eral.

The objective of the present study is to propose
a robust and consistent hole nucleation method
by establishing new regularization and reinitial-
ization techniques without the significant incon-
sistencies in the framework of conventional shape
derivatives-based level set methods without incor-
porating the topological derivatives. Extension
velocities are constructed to be physically mean-
ingful and favorable for hole nucleation. Nucle-
ation of new holes is driven by the physically
meaningful negative extension velocities. An ex-
tension velocity filtering approach is proposed to
overcome the inconsistency in creating new holes
while ensuring existence of solutions. A global
support-based shift-free reinitialization scheme is
proposed to avoid hampering the smooth nucle-
ation of new holes while maintaining a well-
behaved level set function. Nucleation of new
holes can be achieved automatically and possi-
ble numerical instabilities can be effectively sup-
pressed. The robustness and effectiveness of the
present method can be well demonstrated by the
chosen classical examples in topology optimiza-
tion.

2 Shape Derivatives-Based Level Set Meth-
ods with Hole Nucleation Capability

2.1 Shape Derivatives

The level set method is a powerful and versatile
numerical technique. In the standard level set
method first introduced by Osher and Sethian [Os-
her and Sethian (1988)], the interface (or moving
boundary) is embedded into a higher-order (one
dimension higher) level set function Φ(x) as the
zero level set

{
x ∈ R

d |Φ(x) = 0
}

(d = 2 or 3).
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The implicit scalar level set function Φ (x) has the
following properties:

Φ(x) = 0 ⇐⇒ ∀x ∈ ∂Ω ∩D
Φ(x) < 0 ⇐⇒ ∀x ∈ Ω\∂Ω
Φ(x) > 0 ⇐⇒ ∀x ∈ (D\Ω)

(1)

where D ⊂ R
d is a fixed design domain in which

all admissible shapes Ω (a smooth bounded open
set) are included, i.e. Ω ⊂ D .

Using a level set model as defined in Eq. (1), the
structural topology optimization problem with a
volume constraint [Sigmund (2001); Bendsøe and
Sigmund (2003)] to limit the use of material can
be written as follows:

min
Φ

J(u,Φ) =
∫

D
F(u)H(−Φ)dΩ

s. t. :
a(u,υ,Φ) = L(υ,Φ), u|ΓD

= u0, ∀υ∈U
V(Φ)/V0 � ζ

(2)

where J(u,Φ) is the objective function, u the dis-
placement field, F(u) the design function, H(Φ)
the Heaviside step function, V(Φ) the material
volume, V0 the total volume of the design domain
D , and ζ the prescribed volume fraction. The lin-
early elastic equilibrium equation is written in its
weak variational form in terms of the energy bi-
linear form a(u,υ,Φ) and the load linear form
L(υ,Φ) [Wang and Wang (2004b)], with υ denot-
ing a virtual displacement field in the space U of
kinematically admissible displacement fields, and
u0 the prescribed displacement on the admissible
Dirichlet boundary ΓD. Furthermore, we have

a(u,υ,Φ) =
∫

D
εT (u)Cε(υ)H(−Φ)dΩ (3)

L(υ,Φ)

=
∫

D
υT fH(−Φ)dΩ +

∫
D

υT τδ (Φ)|∇Φ |dΩ

(4)

V(Φ) =
∫
D

H(−Φ)dΩ (5)

where C is the elasticity matrix, f the body force
vector, τ the boundary traction force vector, and
δ (Φ) the Dirac delta function.

The Lagrange multiplier method can be used to
solve this optimization problem [Osher and San-
tosa (2001)]. By setting the constraint on the equi-
librium state inactive, the Lagrangian L (u,Φ , �)
with a positive Lagrange multiplier � can be given
by

L (u,Φ , �) = J(u,Φ)+�G(Φ) (6)

where the volume constraint functional G(Φ) can
be expressed as

G(Φ) = V (Φ)−ζV0 (7)

According to the Kuhn-Tucker condition of the
optimization, the necessary condition for a min-
imizer is

DΦL (u,Φ , �) = 0
G(Φ) � 0

(8)

where DΦL (u,Φ , �) is the gradient of the La-
grangian with respect to Φ . It should be noted
that u is also a function of Φ , i.e. u = u(Φ).

The gradient, or shape derivative, of the La-
grangian DΦL (Φ , �) may be obtained following
the well-known approach of Murat and Simon of
shape diffeomorphism [Haug, Choi, and Komkov
(1986); Sokolowski and Zolesio (1992)]. Based
on local perturbations of the moving free bound-
ary of an admissible design [Wang and Wang
(2004b)], the resulting shape derivative of the La-
grangian can be written as

DΦL (u,Φ , �)

=
∫

D
(g(u,Φ)+�) δ (Φ)|∇Φ |vn dΩ (9)

where

g(u,Φ) = F(u)+(u∗)T (f+κτ)+∇((u∗)T τ) ·n
−εT (u)Cε(u∗) (10)

in which u∗ is the adjoint displacement field of u,
the outward normal n and the curvature κ can be
given as

n =
∇Φ
|∇Φ | (11)

κ = ∇ · (∇Φ/|∇Φ |) (12)
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and the relationship between the normal velocity
vn and the velocity v is:

vn = v ·n (13)

Furthermore, Eq. (9) can be simplified as

DΦL (u,Φ , �) =
∫

ΓM

(g(u,Φ)+�) vn ds (14)

where ΓM is the moving free boundary. Simi-
larly, the resulting shape derivative of the volume
constraint functional G(Φ) (7) can be simply ex-
pressed as [Wang, Lim, Khoo, and Wang (2007b)]

DΦG(Φ) =
∫

ΓM

vn ds (15)

2.2 A Consistent Extension Velocity Method

Choosing the normal velocity field vn is of cru-
cial importance not only for the efficiency of the
level set methods as shown in [Sethian (1999);
Richards, Bloomfield, Sen, and Calea (2001);
Wang and Wang (2006b)] but also for the suc-
cess of a hole nucleation mechanism in the shape
derivatives-based level set methods as imple-
mented in the present study. In the conven-
tional Eulerian approach-based level set methods
[Sethian (1999); Osher and Fedkiw (2002)], the
normal velocity field vn must be defined in the
whole design domain D or a narrow band as the
extension velocity field. In the present study, a
consistent extension velocity method is proposed
to allow for nucleation of new holes in the shape
derivatives-based level set methods.

There are many approaches to constructing the
extension velocity field [Sethian (1999)]. The
original level set method introduced by Osher
and Sethian [Osher and Sethian (1988)] was con-
cerned with interface problems with geometric
propagation velocities and thus a natural construc-
tion of an extension velocity was obtained, in
which a signed distance function was used as a
level function due to its simplicity. In many fluid
simulations, the fluid velocity was chosen as the
extension velocity [Sussman, Smereka, and Os-
her (1994); Rhee, Talbot, and Sethian (1995)].
When there is no physically meaningful choice
available, the extension velocity was suggested to

be constructed by extrapolating the velocity from
the free boundary by some researchers [Mallad,
Sethian, and Vemuri (1996)], which requires the
location of the closest grid point. Adalsteinsson
and Sethian [Adalsteinsson and Sethian (1999)]
proposed a fast extension method which preserves
the signed distance in a narrow band around the
zero level set curve by assuming the normal ve-
locity be constant along the normal. Ye et. al. [Ye,
Bresler, and Moulin (2002)] developed a method
to deduce the extended velocity from the value of
the switching level set function without additional
computation by letting the level set function con-
vey information about the image intensity. Never-
theless, these approaches may be physically less
meaningful for the present topology optimization
problems.

According to the shape derivative of the La-
grangian in Eq. (9), the extension velocity vn(x)
based on the popular steepest gradient method
[Osher and Santosa (2001); Wang, Wang, and
Guo (2003); Allaire, Jouve, and Toader (2004)]
can be written as

vn(x) = −g(u,Φ)−�, x ∈ D (16)

in which the extension velocity is defined in the
whole design domain D to cater to nucleation of
new holes. The present extension velocity vn(x)
is consistent with the physical quantity g(u,Φ) at
the point x and thus different from the inconsis-
tent extension velocity field which derives from
the normal velocities at the free boundary [Adal-
steinsson and Sethian (1999)]. The present con-
sistent extension velocity field is favorable for nu-
cleation of new holes. In case that some small
new holes are created, we may still have

DΦL (u,Φ , �) = −
∫

ΓM+Γh

v2
n ds < 0 (17)

in which Γh is the new free boundary due to the
creation of new holes. Hence, the decent direc-
tion will not be changed and nucleation of small
holes without changing the total structural vol-
ume may increase the efficiency of a given struc-
ture. This is consistent with the theoretical predic-
tion for topology optimization [Bendsøe (1995);
Bendsøe and Sigmund (2003)] since the topol-
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ogy optimization problem is ill-posed in its gen-
eral continuum setting as shown in Eq. (2). The
ill-posedness is to be overcome by a new regular-
ization method without preventing the creation of
new holes in this study. As a comparison, if the in-
consistent extension velocity field is chosen, Eq.
(17) becomes

DΦL (u,Φ , �)

= −
∫

ΓM

v2
n ds+

∫
Γh

(g(u,Φ)+�) vn ds (18)

and the decent direction may even be changed
since the extension velocity at Γh is derived from
the original free boundary ΓM and thus inconsis-
tent with the physical quantity (g(u,Φ)+�) at Γh.
Hence, the inconsistent extension velocity field is
unfavorable for hole nucleation.

Furthermore, the present extension velocities are
physically meaningful. Since the physical quan-
tity g(u,Φ) as shown in Eq. (10) can be used as a
measure of mutual energy density, the sign of the
extension velocity may indicate whether the ma-
terial at the point is effectively used or not while
vn(x) = 0 is the optimality condition.

For the present topology optimization problem
with a moving free boundary, without remeshing,
the displacement and consistent extension veloc-
ity fields may be accurately and efficiently ob-
tained by using several existing numerical meth-
ods such as the “ersatz material" approach [Al-
laire, Jouve, and Toader (2004)], the geome-
try projection method [Norato, Haber, Tortorelli,
and Bendsøe (2004)], the extended finite ele-
ment methods [Belytschko and Black (1999);
Strouboulis, Copps, and Babuska (2001); Wang
and Wang (2006a)], or the true meshless local
Petrov-Galerkin method [Atluri and Shen (2002)].
In the present study, the moving superimposed fi-
nite element method in [Wang and Wang (2006a)]
is adopted, in which a moving local mesh is super-
imposed onto a fixed global mesh as an adaptive
local mesh refinement technique.

2.3 A Negative Extension Velocity Driven Nu-
cleation Mechanism

A nucleation mechanism may be established for
the conventional shape derivatives-based level set

methods without incorporating the topological
derivatives due to the physically meaningful driv-
ing force generated by the present consistent ex-
tension velocity field.

The Hamilton-Jacobi equation [Osher and Sethian
(1988)] for the level set evolution can be ex-
pressed as

∂Φ
∂ t

+vn |∇Φ |= 0, Φ(x,0) = Φ0(x), x ∈ D

(19)

where t is the artificial time, and Φ0(x) embeds
the initial position of the free boundary. Hence,
we have

∂Φ
∂ t

= −vn |∇Φ | (20)

According to Eq. (20), creation of a new hole at
position x ∈ Ω is possible if vn(x) < 0 such that
∂Φ(x)

∂t > 0. Hence, the negative extension veloc-
ities can be used as the driving forces for hole
nucleation in the conventional shape derivatives-
based level set methods. Since the negative ex-
tension velocity vn(x) < 0 may indicate that the
material at the point x is ineffectively used and
can thus be removed, which is a generally ac-
cepted idea in the element removal techniques for
topology optimization such as the evolutionary
structural optimization approach [Xie and Steven
(1993)], the present nucleation mechanism can
be physically meaningful. The present nucle-
ation mechanism has a sound theoretical basis and
is thus different from the element removal tech-
niques. It should be noted that nucleation of new
holes using extension velocities was predicted by
Sethian [Sethian (1999)].

Nevertheless, the present negative extension ve-
locity driven nucleation mechanism only provides
a possibility of creating new holes. Nucleation of
new holes may be prevented by the popular regu-
larization and reinitialization techniques as afore-
mentioned. In the present study, new regulariza-
tion and reinitialization techniques favorable for
the present physically meaningful hole nucleation
mechanism are proposed.
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2.4 An Extension Velocity Filtering Approach

Significant numerical instabilities may occur in
topology optimization due to the ill-posedness of
the optimization problem [Bendsøe and Sigmund
(2003); Allaire, Jouve, and Toader (2004); Wang
and Wang (2006a)]. To regularize the ill-posed
problem into a well-posed problem, a filtering
technique is proposed to smooth the present con-
sistent extension velocity field. Filtering has be-
come quite popular and successful in various do-
mains of engineering applications as a numerical
method to ensure regularity or existence of so-
lutions to an ill-posed problem and has become
increasingly popular in the SIMP method con-
tinuum topology optimization [Bendsøe and Sig-
mund (2003); Wang and Wang (2005)].

In the present implementation, a linear smoothing
filter is introduced and a linear hat kernel function
[Sigmund (2001)] is used to achieve an excellent
edge smoothing effect [Wang and Wang (2005)].
The filtered extension velocity v̂n(x) can be writ-
ten as

v̂n(x) = k−1(x) ∑
p∈N(x)

w(‖p−x‖)vn(p), x ∈ D

(21)

where

w(‖p−x‖) = rmin−‖p−x‖ (22)

k(x) = ∑
p∈N(x)

w(‖p−x‖) (23)

in which N(x) is the neighborhood of the point
x in the filter window and rmin the filter window
size.

Using this extension velocity filtering approach,
the smoothness of the extension velocity field can
be guaranteed. Furthermore, if a small hole is cre-
ated at the position with negative extension veloc-
ity due to the present nucleation mechanism, the
filtered extension velocities in the neighborhood
of the small hole would also be negative and thus
the growth of the hole in the subsequent level set
evolution can be guaranteed. On the other hand,
if there is a small hole in the region with positive
extension velocities, this small hole cannot exist
permanently with zero velocities at the boundary

since the filtered extension velocities would be
positive and thus the small hole would be taken as
noise and eliminated in the subsequent evolution.
Hence, this regularization technique is consistent
with the present nucleation mechanism.

Furthermore, according to the present consistent
extension velocity method as shown in Eq. (16),
there is a significant discontinuity at the free
boundary. This discontinuity may cause numeri-
cal instability for the conventional level set meth-
ods. Due to the present regularization technique,
the filtered extension velocities in the neighbor-
hood of the free boundary will become smoother
and thus the significant discontinuity can be elim-
inated. Hence, the present extension velocity fil-
tering approach is versatile and highly indispens-
able.

2.5 A Rescaling-based Reinitialization Scheme

The present extension velocities may not allow for
the development of a flat level set function in the
neighborhood of the free boundary to hamper fur-
ther level set evolution. According to the consis-
tent extension velocity method as shown in Eq.
(16), the extension velocities in the neighborhood
of the free boundary ΓM can always be signifi-
cantly different due to the solid and void phases
even if the optimality condition (vn(x) = 0, ∀x ∈
ΓM) has been arrived at. The significant differ-
ence may still exist after using the present reg-
ularization technique, totally different from the
constant normal extension velocities using the in-
consistent extension velocity method. Therefore,
a flat level set function in the neighborhood of
the free boundary would not be developed. On
the contrary, the level set function may become
increasingly steep in the whole domain D , ac-
cording to the Hamilton-Jacobi equation (19). To
guarantee a stable level set evolution, the gradi-
ents of the level set function must be bounded and
thus a reinitialization scheme is needed.

To make the gradients of the level set function
bounded, the increasingly high gradients must be
evaluated accurately. Unfortunately, the com-
monly used finite difference methods [Osher and
Fedkiw (2002)] in the level set methods may be
inaccurate for estimating the increasingly high
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gradients. The popular finite difference upwind
ENO schemes [Osher and Fedkiw (2002); Tsai
and Osher (2003)] developed under the general
philosophy of the Godunov procedure and the
nonlinear ENO reconstruction techniques may
give a smooth reconstruction, but may still have
difficulties in evaluating the increasingly high gra-
dients both accurately and efficiently while pre-
serving the global smoothness of the level set
function due to the local representation tech-
niques. The global smoothness is of crucial im-
portance to maintain a stable level set evolution.
The level set function must be always at least Lip-
schitz continuous [Osher and Fedkiw (2002)]. In
this study, the evaluation of gradients is based on
a global representation technique using globally
supported Radial Basis Functions (RBFs) to guar-
antee the global smoothness. It should be noted
that the applications of RBFs to achieve more ac-
curate results in the level set methods have been at
the incipient stage [Cecil, Qian, and Osher (2004);
Wang and Wang (2006b,c); Wang, Lim, Khoo,
and Wang (2007a,c)].

The level set function can be smoothly recon-
structed from gridded data using the globally sup-
ported RBFs, which can be written as

Φ =
N

∑
i=1

αi(t)ϕi (x) (24)

where αi(t) is the time dependent expansion coef-
ficient of the Multiquadric (MQ) RBF ϕi (x) posi-
tioned at the i-th grid point, or center, N the total
number of RBF centers. The MQ RBF ϕi (x) can
be expressed as

ϕi (x) =
√

(‖x−xi‖)2 +c2 (25)

where c (c > 0) is a free shape parameter [Buh-
mann (2004); Wang and Wang (2006b)].

The RBF interpolant (24) can be obtained by solv-
ing a system of N linear equations for N unknown
expansion coefficients provided that the gridded
data are given:

Φ (xi) = φi(t), i = 1, . . .,N (26)

which can be re-written in the matrix form as

Hα = φ (t) (27)

where H is the multiquadric interpolation or
collocation matrix [Buhmann (2004); Wang and
Wang (2006b)]. It can be proven that the inter-
polation matrix is nonsingular [Buhmann (2004)]
and thus theoretically invertible. The expansion
coefficients α can be given by

α = H−1φ (t) (28)

Hence, the RBF representation in Eq. (24) can be
given in compact form as

Φ = ϕT (x)H−1φ (t) (29)

where

ϕ (x) =
[
ϕ1(x) ϕ2(x) · · · ϕN(x)

]T
(30)

After reconstructing the level set function from
the gridded data, the corresponding norm of the
gradient |∇Φ| for a two dimensional (2D) prob-
lem can be readily obtained as follows:

|∇Φ|

=

[(
∂ϕT

∂x
H−1φ (t)

)2

+
(

∂ϕT

∂y
H−1φ (t)

)2
]1/2

(31)

where

∂ϕ
∂x

=
[

∂ϕ1

∂x
∂ϕ2

∂x
· · · ∂ϕN

∂x

]T

(32)

∂ϕ
∂y

=
[

∂ϕ1

∂y
∂ϕ2

∂y
· · · ∂ϕN

∂y

]T

(33)

in which

∂ϕi

∂x
=

x−xi√
(x−xi)2 +(y−yi)2 +c2

(34)

∂ϕi

∂y
=

y−yi√
(x−xi)2 +(y−yi)2 +c2

(35)

It should be noted that the MQ RBFs are infinitely
smooth since they are continuously differentiable.
Hence, the global smoothness of the reconstructed
level set function Φ in (29) as well as the norm of
its gradient |∇Φ| can be guaranteed. The present
global representation technique can thus be sig-
nificantly different from the commonly used finite
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difference methods [Osher and Fedkiw (2002)].
Most importantly, all the gradients will become
less distinct due to the global smoothness. In case
that there are some extraordinarily high extension
velocities in the design domain, the updated grid-
ded data φ (t) may also have some extraordinarily
high values, but the expected development of ex-
traordinarily higher gradients due to a local repre-
sentation technique can be greatly alleviated since
the present global representation technique can
guarantee that the reconstructed level set function
and its gradients be globally smooth. The global
smoothness is the theoretical basis for the present
reinitialization scheme. In [Cecil, Qian, and Os-
her (2004)], RBFs were used to approximate the
gradients in a reconstruction stencil only and thus
the global smoothness cannot be guaranteed.

Since the significant differences between
high gradients and low gradients are globally
smoothed, it would be easy to develop a reinitial-
ization scheme to keep all the gradients bounded
without moving the free boundary.

It is well known that the gridded data φ (t) can
be rescaled without changing the free boundary
Φ = 0. According to Eqs. (29) and (31), not only
the reconstructed level set function Φ but also the
norm of its gradient |∇Φ| at any point will also
be equally rescaled. This rescaling may decrease
all the gradients equally and thus keep the gra-
dients bounded. Since the present extension ve-
locity method can prevent the occurrence of a flat
level set function and the gradient of the level
set function is globally smooth, this rescaling will
not cause the level set function to become flat. It
should be noted that the local representation tech-
niques [Osher and Fedkiw (2002)] would not help
smooth the significant differences between high
and low gradients and continuous rescaling would
cause the low gradients independently developed
in the neighborhood of the free boundary to be-
come almost zero and thus the interface would
be lost and significant numerical instability would
arise. The present rescaling-based reinitialization
scheme can be performed at each iteration without
losing the interface and thus the difficult practical
question [Gómez, Hernández, and López (2005)]
that concerns the reinitialization frequency can be

clearly answered. Hence, in the present re-scaling
based reinitialization scheme, the gradients of the
level set function can be kept bounded, a steep/flat
level set function cannot be developed while shift
of the free boundary avoided.

Nevertheless, it should be stressed that the com-
putational cost of the present scheme can be-
come too expansive when the total number of
centers is high since the interpolation matrix H
in (27) is dense. A sparse interpolation matrix
can be achieved by using the compact support
RBFs [Buhmann (2004)], but the accuracy of the
RBF representation may be deteriorated because
there is a trade-off between the accuracy and effi-
ciency in using the compact support RBFs [Buh-
mann (2004)]. Since the accuracy is more im-
portant than efficiency for a numerical algorithm,
the multiquadric RBFs are preferred in the present
study. The resulting dense interpolation matrix
can be efficiently handled by several existing it-
erative methods [Buhmann (2004)], such as the
domain decomposition approach, the fast multi-
pole method, and preconditioning techniques. It
should also be noted that the present interpolation
matrix H is time independent and thus the compu-
tational cost due to the dense interpolation matrix
would not become prohibitive during the level set
evolution.

3 Numerical Examples and Discussion

Numerical examples in two dimensions in the
framework of classical minimum compliance de-
sign are provided to illustrate the accuracy and
efficiency of the present method. Unless stated
otherwise, all the units are consistent and the fol-
lowing parameters are assumed as: the Young’s
elasticity modulus E = 1 for solid materials and
Poisson’s ratio ν = 0.3. Furthermore, rmin = 2.4
grid size for the filter window size. For all exam-
ples, a fixed rectilinear mesh is specified over the
entire design domain as the global mesh for using
the moving superimposed finite element method
[Wang and Wang (2006a)]. The Euler’s method
is used in the temporal integration due to its sim-
plicity. The present algorithm is terminated when
the relative difference between two successive ob-
jective function values is less than 10−5 or when
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the given maximum number of iterations has been
reached.

3.1 A Michell Type Structure

The classical Michell type structure design prob-
lem [Michell (1904)] is adopted to demon-
strate the accuracy of the present method, in
which a theoretical Michell’s solution is available
[Michell (1904); Hemp (1973)], as shown in Fig.
1. The whole design domain D is a rectangle
of size L × H, the two bottom corners have the
pinned supports, and a unit vertical point force P
is applied at the middle point of the bottom side.
As shown in Figure 1(b), the theoretical optimum
topology consists of two 45◦ arms extending from
the supports towards an approximately 90◦ central
fan section which extends upwards from the point
of application of the force. In this study, it is as-
sumed that L = 2, H = 1.2, P = 1, and a volume
fraction of ζ = 0.3. The design domain D is dis-
cretized with a fixed global mesh of 100×60. Due
to the symmetry, only a half structure is used in
the numerical analysis to save the computational
time.

Topology optimization using an initial design
without a hole is performed to demonstrate the
success of the present hole nucleation mechanism.
The design without a hole as shown in Fig. 2(a) is
used as the initial design. A timestep size of 0.001
together with a free shape parameter of c = 0.001
is used. The evolution history of the final design
is shown in Fig. 2. It can be seen that topolog-
ical changes due to nucleation of new holes are
achieved because of the present nucleation mech-
anism. Figure 3 shows the scalar extension ve-
locity field at step 8. It can be seen that the nu-
cleation of new holes at step 9 as shown in Fig.
2(c) is in excellent agreement with the driving
forces caused by the negative velocity filed shown
in Fig. 3. The success of the present nucleation
mechanism is thus demonstrated. Hence, the con-
ventional shape derivatives-based level set meth-
ods may possess the hole nucleation capability.
The final topology shown in Fig. 2(f) is almost
identical to the theoretical optimum topology as
shown in Fig. 1(b). The accuracy of the present
method can thus be verified. The possibility of

getting stuck at a local minimum without a hole
due to the present initial guess has been overcome.
Hence, the present method can be robust and less
sensitive to the initial guess. Figure 4 displays
a comparison between the finite element model
of the final design and the corresponding scalar
non-negative extension velocity filed. It can be
seen that the structural free boundary corresponds
with the zero extension velocity curve well, as
theoretically predicted. Inside the final design no
regions with negative extension velocities exist,
which can be greatly different from using the level
set methods without a nucleation mechanism. The
convergence rates of both the objective and vol-
ume functions are shown in Fig. 5. It can be seen
that stable convergence can be achieved and hole
nucleation may increase the efficiency of a struc-
ture due to the present consistent extension veloc-
ity method.

3.2 A Bridge Type Structure

The 2D bridge type structure optimal design prob-
lem [Wang, Wang, and Guo (2003)], as shown
in Fig. 6, is similar to the Michell type structure
problem shown in Fig. 1. In this study, it is also
assumed that L = 2, H = 1.2, P = 1, and a volume
fraction of ζ = 0.3.

The design without any holes shown in Fig. 7(a)
is taken as the initial design. A timestep size of
τ = 0.01 together with a free shape parameter of
c = 0.0001 is adopted. Figure 7 shows the evolu-
tion history of the final design. It can be seen that
drastic topological changes due to the nucleation
of new holes have been achieved. The success
of the present hole nucleation mechanism without
incorporating the classical topological derivatives
is again demonstrated. The final design shown in
Fig. 7(h) is almost identical to the one in the lit-
erature [Wang, Wang, and Guo (2003)] using the
conventional level set methods and an initial de-
sign with much more holes. The accuracy of the
present method is again verified. Figure 8 shows
that the structural free boundary corresponds with
the zero extension velocity curve well and there
are no regions inside the final design with nega-
tive extension velocities. The convergence rates
of the objective and volume functions are shown
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Figure 1: Topology optimization problem for a Michell type structure.

(a) Initial design (b) Step 5 (c) Step 9

(d) Step 15 (e) Step 20 (f) Final design (step 67)

Figure 2: Evolution history of the optimal design for the Michell type structure starting with an initial
design without a hole.
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Figure 3: Scalar extension velocity field (vn � 0) of the half structure at step 8.
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(a) Finite element model for the final design
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Figure 4: Final solutions (half structure) for the Michell type structure problem starting with an initial
design without a hole.

0 10 20 30 40 50 60 70
10

15

20

25

30

Number of timesteps

J
(Φ

)

0 10 20 30 40 50 60 70
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Number of timesteps

V
(Φ

)/
V

0

ζ = 0.3

Figure 5: Convergence of the objective and volume functions for the Michell type structure starting with an
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Figure 6: Optimal topology design problem for a 2D bridge type structure.
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(a) Initial design (b) Step 2 (c) Step 5 (d) Step 10

(e) Step 15 (f) Step 30 (g) Step 50 (h) Final design (step 75)

Figure 7: Evolution history of the optimal design for the 2D bridge starting with an initial design without a
hole.

in Fig. 9. It can be seen that stable convergence
in both the objective and volume functions has
been achieved during the course of evolution since
drastic topological changes due to nucleation of
new holes can be favorable to obtain a more effi-
cient structure, according to the present consistent
extension velocity method.

3.3 A Short Cantilever Beam

The minimum compliance design problem of a
short cantilever beam is shown in Fig. 10. The
whole design domain is a rectangle of size L×H
with a fixed boundary (zero displacement bound-
ary condition) on the left side and a unit verti-
cal point load applied at the middle point of the
right side. In this study, it is assumed that L = 2,
H = 1, P = 1, and a volume fraction of ζ = 0.5. A
80×40 regular mesh is used as the global mesh.

The design without a hole shown in Fig. 11(a)
is used as the initial design. A timestep size of
τ = 0.001 together with a free shape parameter of
c = 0.001 is adopted. Figure 11 shows the evo-
lution history of the optimal design. Again, it can
be seen that drastic topological changes due to the
nucleation of new holes have been achieved. The
success of the present hole nucleation mechanism
is again demonstrated. Figure 12 shows that the
free boundary agrees with the zero extension ve-
locity curve well, as theoretically predicted. The

convergence rates of the objective and volume
functions are shown in Fig. 13. It can be seen
that stable convergence in both the objective and
volume functions has been achieved since dras-
tic topological changes due to nucleation of new
holes may be favorable to obtain a more efficient
structure.

The design with some holes shown in Fig. 14(a) is
used as another initial guess to further investigate
the dependence of the final design on the initial
guess. Figure 14 shows the corresponding evo-
lution history of the final design. It can be seen
from Fig. 14(c) that nucleation of new holes can
also be achieved during the level set evolution be-
cause of the present hole nucleation mechanism.
The final design as shown in Fig. 14(f) may have
fewer holes than the initial design due to the op-
timality conditions. Figure 15 shows that the free
boundary agrees with the zero extension velocity
curve well. The convergence rates of the objec-
tive and volume functions are shown in Fig. 16.
Again, it can be seen that stable convergence has
been obtained due to the present consistent exten-
sion velocity method.

Since the final design shown in Fig. 11(f) obtained
from an initial guess without a hole is different
from the one shown in Fig. 14(f) obtained from
another initial guess with more holes than the op-
timum, the dependence of the final solutions on
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(a) Finite element model for the final design
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Figure 8: Final solutions (half structure) for the 2D bridge problem starting with an initial design without a
hole.
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Figure 10: Minimum compliance design problem of a short cantilever beam.
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(a) Initial design (b) Step 3 (c) Step 5

(d) Step 8 (e) Step 11 (f) Final design (Step 78)

Figure 11: Evolution history of the optimal design for the cantilever beam starting with an initial design
without a hole.

(a) Finite element model for the final design
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Figure 12: Final solutions for the cantilever beam starting with an initial design without a hole.
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Figure 13: Convergence of the objective and volume functions for the cantilever beam starting with an
initial design without a hole.
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(a) Initial design (b) Step 3 (c) Step 6

(d) Step 9 (e) Step 12 (f) Final design (step 18)

Figure 14: Evolution history of the optimal design for the cantilever beam starting with an initial design
with holes.

(a) Finite element model for the final design
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Figure 15: Final solutions for the cantilever beam starting with an initial design with holes.
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Figure 16: Convergence of the objective and volume functions for the cantilever beam starting with an
initial design with holes.
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the initial guess cannot be completely overcome
by the present method. This is sound because the
topology optimization problem is not convex and
thus uniqueness of solutions cannot be guaran-
teed. Furthermore, the present gradient-based op-
timization method is only a local method, though
it can effectively prevent the rapid convergence to
a premature local optimum with fewer holes than
the initial guess.

4 Conclusions

A consistent and robust nucleation method is pro-
posed in this study. The crucially important exten-
sion velocity field is constructed to be consistent
with the mutual energy density and favorable for
hole nucleation. Due to the consistent extension
velocities, a negative extension velocity driven
nucleation mechanism can be established and the
driving forces can be physically meaningful since
nucleation of new holes can be allowed for at the
sites where the material is ineffectively used. An
extension velocity filtering approach is developed
to be consistent with the present nucleation mech-
anism while regularizing the ill-posed topology
optimization problem to ensure existence of so-
lutions. The smoothed extension velocities may
even eliminate the discontinuity at the free bound-
ary to favor a smooth level set evolution. To over-
come the numerical instabilities caused by the
level set evolution, a rescaling-based reinitializa-
tion scheme is developed to keep all the gradients
bounded without moving the free boundary using
a global representation technique. The globally
supported multiquadric RBFs can guarantee the
reconstructed level set function and its gradients
to be infinitely smooth. Development of sharp dif-
ferences between high and low derivatives can be
prevented due to the global smoothness. Since the
inconsistencies with the regularization and reini-
tialization techniques are eliminated, smooth nu-
cleation of new holes becomes possible and rapid
convergence to a local optimum with fewer holes
than the initial guess can be avoided. The conven-
tional level set-based topology optimization can
thus become more accurate and efficient.
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