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Fictitious Domain with Least-Squares Spectral Element Method to Explore
Geometric Uncertainties by Non-Intrusive Polynomial Chaos Method

L. Parussini1 and V. Pediroda2

Abstract: In this paper the Non-Intrusive Poly-
nomial Chaos Method coupled to a Fictitious Do-
main approach has been applied to one- and two-
dimensional elliptic problems with geometric un-
certainties, in order to demonstrate the accuracy
and convergence of the methodology. The main
advantage of non-intrusive formulation is that ex-
isting deterministic solvers can be used. A new
Least-Squares Spectral Element method has been
employed for the analysis of deterministic differ-
ential problems obtained by Non-Intrusive Poly-
nomial Chaos. This algorithm employs a Fic-
titious Domain approach and for this reason its
main advantage lies in the fact that only a Carte-
sian mesh needs to be generated. Excellent ac-
curacy properties of method are demonstrated by
numerical experiments.
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1 Introduction

There is an increasing interest in uncertainty anal-
ysis applied to computational physics, since the
influence of inherent physical and geometric un-
certain parameters can no longer be neglected. In
fact in order to obtain reliable results, uncertainty
quantification is necessary.

Recent research effort has been focusing on de-
veloping methods for uncertainty quantification,
which can be divided into two categories: non-
intrusive, or statistical, (as Monte Carlo [Blith
and Pozrikidis (2003)], Stochastic Collocation
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[Mathelin and Hussaini (2003)], Chaos Colloca-
tion [Loeven, Witteveen, and Bijl (2006)]) and
intrusive, or non-statistical (as Chaos Polynomi-
als [Xiu and Karniadakis (2003b); Xiu and Tar-
takovsky (2006)]).

Usually the topology of domain boundaries are
described in deterministic terms, without taking
in account of their stochastic nature, whereas
the effort is focused on exploring random ma-
terial properties or random boundary conditions
(Fig. 1). In literature there are several examples of
numerical methods to face such kind of problems.
In [Xiu and Karniadakis (2002); Xiu and Kar-
niadakis (2003b); Xiu and Karniadakis (2003a);
Wan and Karniadakis (2006); Loeven, Witteveen,
and Bijl (2007)] we find applications of these
methodologies to thermo-fluid dynamics.

In this work we consider a different problem:
we want to solve deterministic problems on ran-
dom domains (Fig. 2), with geometric uncertainty
given by shape tolerance. Actually there are really
few examples of numerical methods for geometric
uncertainty.

In [Lin, Su, and Karniadakis (2006); Xiu and Tar-

Figure 1: Differential problem with stochastic
material properties and random boundary condi-
tions, where θ is uncertainty.
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Figure 2: Differential problem with stochastic
definition domain, where θ is uncertainty.

takovsky (2006)], geometric uncertainty pertains
to roughness, which is an important thermo-fluid
dynamic parameter. In particular [Lin, Su, and
Karniadakis (2006)] presents an analytical model
to study the roughness in supersonic flow and
the analytical results are compared with several
Polynomial Chaos methodologies, such as map-
ping, Stochastic Collocation and Sparse Grid. In
[Xiu and Tartakovsky (2006)] the fluid dynam-
ics in rough channels is studied using a mapping
methodology. The obtained results confirm Chaos
methods are suitable to study geometry uncer-
tainty given roughness.

Another interesting point is the study of shape tol-
erance and its interaction with the state problem
(thermal, fluid dynamic, thermo-fluid dynamic).
In [Hosder, Walters, and Perez (2006)] the influ-
ence of geometric tolerance on fluid dynamic field
is shown, referring to an angle. A Chaos method-
ology is used to explore the random domain, in
particular a non-intrusive approach. In [Canuto
and Kozubek (2007)] a method is presented for
the numerical realization of elliptic PDEs in do-
mains depending on random variables, where the
key feature is the combination of a Fictitious Do-
main approach and a Polynomial Chaos expan-
sion. A (generalized) Wiener expansion is in-
voked to convert such a stochastic problem into a
deterministic one. Discretization is accomplished
by standard mixed finite elements in the physical
variables and a Galerkin projection method with
numerical integration in the stochastic variables.

In this work we present a method to face geomet-

ric tolerance problems, which allows to avoid the
limitations of previous referred methodologies, in
particular both the difficulty of mapping space
variables into a deterministic domain and the need
to remesh the geometry of domain. Our method
is similar to [Canuto and Kozubek (2007)], but
with a non-intrusive approach for solving stochas-
tic problem.

Pursuing this purpose, we present a new method
based on the coupling of a Non-Intrusive Polyno-
mial Chaos method and a Fictitious Domain ap-
proach. According to Polynomial Chaos theory,
a stochastic process can be expressed as a spec-
tral expansion based on suitable orthogonal poly-
nomial with weights associated with a particular
density. For non-intrusive approach, a Colloca-
tion projection is applied in the random dimension
and the resulting system of deterministic equa-
tions is then solved to obtain the solution for each
random node of nodal approximation. The im-
portant advantage of using a non-intrusive method
is there is no need to modify the solver of deter-
ministic equations, simplifying the management
of computational process.

To solve the deterministic problem Least Squares
Spectral Element Method is used [Pontaza and
Reddy (2003); Pontaza and Reddy (2004); Pon-
taza (2007); Proot and Gerritsma (2002); Proot
and Gerritsma (2005); Gerritsma and Maer-
schalck (2006)]. Moreover a Fictitious Domain
approach is adopted, introducing more benefits to
methodology.

Fictitious Domain methods allow problems for-
mulated on an intricate domain Ω to be solved
on a simpler domain Π containing Ω. The
extension of original problem to fictitious re-
gion Π/Ω must be chosen so that the solu-
tion of extended problem restricted to Ω co-
incides with the solution of original problem.
There are several approaches to implement Ficti-
tious Domain: Elimination method [Zienkiewicz
and Taylor (2000)], Penalty method [Zienkiewicz
and Taylor (2000); Ramiere, Angot, and Bel-
liard (2005)], Distributed Lagrangian method
[Haslinger, Maitre, and Tomas (2001); Glowinski,
Pan, Hesla, and Joseph (1999); Glowinski, Pan,
Hesla, Joseph, and Periaux (2000)], Boundary
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Lagrangian method [Stenberg (1995); Joly and
Rhaouti (1999)], Fat Boundary method [Maury
(2001)]. A technique which is popular, given its
efficiency, is to enforce the boundary conditions
by Lagrange multipliers, which is the method we
propose in this paper.

The main motivation for Fictitious Domain ap-
proach is that, defining the extended problem on
a simple domain, enables the use of efficient dis-
cretization methods on simple structured grids. In
this way the solution of state problem is indepen-
dent by small variations of domain Ω subject to
uncertainty and contained into computational do-
main Π, which is independent by random geomet-
ric parameters. Thereby an evident further advan-
tage of the method is that remeshing of computa-
tional domain for each random node solution has
no more to be performed.

The excellent accuracy of proposed methodology,
Non-Intrusive Polynomial Chaos method and Fic-
titious Domain with Least-Squares Spectral Ele-
ment approximation, is demonstrated by numeri-
cal experiments.

The paper is organized as follows. In Sec-
tion 2 some details are given about uncertainty
quantification methods. In Section 3 the effec-
tiveness of Non-Intrusive Chaos Polynomial ap-
proach to solve problems with geometric toler-
ance is demonstrated, comparing it to the ana-
lytic solution and Monte Carlo method. In Sec-
tion 4 the Fictitious Domain approach is illus-
trated and good accuracy properties of the method
are demonstrated by numerical experiments. In
Section 5 the formulation of Non-Intrusive Poly-
nomial Chaos Method with Fictitious Domain ap-
proach is explained and in Section 6 some numer-
ical examples to validate the Non-Intrusive Poly-
nomial Chaos Method with Fictitious Domain ap-
proach are shown. In Section 7 we give some con-
cluding remarks.

2 Uncertainty quantification methods

2.1 Setting of the problem: stochastic differen-
tial equation

In this section the Non-Intrusive Generalized
Polynomial Chaos is explained in order to solve

the following stochastic differential equation:

L(x, t,θ ;φ ) = f (x, t,θ ) (1)

where L is a differential operator which con-
tains space and time differentiation and can be
non linear and depended on random parameters
θ ; φ (x, t,θ ) is the solution and function of the
space x ∈ ℜd , time t and random parameters θ ;
f (x, t,θ ) is a space, time and random parameters
dependent source term.

2.2 The Generalized Polynomial Chaos

Under specific conditions [Schoutens (2000)], a
stochastic process can be expressed as a spec-
tral expansion based on suitable orthogonal poly-
nomial with weights associated with a particular
density. The first study in this field is the Wiener
process [Wiener (1938); Wiener (1958)], which
can be written as a spectral expansion in terms of
Hermite polynomials with normal distributed in-
put parameters.

The basic idea is to project the variables of the
problem onto a stochastic space spanned by a set
of complete orthogonal polynomials Ψ that are
functions of random variables ξ (θ ), where θ is a
random event. For example, the variable φ has the
following spectral finite dimensional representa-
tion:

φ (x, t,θ ) =
∞

∑
i=0

φi(x, t)Ψi(ξ (θ )) (2)

In practical terms the Eq. 2 divides the random
variable φ (x, t,θ ) into a deterministic part, the co-
efficient φi(x, t) and a stochastic part, the polyno-
mial chaos Ψi (ξ (θ )). The basis {Ψi} is a set of
orthogonal polynomials with respect to the prob-
ability density function of the input parameters.
Following the Askey scheme [Askey and Wil-
son (1985)], it is possible to introduce the Gen-
eralized Polynomial Chaos [Xiu and Karniadakis
(2003a)]. Thanks to this theory, known also as
Askey-chaos, for certain input parameter distribu-
tion there exists the best representation in terms
of convergence rate. For example, for Gaussian
random input, we have the Hermite Polynomial
Chaos representation, for Gamma distribution the
Laguerre representation, for Beta distribution the
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Jacoby representation, for Uniform distribution
the Legendre representation, etc.

In this paper we focus mainly on the Gaus-
sian random input, so we represent the vari-
able φ (x, t,θ ) in terms of Hermite (see Appendix
A: Hermite Polynomials) spectral representation,
following the Askey scheme:

φ (x, t,θ ) = φ0(x, t)H0 +
∞

∑
i1=1

φi1(x, t)H1(ξi1(θ ))

+
∞

∑
i1=1

i1

∑
i2=1

φi1i2(x, t)H2(ξi1(θ ),ξi2(θ ))

+
∞

∑
i1=1

i1

∑
i2=1

i2

∑
i3=1

φi1i2i3(x, t)H3 (ξi1(θ ),ξi2(θ ),ξi3(θ ))

+ . . .

(3)

where Hp
(
ξi1 , . . . ,ξip

)
is the Hermite polynomial

of order p in terms of a n-dimensional Gaussian
random variable ξ = (ξ1, . . .,ξn) distributed as
N(0,1) . The Hermite polynomial is expressed
in general form by:

Hp
(
ξi1 , . . . ,ξip

)
= e

1
2 ξ T ξ (−1)p ∂ p

∂ξi1 . . .∂ξip

e
1
2 ξ T ξ

(4)

and for one-dimensional case:

H0 = 1, H1 = ξ , H2 = ξ 2 −1, H3 = ξ 3 −3ξ , . . .

(5)

For practical cases, the series has to be truncated
to a finite numbers of terms, here denoted with
N. So the form Eq. 2, using the one-to-one corre-
spondence between the function Hp

(
ξi1 , . . .,ξip

)
and Ψp (ξ ), as demonstrated in [Xiu and Kar-
niadakis (2002)] for Gaussian random input, be-
comes:

φ (x, t,θ ) =
N

∑
i=0

φi(x, t)Hi(ξ ) (6)

The number of total terms of the series is deter-
mined by:

N +1 =
(n+ p)!

n!p!
(7)

where n is the uncertainties dimensionality and p
is the order of the expansion.

As an example, for a second order two-
dimensional Hermite polynomial expression, we
get the following form:

φ (x, t,θ ) = φ0(x, t)
+φ1(x, t)ξ1(θ )+φ2(x, t)ξ2(θ )

+φ3(x, t)
(
ξ 2

1 (θ )−1
)
+φ4(x, t)

(
ξ 2

2 (θ )−1
)

+φ5(x, t)ξ1(θ )ξ2(θ )

(8)

where ξ1(θ ) and ξ2(θ ) are the two random inde-
pendent variables.

2.3 Intrusive and Non-Intrusive Polynomial
Chaos

Substituting the Polynomial Chaos series, given
in Eq. 6 for Gaussian random input, into the
stochastic differential Eq. 1 we obtain:

L

(
x, t,θ ;

N

∑
i=0

φi(x, t)Ψi (ξ (θ ))

)
∼= f (x, t,θ ) (9)

The method of Weighted Residuals is adopted to
solve this equation. The coefficients φi(x, t) are
obtained imposing the inner product of the resid-
ual with respect to a weight function is equal to
zero.

If the weight functions are chosen to be the
same as the expansion functions Ψi we produce
Galerkin method. Performing the Galerkin pro-
jection on both sides of the equation, the form be-
comes:〈

L

(
x, t,θ ;

N

∑
i=0

φi(x, t)Ψi

)
,Ψ j

〉

=
〈

f (x, t,θ ),Ψ j
〉 (10)

where j = 0, . . . ,N. If the operator L is non linear,
the deterministic set of N + 1 equation is coupled
and this form is called Intrusive Chaos Polyno-
mial.

If we employ Dirac delta function as weight func-
tion we produce Collocation method. Using a col-
location projection on both sides of Eq. 9, we ob-
tain:

L(x, t,θ j;φ ) = f (x, t,θ j) j = 0, . . .,N. (11)
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This formulation is a linear system equivalent to
solving a deterministic problem at each grid point;
this form is called Non-Intrusive Chaos Polyno-
mial.

To reconstruct the stochastic solution φ (x, t,θ ),
the Eq. 2 is used:

EPC(φ ) = μφ = φ0(x, t,θ ) (12)

VarPC(φ ) = σ2
φ =

N

∑
i=1

[
φ 2

i (x, t,θ )
〈
Ψ2

i

〉]
. (13)

Here

〈
Ψi,Ψ j

〉
=
〈
Ψ2

i

〉
δi j =

1√
2π

∫ +∞

−∞
e−ξ2/2Ψi(ξ )Ψ j(ξ )dξ = 2ii!δi j (14)

where δi j is the Kroneker operator.

The two approaches are based on the same the-
ory, but gives different numerical representations.
In practice intrusive method consists in resolution
of a coupled system of deterministic equations,
non-intrusive method consists in resolution of a
decoupled system of deterministic equations. It
is evident the difficulty to design an efficient in-
trusive solver, both because of computational cost
and because of the obvious handicap to imply an
internal modification of the deterministic solver
[Lin, Wan, Su, and Karniadakis (2007)]. The
non-intrusive methodology has a simpler compu-
tational management. A remarkable advantage
of this approach is the deterministic solver repre-
sents a black-box and there is no need to modify
it. This means the non-intrusive method is more
versatile than intrusive method.

A still open problem of non-intrusive approach
[Loeven, Witteveen, and Bijl (2007)] is the dif-
ficulty to select collocation points: with multi di-
mensional uncertainties the choice is not unique
[Hosder, Walters, and Perez (2006)]. This prob-
lem does not exist for one stochastic parameter,
because collocation points are the roots of poly-
nomial of order p+1.

In this paper we focus on geometric toler-
ances using Fictitious Domain approach and Non-
Intrusive Polynomial Chaos method. As the goal
is a better comprehension of the problem, for sake

of simplicity we will just consider one uncertain
parameter with Gaussian distribution using Her-
mite polynomials for expansion. In this way we
avoid the difficulty of arbitrary choice of colloca-
tion points for Non-Intrusive Polynomial Chaos
method.

3 Geometric uncertainties

The uncertainty we want to examine is due to geo-
metric tolerance. In this case the geometry of def-
inition domain is a stochastic phenomenon. The
problem under study, as defined in [Xiu and Tar-
takovsky (2006)], writes:

Let θ ∈ Θ be a random realization drawn from a
complete probability space (Θ,A,P), whose event
space Θ generates its σ -algebra A ⊂ 2Θ and is
characterized by a probability measure P. For all
θ ∈ Θ, let Ω(θ ) ⊂ ℜd be a d-dimensional ran-
dom domain bounded by boundary ∂Ω(θ ). We
consider the following stochastic boundary value
problem: for P-almost everywhere in Θ, given
f : Ω(θ )→ ℜ and g : ∂Ω(θ )→ ℜ, find a stochas-
tic solution v : Ω(θ )→ ℜ such that:

A(x;v) = f (x) in Ω(θ ) (15)

B(x;v) = g(x) on ∂Ω(θ ) (16)

where x = (x1, . . . ,xd), A is a differential operator
and B is a boundary operator.

Except for a few studies, random domain prob-
lems have not been systematically analyzed. The
most complete work on these topics is presented
in [Xiu and Tartakovsky (2006)], where a map-
ping methodology is introduced to transform the
original problem defined in a random domain into
a stochastic problem defined in a deterministic do-
main. In particular a one-to-one mapping func-
tion and its inverse are established: ξ = ξ (x,θ ),
x = x(ξ ,θ ), which transforms the random do-
main Ω(θ ) ⊂ ℜd into a deterministic domain
ω ⊂ ℜd, whose coordinates are denoted as ξ =
(ξ1, . . .,ξd). I.e., for P-almost everywhere θ ∈ Θ,
x ∈ Ω(θ )↔ ξ ∈ ω .

The stochastic mapping transforms the determin-
istic differential operators A and B into their
stochastic counterparts A and B, respectively,
and the random domain problem into the follow-
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ing stochastic boundary-value problem. For P-
almost everywhere θ ∈ Θ, given F : ω ×Θ → ℜ
and G : ∂ω ×Θ → ℜ, find a stochastic solution
u : ω ×Θ → ℜ such that

A (ξ ,θ ;u) = F (ξ ,θ ) in ω (17)

B(ξ ,θ ;u) = G (ξ ,θ ) on ∂ω (18)

where F and G are the transformed functions of
f and g, respectively.

Let us consider this problem as example:

d2φ
dx2 +kφ = 0 in [0,L]

with
dφ
dx

∣∣∣∣
x=0

= q0 and
dφ
dx

∣∣∣∣
x=L

= kφ (L)

(19)

k = −10−5, q0 = 0.001, L = N(100,1).

Eq. 19 is a stochastic domain problem where the
length L of domain has a normal distribution with
mean equal to 100 and variance equal to 1.

In Fig. 3 is shown the mapping presented in
[Xiu and Tartakovsky (2006)], referred to prob-
lem Eq. 19.

The stochastic mapping of Ω(θ ) = [0,L] onto
ω = [0,1] is constructed via solution of Laplace

Figure 3: Mapping technique presented in [Xiu
and Tartakovsky (2006)], referred to problem
Eq. 19.

equations:

∂ 2x
∂ξ 2 = 0 in ω

x(0) = 0 (20)

x(1) = L.

The new stochastic problem defined on a de-
terministic domain, thanks to this mapping, can
be solved by already existing Polynomial Chaos
techniques.

The methodology illustrated above has been effi-
ciently implemented to solve two diffusion prob-
lems: in a channel with rough surface and in
double-connected domains with rough exclusion.
The Polynomial Chaos methodology is demon-
strated to be more accurate than Monte Carlo
method and with lower computational cost. The
drawback of the presented method is the diffi-
culty of mapping. In fact this process is simple
for connected domains, but it is computationally
challenging for complex non-connected domains.

To ride over this problem, the mapping of com-
plex domains, in this work we present the cou-
pling of Fictitious Domain approach with Non-
Intrusive Polynomial Chaos for geometric uncer-
tainties. The idea is to avoid the mapping of
stochastic domain onto a deterministic domain
and to use absolute coordinates. In Fig. 4 is shown
how this works.

Geometric uncertainty, represented by probabilis-
tic distribution P(L) of domain length L, becomes
an uncertainty on the position of boundary condi-
tion. Therefore there is no need of mapping the
stochastic domain onto a deterministic domain, as
every point of domain is studied in absolute coor-
dinates. The solution of the problem has a proba-
bility distribution pd f (φ ) associated to each point
of domain in absolute coordinates. This proba-
bility distribution of the solution depends on the
position of boundary condition in x = L, which
is a stochastic phenomenon. In Fig. 4 it is show
the probability P(x) of a point of belonging to do-
main, which depends on the probabilistic distribu-
tion of L in problem Eq. 19.

Referring to definition of Non-Intrusive Polyno-
mial Chaos given in Eq. 11 for solving problem
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Figure 4: Stochastic domain problem Eq.(19) in
absolute coordinates with normal distribution of
length L.

defined in Eq. 19, we have to solve N distinct de-
terministic problems defined on different lengths
of domain.

3.1 Numerical example

To validate the proposed methodology, we con-
sider problem given in Eq. 19. The analytic solu-
tion of this problem, if the length L of domain is a
deterministic variable, writes as:

φ (x) =

φ0√
k

(
1+

√
k
)

e
√

kLe−
√

kx +
(

1−√
k
)

e−
√

kLe
√

kx(
1+

√
k
)

e
√

kL −
(

1−√
k
)

e−
√

kL

(21)

As we know the analytic function, we can com-
pare the proposed methodology with the analytic
distribution. Given the uncertainty on the length
L, to compute pd f (φ ) we can use the formulation
[Rotondi, Pedroni, and Pievatolo (2001)]:

Z = f (X)
X random variable with pX (x)

pZ(z) =
pX (x1)
| f ′(x1)| +

pX(x2)
| f ′(x2)| + . . .+

pX (xn)
| f ′(xn)|

(22)

where x is the random variable (with distribu-
tion pX(x)), Z is the random output variable, and
x1, . . .,xn are the inverse of Z(x = f−1(z)).

We have compared Polynomial Chaos and Monte
Carlo method, too. In fact Monte Carlo is the
methodology mainly used for uncertainties, as
shown in [Xiu and Karniadakis (2003a); Xiu and
Tartakovsky (2006)].

In Fig. 5 the mean and standard deviation of prob-
lem given in Eq. 19 are shown, comparing the
Polynomial Chaos methodology and two Monte
Carlo examples (with 250,000 and 1,000,000
points). Monte Carlo method is accurate to com-
pute mean value, in fact the plots of expected
value can not be distinguished, but to get accurate
values of standard deviation the number of sim-
ulations has to be high (till 106). Increasing the
number of simulations we obtain stability and the
results become closer to that obtained by Polyno-
mial Chaos.

Let us notice that, for one-dimensional random
space, if the polynomial has order P, Polynomial
Chaos needs of P + 1 deterministic simulations,
equal in number to roots of one order higher poly-
nomial. In Fig. 5 the case with polynomial order
equal to 3 is shown. It has been verified that in-
creasing the order further on P = 3 there is not a
remarkable improvement of accuracy. This obser-
vation means that with only 4 deterministic sim-
ulations we can get a really accurate result, in
general better than that one obtained by Monte
Carlo method with a considerable higher number
of simulations.

A better comparison between Polynomial Chaos
and Monte Carlo methods can be performed re-
ferring to probability density function pd f (φ ) in
three different points of domain, x1 = 0.0, x2 =
45.0, x3 = 90.0.

In this case we can represent analytically pd f (φ ),
using Eq. 22, and we can get the errors of Monte
Carlo (pt = 1,000,000) and Polynomial Chaos
(P = 3) referring to analytical pd f (φ ). In Fig. 6,
Fig. 7 and Fig. 8 it is evident there is a dif-
ferent magnitude order of errors. The Polyno-
mial Chaos solution has a lower error than Monte
Carlo method. A substantive difference of com-
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mial Chas methodology and two Monte Carlo ex-
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putational effort has to be remarked, too. We
can notice pd f (φ ) is not completely symmetric,
demonstrating the need of using a polynomial or-
der equal to 2 at least. Let us notice Hermite poly-
nomial of order 1 is linear, giving simply a Gaus-
sian representation.

With this example we have demonstrated that
the proposed approach, Non-Intrusive Polynomial
Chaos without mapping, can be accurate. The
drawback of this method is the need to modify the
computational domain of every different simula-
tion. So if we can not solve analytically the dif-
ferential equations, we have to remesh the com-
putational domain for each new simulation. It is
evident the difficulty to have an accurate grid for
every geometry. To avoid this problem we intro-
duce Fictitious Domain methodology. In this way
the stochastic domain does not coincide with the
computational domain, which is the same for all
simulations. The geometric position of Lagrange
multipliers, which enforce the boundary condi-
tions immersed in the computational domain, has
just to be modified for the new geometries.

4 Fictitious Domain via Lagrange Multipli-
ers with Least-Squares Spectral Element
Method

4.1 Fictitious Domain approach

Fictitious domain approach allows to solve easily
differential problems defined on domain changing
in time and space, i.e. in general structural elastic
problems, fluid dynamics problems with moving
rigid bodies, shape optimization problems, and so
on. This means the same problem is solved on
different domains.

In general to front these problems the bound-
ary variation technique is used, based on a se-
quence of domain (Fig. 9). Using a method based
on domain discretization, such as finite element
method, spectral elements, finite volumes, after
the shape variation the computational domain has
to be remeshed, the data of state problem have to
be recompute and the update problem has to be
solved. It is evident this requires high computing
time. Moreover it is difficult to find a partition
of domain such that grid quality is good for every

domain.

In this case it is useful to consider a Fictitious
Domain approach (Fig. 10), where the computa-
tional domain is not the same of the definition do-
main of problem, but it contains that one, so when
the definition domain changes the computational
domain does not change with evident advantages.
The need of such kind of tool is confirmed by ex-
perience.

Figure 9: Classical approach based on the bound-
ary variation technique to solve differential prob-
lems defined on domain changing in time and
space.

Figure 10: Fictitious Domain approach to solve
differential problems defined on domain changing
in time and space.

Several variants of fictitious domain method ex-
ist: the basic idea is to extend the operator and the



50 Copyright c© 2007 Tech Science Press CMES, vol.22, no.1, pp.41-63, 2007

domain into a larger simple shaped domain. The
most important ways to do this are algebraic and
functional analytic approaches. In algebraic fic-
titious domain methods the problem is extended
typically at algebraic level in such a way that the
solution of original problem is obtained directly
as a restriction of the solution of extended prob-
lem without any additional constraint. There are
several variants of such an approach [Rossi and
Toivanen (1999); Makinen, Rossi, and Toivanen
(2000)] and they can be rather efficient, but typi-
cally they are restricted to quite a narrow class of
problems.

More flexibility and better efficiency can be ob-
tained by using a functional analytic approach
where the use of constraints ensures that the so-
lution of extended problem coincides with the so-
lution of original problem. In our implementa-
tion we enforce constraints by Lagrange multipli-
ers [Parussini (2007)].

The physical aspects of the problem can always
be stated in a variational principle form. A vari-
ational principle specifies a scalar quantity, the
functional J, which is defined by an integral form

J =
∫

Ω
F

(
φ ,

∂φ
∂x

,
∂φ
∂y

, ...,x,y, ...

)
dΩ

+
∫

Γ
E

(
φ ,

∂φ
∂x

,
∂φ
∂y

, ...,x,y, ...

)
dΓ

(23)

in which Γ = ∂Ω, φ is the unknown function and
F and E are specified operators. The solution
to the continuum problem is a function φ which
make J stationary with respect to small changes
δφ ; thus, for a solution to the continuum prob-
lem, the variation is δJ = 0.
To implement the Fictitious Domain approach we
have to extend the operator F and the domain Ω
into a larger simple shaped domain Π and to con-
strain the functional on Γ = ∂Ω (Fig. 11). To treat
such problems Lagrangian multipliers are intro-
duced, so that the problem is now equivalent to
find the stationary point of J′, where

J′ =
∫

Π
F

(
φ ,

∂φ
∂x

,
∂φ
∂y

, ...,x,y, ...

)
dΩ

+
∫

Γ
λ (x)E

(
φ ,

∂φ
∂x

,
∂φ
∂y

, ...,x,y, ...

)
dΓ.

(24)

Here λ (x) is an undetermined multiplier which is
in general a function of position, because the lo-
cal condition must be satisfied at every point of Γ,
rather than being a global restriction.

New approach, we present in this paper, is

Π

Ω

Γ

Figure 11: Example of a fictitious rectangular do-
main Π containing the original domain Ω.

the coupling of Fictitious Domain together with
an high order method. To discretize the prob-
lem under study we use the Least Squares Spec-
tral Element Method, based on higher order func-
tions, locally defined over finite size parts of
domain. The Least Squares Spectral Element
Method (LSQSEM) combines the least squares
formulation with a spectral element approxima-
tion. This provides several advantages. The
method produces symmetric positive definite lin-
ear systems for every type of partial differential
equation, i.e. elliptic, parabolic and hyperbolic
equations. No compatibility requirements need
to be imposed between approximating function
spaces for mixed problems. The method con-
verges just as fast with hp refinement than con-
ventional Galerkin methods. Furthermore, no sta-
bilization is required for convection dominated
flows. Moreover using Fictitious Domain ap-
proach, where extended problem is defined on a
simple domain, enables the use of efficient com-
putational grids, in our case just simple Cartesian
grids.

Good accuracy properties of the method are
demonstrated by numerical experiments.

4.2 Least Squares variational principle

Let Ω be the closure of an open bounded region
Ω in ℜd , where d represents the number of space
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dimensions, and let x = (x1, ...,xd) be a point in
Ω = Ω

⋃
∂Ω, where ∂Ω = Γ is the boundary of Ω.

We consider the model problem stated as follows:

Find φ (x) such that

−
φ = f in Ω (25)

φ = φ s on Γ (26)

where f is the source term and φ s is the prescribed
value of φ on boundary Γ. This problem is cho-
sen only for notational simplicity; our statements
are also valid for every type of deterministic dif-
ferential problem, i.e. elliptic, parabolic and hy-
perbolic equations.
Although direct application of the least squares
variational principles to Eq. 25 is possible, it will
result in an impractical least squares finite ele-
ment model, as these have associated with them
the requirement of higher regularity of the finite
element spaces. The degree of necessary smooth-
ness is dictated by the differentiability require-
ments of the governing equation under consider-
ation. Moreover, the resulting condition number
of the corresponding discrete problem would be
much higher compared with the condition num-
ber resulting from application of the weak form
Galerkin method to the same problem. To reduce
the higher regularity requirements, the governing
equations are first transformed into an equivalent
first-order system. Transformation of the gov-
erning equations to an equivalent first-order sys-
tem necessarily implies that additional indepen-
dent variables need be introduced, implying an
increase in cost. However, the auxiliary variables
may be argued to be beneficial as they may repre-
sent physically meaningful variables, e.g. fluxes,
and will be directly approximated in the model.
We proceed by replacing the problem, Eq. 25-
Eq. 26, with its first-order equivalent system:

Find φ (x) and q(x) such that

−∇ ·q = f in Ω (27)

∇φ −q = 0 in Ω (28)

∇×q = 0 in Ω (29)

φ = φ s on Γ (30)

where q is a vector valued function whose com-
ponents are the fluxes of scalar function φ , as de-

fined in Eq.(28). Eq. 29 is a curl constraint to en-
sure H1-coercivity of the system.
For s≥ 0, we use the standard notation and defini-
tion for the Sobolev spaces Hs(Ω) and Hs(Γ) with
corresponding inner products denoted by (·, ·)s,Ω
and 〈·, ·〉s,Γ and norms by ‖·‖s,Ω and ‖·‖s,Γ, re-
spectively. We denote the L2(Ω) and L2(Γ) in-
ner products by (·, ·)Ω and 〈·, ·〉Γ, respectively. By
Hs(Ω) we denote the product space [Hs(Ω)]n.
In the least-squares approach, the variational
problem is such that the function φ and its flux
q minimize the sum of the squares of the residu-
als of the governing equations measured in the L2

norm. The associated functional is given by

J(φ ,q; f )

=
1
2
‖−∇ ·q− f‖2

0,Ω

+
1
2
‖∇φ −q‖2

0,Ω +
1
2
‖∇×q‖2

0,Ω .

(31)

According to Fictitious Domain methodology the
problem will be extended to a simple shaped do-
main Π ⊃ Ω with immersed constraints enforced
via Lagrange multipliers. So the new functional
associated with the equivalent Fictitious Domain
transport problem will be:

J(φ ,q,λ ; f ,φ s)

=
1
2
‖−∇ ·q− f‖2

0,Π

+
1
2
‖∇φ −q‖2

0,Π +
1
2
‖∇×q‖2

0,Π

+‖λ (φ −φ s)‖0,Γ

(32)

where the Lagrange multiplier defined on Γ is de-
noted by λ , with μ the associated weight function.
The least squares principles for functional Eq. 32
can be stated as:

Find (φ ,q,λ ) ∈ X × M such that for all
(ψ ,p,μ) ∈ X×M

J(φ ,q,λ ; f ,φ s) ≤ J(ψ ,p,μ ; f ,φ s), (33)

where we use the spaces X ={
(φ ,q) ∈ H1(Π)×H1(Π)

}
and M ={

λ ∈ H−1/2(Γ)
}

.
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This yields:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Find (φ ,q,λ ) ∈ X×M such that

a((φ ,q), (ψ ,p))+b ((ψ ,p),λ ) = l ((ψ ,p))
∀(ψ ,p) ∈ X

b((φ ,q),μ) = g(μ) ∀μ ∈ M

(34)

where

a((φ ,q), (ψ ,p)) =((−∇ ·q) , (−∇ ·p))
+((∇φ −q) , (∇ψ −p))
+((∇×q) , (∇×p))

(35)

b((ψ ,p),λ ) = 〈ψ ,λ 〉 (36)

l ((ψ ,p)) = ( f , (−∇ ·p)) (37)

g(μ) = 〈φ s,μ〉 . (38)

The solution of problem, Eq. 25-Eq. 26, will be
the restriction to Ω of the minimum, defined on
domain Π, of functional Eq. 33.

4.3 Spectral Element approximation

The problem Eq. 36 can not be solved analytically
and therefore it is necessary to use a numerical
method to get approximated solution.

The spectral hp element method is a numeri-
cal technique for solving partial differential equa-
tions based on variational formulation of bound-
ary and initial value problems which is employed
in several fieds: fluid dynamics [Karniadakis and
Sherwin (1999); Pontaza and Reddy (2003); Ger-
ritsma and Maerschalck (2006)], structural anal-
ysis [Wu, Liu, Scarpas, and Ge (2006); Wu, Al-
Khoury, Kasbergen, Liu, and Scarpas (2007); Mi-
tra and Gopalakrishnan (2006)], geophysics [Ko-
matitsch and Vilotte (1998); Komatitsch, Vilotte,
Vai, Castillo-Covarrubias, and Sánchez-Sesma
(1999)], acoustics [Lin (1998)]. The solution is
represented by a finite number of basis functions.
Spectral hp element method is based on higher
order functions, which are locally defined over fi-
nite size parts of domain. The advantage of such
kind of method respect to traditional finite ele-
ment method is its exponential convergence prop-
erty with the increasing of polynomial order p.

We proceed to define a discrete problem by choos-
ing appropriate finite element subspaces for φ ,
each of the components of the vector valued func-
tion q and Lagrange multipliers λ .

There are no restrictive compatibility conditions
on the discrete spaces of the primary variables φ
and q, so we choose the same finite element sub-
space for each one. The only requirement on ap-
proximating spaces is that we choose continuous
piecewise polynomials that are at least bi-linear in
two dimensions or tri-linear in three dimensions.

Consider the two-dimensional case and let Ph be
a family of quadrilateral finite elements Ωe that
make up the connected model Ωh. We map Ωe

to a bi-unit square Ω̂e = [−1,1]× [−1,1], where
(ξ ,η) is a point in Ω̂e. Over a typical element Ω̂e,
we approximate φ by the expression

φ (ξ ,η) =
q

∑
i=1

φ̃iϕi(ξ ,η) in Ω̂e. (39)

In modal expansion, ϕi are tensor products of the
one-dimensional C0 p-type hierarchical basis

ψp =

⎧⎪⎨
⎪⎩

1−ξ
2 for p = 0

1−ξ
2

1+ξ
2 Pα ,β

p−1 for 0 < p < P, P ≥ 1
1+ξ

2 for p = P

(40)

and φ̃i are coefficients associated with each of the
modes of hierarchical basis. In Eq. 40 Pα ,β

p are the
Jacobi polynomials (Appendix B: Jacobi Polyno-
mials) of order p, in particular ultraspheric poly-
nomials corresponding to the choice α = β with
α = β = 1. This choice is due to the consider-
ations about the sparsity of the matrices we ob-
tain discretizing the problem presented by [Karni-
adakis and Sherwin (1999)]. We approximate the
components of the vector valued function q on Ω̂e

in similar manner as we did for φ in Eq. 39.

The approximation of Lagrange multipliers re-
quires the discretization of the immersed bound-
ary Γ into curvilinear one-dimensional elements
Γe, which are mapped to linear unit elements
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Figure 12: Shape of modal expansion modes for a
polynomial order of P = 5

Γ̂e = [−1,1]. On these elements the function λ
is approximated by the expression

λ (ξ ) =
r

∑
i=1

λ̃iψi(ξ ) on Γ̂e (41)

where ψi are defined in Eq. 39 and λ̃i are the
coefficients associated with expansion modes of
function λ . In this way we proceed to generate
a system of linear algebraic equations at element
level. The integrals in these equations are evalu-
ated using Gauss-Legendre quadrature rules.

The choice of Lagrange multipliers discrete space
is not independent by the discrete spaces of vari-
ables φ and q. To ensure the convergence of
the solution of discretized model to that one
of the continuous problem, the Ladyzhenskaja-
Babuska-Brezzi(LBB)-condition has to be satis-
fied:

supψhp∈H1
hp(Π)

∫
Γ μHPψhpds∥∥ψhp

∥∥1
H (Π)

≥ β ‖μHP‖1/2
H (Γ),

∀μHP ∈ H1/2
HP (Γ) (42)

for some β > 0 independent of hp an HP.
The global system of equations is assembled from
the element contributions using the direct summa-
tion approach. The assembled system of equa-
tions can be written as(

A BT

B 0

)(
ỹ
λ̃

)
=
(

f
g

)
(43)

where ỹ are the modal unknown coefficients asso-
ciated with φ and q, λ̃ are the modal unknown co-
efficients associated with λ , A is the least squares
matrix, B is the matrix coupling the primal vari-
ables φ and q and the Lagrange multipliers λ , f is
the load vector and g is the constraint vector. To
solve the system Eq. 43 we use a direct method.
Note that the information on the geometry of do-
main is encoded only in B and g, not in A or f.
So if we want to solve the same heat conduction
equation on a different domain Ω we have just to
calculate again the matrix B and the vector g, be-
cause A and f will not change.

4.4 Numerical example

We solve the convection-diffusion equation

−Δφ +{1}T ·∇φ = f (x,y) (44)

on pentagonal domain Ω shown in Fig. 13. On
the boundary Γ Robin constraints have been im-
posed. The source term f (x,y) and the boundary
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Figure 13: Function φ , solution of problem
Eq. 44.
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Figure 14: Numerical grids used for calculations.
The model of domain Π consists of four quadri-
lateral finite elements in the first case, with ten (a)
immersed boundary linear elements and fifty (b),
and twenty-five in the second one, with ten (c) im-
mersed boundary linear elements and fifty (d).
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Figure 15: Convergence of the function φ to the
exact solution of diffusion problem Eq. 44 in the
L2 −norm. (a) Numerical grid of Fig. 14(a); (b)
Numerical grid of Fig. 14(b); (c) Numerical grid
of Fig. 14(c); (d) Numerical grid of Fig. 14(d).
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constraints are such that solution is the function
φ : ℜ2 =⇒ ℜ, so defined:

φ (x,y) = −(x2 +y2)+1+exy . (45)

The fictitious domain considered is a square Π =
[−1.1,1.1]× [−1.0,1.2], containing Ω. Several
numerical grids have been used for calculations,
as shown in Fig. 14. Computational domain Π
has been divided into four first and twenty-five
after quadrilateral finite elements. The immersed
boundary Γ has been discretized into ten and fifty
linear elements.

In Fig. 15 the convergence of φ is shown as func-
tion of the expansion order of domain in a linear-
logarithmic scale. Each curve corresponds to a
different expansion order of Lagrange multipliers.
These curves are characterized by a minimum.
We can observe if the number of immersed linear
elements is low the curves with crescent expan-
sion order move toward lower errors, on the con-
trary if the number of immersed linear elements
is high the curves move toward higher errors. In-
terpolating the minimum values reached for each
expansion order of domain p the convergence to
exact solution is spectral. The interpolating curve
is pretty the same if we consider an identical dis-
cretization of domain Π, modifying just the La-
grange multiplier number of elements. Another
remark is that the convergence of the interpolat-
ing curve is faster refining the discretized model
of computational domain Π.

5 The deterministic formulation of the
stochastic Fictitious Domain problem

Let θ ∈ Θ be a random realization drawn from a
complete probability space (Θ,A,P), whose event
space Θ generates its σ -algebra A ⊂ 2Θ and is
characterized by a probability measure P. For all
θ ∈ Θ, let Ω(θ )⊂ ℜd be a d-dimensional random
domain bounded by boundary Γ(θ ). We consider
the following stochastic boundary value problem:
for P-almost everywhere in Θ, find a stochastic
solution φ : Ω(θ ) → ℜ such that:

Find φ (x,θ ) such that

−
φ = f in Ω(θ ) (46)

φ = φ s on Γ(θ ) (47)

where f is the source term and φ s is the prescribed
value of φ on stochastic boundary Γ(θ ). This
problem is chosen only for notational simplicity.

We proceed by replacing the problem, Eq. 46 and
Eq. 47, with its first-order equivalent system:

Find φ (x,θ ) and q(x,θ ) such that

−∇ ·q = f in Ω(θ ) (48)

∇φ −q = 0 in Ω(θ ) (49)

∇×q = 0 in Ω(θ ) (50)

φ = φ s on Γ(θ ) (51)

where q is the flux of scalar function φ .

The L2 least-squares functional associated with
first-order equivalent system formulation is given
by

J(φ ,q; f )

=
1
2
‖−∇ ·q− f‖2

0,Ω(θ)

+
1
2
‖∇φ −q‖2

0,Ω(θ) +
1
2
‖∇×q‖2

0,Ω(θ) .

(52)

and its Fictitious Domain implementation will be:

J(φ ,q,λ ; f ,φ s)

=
1
2
‖−∇ ·q− f‖2

0,Π

+
1
2
‖∇φ −q‖2

0,Π +
1
2
‖∇×q‖2

0,Π

+‖λ (φ −φ s)‖0,Γ(θ)

(53)

where the Lagrange multiplier defined on Γ is de-
noted by λ , with μ the associated weight function.

The least squares principles for functional Eq. 53
can be stated as:

Find (φ ,q,λ ) ∈ X × M(θ ) such that for all
(ψ ,p,μ) ∈ X×M(θ )

J(φ ,q,λ ; f ,φ s) ≤ J(ψ ,p,μ ; f ,φ s), (54)

where we use the spaces X ={
(φ ,q) ∈ H1(Π)×H1(Π)

}
and M(θ ) ={

λ ∈ H−1/2(Γ(θ ))
}

.
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This yields:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Find (φ ,q,λ ) ∈ X×M(θ ) such that

a((φ ,q), (ψ ,p))+b ((ψ ,p),λ ) = l ((ψ ,p))
∀(ψ ,p) ∈ X

b((φ ,q),μ) = g(μ) ∀μ ∈ M(θ )
(55)

where

a((φ ,q), (ψ ,p)) =
∫

Π
(−∇ ·q) (−∇ ·p)dΠ

+
∫

Π
(∇φ −q) · (∇ψ −p)dΠ

+
∫

Π
(∇×q) , (∇×p)dΠ

(56)

b((ψ ,p),λ ) =
∫

Γ(θ)
ψλ dΓ(θ ) (57)

l ((ψ ,p)) =
∫

Π
f (−∇ ·p)dΠ (58)

g(μ) =
∫

Γ(θ)
φ sμdΓ(θ ). (59)

The solution of problem, Eq. 46-Eq. 47, will be
the restriction to Ω(θ ) of the minimum, defined
on domain Π, of functional Eq. 54.

The saddle point problem Eq. 55 has a stochas-
tic formulation. We assume that the boundary
Γ(x,θ ) of Ω(x,θ ) ⊂ Π(x) depends on θ via n
mutually indipendent real random variables ξ (θ )
with zero mean and unit variance with respect to a
density function ρ defined on some interval I ∈ ℜ,
so that I = In. Referring to Eq. 6 we can write the
stochastic process as

Γ(x,θ )∼= Γ∗(x,θ ) =
N

∑
i=0

Γi(x)Hi(ξ ). (60)

Substituting the polynomial Chaos series into
Eq. 55 we obtain

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Find (φ ∗,q∗,λ ∗) ∈ L2
ρ(I;X)×L2

ρ (I;M∗)
such that

a((φ ∗,q∗), (ψ∗,p∗))+b ((ψ∗,p∗),λ ∗)
= l((ψ∗,p∗)) ∀(ψ∗,p∗) ∈ L2

ρ (I;X)
b((φ ∗,q∗),μ∗) = g(μ∗) ∀μ ∈ L2

ρ (I;M∗)

(61)

where

φ ∗(x,θ ) =
N

∑
i=0

φi(x)Hi(ξ ) (62)

q∗(x,θ ) =
N

∑
i=0

qi(x)Hi(ξ) (63)

λ ∗(x,θ ) =
N

∑
i=0

λi(x)Hi(ξ ) (64)

and M∗ =
{

λ ∗ ∈ H−1/2(Γ∗)
}

. In this way we di-
vide the random process into a deterministic part
and a stochastic part. To solve Eq. 61 the method
of Weighted Residuals is adopted, in particular the
collocation projection. This formulation gives a
linear system of decoupled equations equivalent
to solving a deterministic problem at each grid
point:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Find (φi,qi,λi) ∈ X×Mi such that

a((φi,qi), (ψi,pi))+b((ψi,pi),λi)= l ((ψi,pi))
∀(ψi,pi) ∈ X

b((φi,qi),μi) = g(μi) ∀μi ∈ Mi

(65)

with i = 0, . . . ,N where Mi =
{

λi ∈ H−1/2(Γi)
}

.
To reconstruct the stochastic solution φ (x,θ ) the
equations Eq. 12 and Eq. 13 are used.

6 Applications of Non-intrusive Polynomial
Chaos method with Fictitious Domain ap-
proach

6.1 One-dimensional problem

To verify the accuracy of the presented method-
ology, i.e. the coupling of Non-Intrusive Poly-
nomial Chaos and Fictitious Domain for geomet-
ric uncertainties, we consider the problem Eq. 17,
comparing the analytical solution in three points
(x1 = 0.0, x2 = 45.0, x3 = 90.0) with the results
obtained by Polynomial Chaos and Fictitious Do-
main method. We have already demonstrated as
the Monte Carlo method is not as accurate as
Polynomial Chaos approximation, so we will not
consider it for comparison.
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Figure 16: Solution of problem given in Eq. 19:
analytical pd f (φ ) and comparison of error re-
spect to analytical pd f (φ ) of Non-Intrusive Poly-
nomial Chaos pd f (φ ) with different expansion
order P in x1 = 0.0.
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Figure 17: Solution of problem given in Eq. 19:
analytical pd f (φ ) and comparison of error re-
spect to analytical pd f (φ ) of Non-Intrusive Poly-
nomial Chaos pd f (φ ) with different expansion
order P in x2 = 45.0.
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Figure 18: Solution of problem given in Eq. 19:
analytical pd f (φ ) and comparison of error re-
spect to analytical pd f (φ ) of Non-Intrusive Poly-
nomial Chaos pd f (φ ) with different expansion
order P in x3 = 90.0.
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bars E(φ )±σ of problem given in Eq. 19.
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In Fig. 16, Fig. 17 and Fig. 18 the behaviour of ac-
curacy of pd f obtained by our approach is shown
for increasing polynomial order. It is evident
the accuracy is pretty much the same in different
points of domain and the accuracy improves vis-
ibly increasing the polynomial order from P = 1
to P = 3.

Let us notice as the accuracy obtained for P = 1 is
in practice the same of that one obtained by Monte
Carlo method with 1,000,000 points in section
3.1, but with great advantage about computational
cost.

Another remark is the pd f obtained by Non-
Intrusive Polynomial Chaos and Fictitious Do-
main with P = 3 is pretty the same as the pd f
obtained for pure analytical test. This result con-
firms the efficiency of Fictitious Domain method
and the excellent integration between Polynomial
Chaos and Fictitious Domain for geometric toler-
ances.

In Fig. 19 the evolution of temperature is plot-
ted in error bars, with the line centered at the
mean value E(φ ) and the length of uncertainty
bars equal to two standard deviations, that is the
interval which contains 99% of all possible val-
ues. There is an increase of uncertainty bars with
growing abscissa and a corresponding decrease of
mean value of temperature. This result is consis-
tent with that one obtained for the analytical case
(see Fig. 5). This behaviour is due to higher close-
ness to the uncertain point (L = N(100,1)) with
growing abscissa and a greater influence of un-
certainty to points close to that one.

This example demonstrates the capability of de-
veloped methodology, so we can use it to study
a two-dimensional problem with geometric toler-
ance.

6.2 Two-dimensional problem

In this section we consider the stationary heat
conduction in an electronic chip [Xiu and Karni-
adakis (2003a)], subject to geometric tolerances:

−∇ · (k∇T ) = f in Ω(θ ) (66)

with k = 1 and f = 0. The stochastic domain is
shown in Fig. 20. The domain dimensions are de-
terministic parameters except thickness of cavity

Figure 20: Stochastic domain of stationary heat
conduction problem in electronic chip under
study.
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Figure 21: Schematic of the computational ficti-
tious domain of stationary heat conduction prob-
lem in electronic chip under study.

L which has a normal distribution N(0.6,0.01).
The boundary of domain consists of four seg-
ments: the top ΓT , the bottom ΓB, the two sides
ΓS and the boundaries of the cavity ΓC . Adiabatic
boundary conditions are prescribed on ΓB and ΓS.
The cavity boundary ΓC is exposed to heat flux
qb|ΓC = 1. On the top ΓT is maintained at con-
stant temperature T = 0.

Fig. 21 shows the computational domain which
differs from chip geometry and in particular con-
tains it, according to Fictitious Domain approach.
The fictitious domain has been discretized into 15
spectral elements of order 8.

We are interested in the stochastic solution at the
points of domain. Actually we solve the heat con-
duction problem on all the points of fictitious do-
main and we associate to each point the proba-
bility to belong to chip, as shown in Fig. 22 for
the top left corner of the cavity. In this way we
have the mean and the standard deviation of tem-
perature due to geometric tolerance even in points
which do not really belong to chip, but, as we as-
sociate a probability of belonging, the results are
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Figure 22: Probability of points of fictitious do-
main to belong to chip.

still significant.

We verify the behaviour of accuracy of the
method varying the polynomial order of Polyno-
mial Chaos approximation. In Fig. 22 and Fig. 23
the comparison of mean solution and variance re-
spectively along the axis of symmetry, which cor-
responds to section x = 0 (see Fig. 25 and Fig. 26),
are shown, obtained with polynomial order P = 1,
P = 2, P = 3. The curves of mean coincide, but
we have different accuracy of standard deviation
with increasing P. For values higher of 3 there
are no significant variation of solutions so there
is no need to increase P further more, taking into
account of computational cost, too.

Fig. 25 shows the contours of mean field of tem-
perature and Fig. 26 shows the contours of stand-
ard deviation. It is evident that the largest output
uncertainty, indicated by the standard deviation,
occurs near the top of the cavity, whose position
is subject to probability distribution. In fact this
is the result we expected according to results ob-
tained studying the one-dimensional problem in
section 6.1. This behaviour is due to greater influ-
ence of uncertainty to points close to that one.

7 Conclusions

In this paper we presented a Non-Intrusive Poly-
nomial Chaos method using a Fictitious Domain
approach to study geometric tolerances. In par-
ticular the method has been applied to one- and
two-dimensional elliptic problems with geometric
uncertainties in order to demonstrate the accuracy
and convergence of the methodology.

A big advantage of the proposed method is that
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Figure 23: Comparison of mean solution along
the axis of symmetry obtained by Polynomial
Chaos with polynomial order P = 1, P = 2, P = 3.
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Figure 24: Comparison of variance along the axis
of symmetry obtained by Polynomial Chaos with
polynomial order P = 1, P = 2, P = 3.

it is non-intrusive, which means existing deter-
ministic solvers can be used without any internal
modification. In this way we get a simplification
of computational process management. A new
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in the electronic chip: mean field.
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Least-Squares Spectral Element method has been
employed for the analysis of deterministic differ-
ential problems obtained by Collocation projec-
tion. To avoid the remeshing of computational do-
main for the different differential problems, Fic-
titious Domain approach is introduced. Its main
advantage lies in the fact that only one Cartesian
mesh, that represents the enclosure, needs to be
generated.

Excellent accuracy properties of the method are
demonstrated by numerical experiments. We have
compared it to analytical solution and Monte
Carlo method, considering a one-dimensional
elliptic problem with uncertainties on domain
length. The algorithm has been finally used to
solve a two-dimensional heat conduction problem
with random domain.

Several issues need to be addressed:

• comparison between Intrusive and Non-
Intrusive Polynomial Chaos methods: in
case of multiple uncertain parameters the
number of coefficients is lower using an in-
trusive approach, but it is evident the diffi-
culty to implement it inside the solver; taking
in account of both these remarks, it would

be interesting evaluate computational bene-
fits of the two approaches;

• problems with multi dimensional stochastic
domain by Non-Intrusive Polynomial Chaos:
the choice of collocation points in case of
multiple uncertain parameters is not unique,
so an effective criteria should be given;

• fluid dynamic problems defined on stochas-
tic domain: the Fictitious Domain ap-
proach has been implemented just to solve
advection-diffusion equation; even if the the-
ory is simple to be extended to fluid dynamic
case, the implementation and validation of
the methodology has still to be achieved.
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Appendix A: Hermite Polynomials

In the Sturm-Liouville Boundary Value Problem,
there is a special case called Hermite’s Differen-
tial Equation which arises in the treatment of the
harmonic oscillator in quantum mechanics. Her-
mite’s Differential Equation is defined as:

H
′′
n (x)−2xH

′
n(x)+2nHn = 0

and in Sturm-Liouville form:

d
dx

(
e−x2

H
′
n

)
+2ne−x2

Hn = 0

where n is a real number. For non-negative integer
n, the solutions of Hermite’s Differential Equa-
tion are often referred to as Hermite Polynomials
Hn(x).

The Hermite Polynomials Hn(x) can be expressed
by Rodriguez formula:

e−x2
Hn(x) = (−1)n dn

dxn

(
e−x2

)
.

These polynomials can be constructed using a re-
cursion relationship:

Hn+1(x)−2xHn(x)+2nHn−1(x) = 0.

Hermite Polynomials Hn(x), with n = 0,1, . . .,
form a complete orthogonal set on the interval
−∞ < x < +∞ with respect to the weighting func-
tion e−x2

. It can be shown that:

1√
π

∫ +∞

−∞
e−x2

Hm(x)Hn(x)dx = 2nn!δmn.

Let us notice after rescaling x by
√

2 in weighting
function e−x2

, the weighting function is the same
as the probability density function of a standard
Gaussian random variable with zero mean and
unit variance.

Appendix B: Jacobi Polynomials

Jacobi polynomials represent a family of poly-
nomial solutions to the singular Sturm-Liouville

problem. A significant feature of these polyno-
mials is that they are orthogonal in the interval
[−1,1] with respect to the function (1− x)α (1−
x)β (α ,β > −1).

These polynomials can be constructed using a re-
cursion relationship:

Pα ,β
0 (x) = 1

Pα ,β
1 (x) =

1
2

[α −β +(α +β +2)x]

a1
nPα ,β

n+1(x) = (a2
n +a3

nx)Pα ,β
n (x)−a4

nPα ,β
n−1(x)

a1
n = 2(n+1)(n+α +β +1)(2n+α +β ))

a2
n = (2n+α +β +1)(α2−β 2)

a3
n = (2n+α+β )(2n+α+β +1)(2n+α+β +2)

a4
n = 2(n+α)(n+β )(2n+α +β +2)

A class of symmetric polynomials, known as ul-
traspheric polynomials, corresponds to the choice
α = β . Well known ultraspheric polynomials are
the Legendre polynomial (α = β = 0) and the
Chebychev polynomial (α = β = −1/2).

Further formulae and properties for Jacobi poly-
nomials can be found in [Abramowitz and Stegun
(1972); Karniadakis and Sherwin (1999)].




