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A Comparative Study of Non-separable Wavelet and Tensor-product
Wavelet in Image Compression

Jun Zhang1

Abstract: The most commonly used wavelets
for image processing are the tensor-product of
univariate wavelets, which have a disadvantage of
giving a particular importance to the horizontal
and vertical directions. In this paper, a new class
of wavelet, non-separable wavelet, is investigated
for image compression applications. The compar-
ative results of image compression preprocessed
with two different kinds of wavelet transform are
presented: (1) non-separable wavelet transform;
(2) tensor-product wavelet transform. The results
of our experiments show that in the same vanish-
ing moment, the non-separable wavelets perform
better than the tensor-product wavelets in dealing
with still images.
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1 Introduction

Univariate wavelets have played an important
role in signal processing since wavelet expan-
sions became more appropriate than conventional
Fourier series to characterize the local behav-
ior of non-stationary signals [Antonini M, Bar-
laud M, and MathieuP, et al (1992), Mira Mitra,
S. Gopalakrishnan (2006), Duddeck, Fabian M.E
(2006)]. To apply wavelet methods to digital im-
age processing, bivariate wavelets have to be con-
structed. The most commonly used method is
the tensor product of univariate wavelets. This
construction leads to a separable wavelet, which
has a disadvantage of giving a particular im-
portance to the horizontal and vertical direc-
tions [W. He and M. J. Lai (2000)]. There
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has been a growing research interest in the
area of construction of non-separable wavelets
over the past few years. Much effort has
been made on constructing non-separable bivari-
ate wavelet. For example, J.Kovacevic and Vet-
terli studied properties of multidimensional non-
separable wavelets and numerically constructed
examples of continuous non-separable compactly
supported bivariate wavelets [J.Kovacevic and
M.Vetterli (1992)]. Cohen and Daubechies gener-
alized the method [I.Daubechies (1988)] to con-
struct non-separable bidimensional (discontinu-
ous) compactly supported wavelets [A. Cohen,
I.Daubechies (1993)]. Both Cohen-Daubechies’s
wavelets and J.Kovacevic -Vetterli’s examples are
based on the dilation matrix

[
1 1
1 −1

]
. Also, Ming-

Jun Lai constructed bivariate non-separable com-
pactly supported orthonormal wavelets based on
the commonly used uniform dilation matrix

[
2 0
0 2

]
,

which have 1-order vanishing moment and linear
phase [W. He, M. J. Lai (2000)]. David stanhill
and Yehoshua Y.Zeevi [D. Stanhill and Y.Zeevi
(1996)] constructed the non-separable orthonor-
mal wavelets based on the commonly used uni-
form dilation matrix

[
2 0
0 2

]
, which holds higher-

order vanishing moment.

In this paper, four classes of non-separable
wavelet filter banks with different properties are
studied for image compression. The first one is
Lai’s non-separable wavelet based on the dila-
tion

[
2 0
0 2

]
that holds 1-order vanishing moment

and linear phase. The second one is David stan-
hill’s non-separable orthonormal wavelet based
on the dilation

[
2 0
0 2

]
that holds higher-order van-

ishing moment, but does no have the linear phase.
The third one is the non-separable orthonormal
wavelet based on the dilation

[
1 1
1 −1

]
that holds

1-order vanishing moment. The fourth one is
the non-separable orthonormal wavelet based on
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the dilation
[

1 1
1 −1

]
that holds higher-order van-

ishing moment. For the purpose of compari-
son, we also implemented the image compres-
sion method using tensor-product of univariate
wavelets (CDF53, DB97).

2 Wavelet Transform in Two Dimensions:
Non-separable Wavelet and Tensor Prod-
uct of Univariate Wavelet

There are various ways to extend one-dimensional
(1-D) wavelet transform to two dimensions. The
simplest way to generate a 2-D wavelet transform
is to apply two 1-D transforms separately. Thus,
image decomposition can be computed with sepa-
rable filtering along the abscissa and ordinate, by
using the same pyramidal algorithm as in the 1-
D case. As shown in Figure. 1, this separable
transform (ST) called “tensor-product” decom-
poses images with a multi-resolution scale fac-
tor of two, providing one low-resolution subim-
age and three spatially oriented wavelet coeffi-
cient subimages at each resolution level.

Another way of extending wavelet transform to
higher dimensions is to use non-separable filters.
The 2-D MRA (multiresolution analysis) with a
dilation matrix D is a ladder of closed subspaces{

Vj
}

j∈Z , which approximates L2(R2) and satisfies

{0}→ . . .V−1 ⊂V0 ⊂V1 . . .→ L2(R2)

f (x) ⊂Vj−1 ⇔ f (Mx)⊂Vj ∃φ ∈ V0s.t.

Where, the set {φ (x− k)}k∈Z2 is an orthonormal
basis for V0. The function φ (x) is called scaling
function and since V0 ⊂ V1, φ (x) has to be the so-
lution of a dilation equation of the form

φ (x) = ∑
k∈Z2

Hφ (Dx−k)

The associated wavelet is then derived from the
scaling function by the formula

ψi(x) = ∑
k∈Z2

Giφ (Dx−k) i = 1, . . .,det(D)−1

As shown in Figure. 2, the commonly transforms
of non-separable wavelet are quincunx transform
(QT) and separable sampling wavelets transform

(FST) with four bands. The former bases on the
dilation matrix D =

[
1 1
1 −1

]
, and the latter bases on

the dilation D =
[

2 0
0 2

]
and uses non-separable and

nonoriented filters (M = det(D)).

3 The Image Compression Scheme

The standard process of image compression is as
shown in Figure 3.

Where, Y denotes the wavelet coefficients that
are obtained by performing wavelet transform to
image data. A compression scheme can be de-
signed as below [Wang Ling and Song Guo-xiang
(2001)]:

1. Perform 8-bit Scalar quantization of Y

2. Let De
j denote the wavelet coefficients of part

e(e = H denotes horizontal; e = V denotes
vertical; e = D denotes diagonal). δ e

j denotes
the threshold.

De
j,δ =

{
De

j, when abs(De
j) > δ e

j

0, otherwise

3. Compute the entropy ofDe
j, which is denoted

aste
j .

te
j = −∑

k
∑

l

p(De
j,δ (k, l)) log p(De

j,δ (k, l))

p(De
j,δ (k, l)) is the probability of pixel (k, l)

in De
j,δ .

Compute the compression rate as following:

CR = 8

/{
1

det(D)
(a1tH

1 +a2tV
1 +a3tD

1 )+ . . .

+
1

(det(D)) j (a1tH
j +a2tV

j +a3tD
j )+

1
(det(D)) j t

L
j

}
a1, a2, a3 all can set 1.

4 Experiment

In our experiment, the non-separable wavelet
method is used to implement the image compres-
sion scheme. As a comparison, the tensor-product
method of well-known biorthogonal wavelets
CDF53 and DB97 (the best wavelet for image
compression so far) is also implemented. The
non-separable wavelet filter banks used in the ex-
periments are as following:
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Figure 1: Tensor-product wavelet decomposition of S j
2 f
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Figure 2: Non-separable wavelet decomposition of S j
2 f

Figure 3: The processing of image compression

Quincunx Wavelet:

Orthogonal, 1-order vanishing moment (2-M1):

H = [
1√
2
,

1√
2
], G = [

1√
2
,− 1√

2
]

Orthogonal, 2-order vanishing moment (2-M2):

H =
1

4×√
2

×
⎡
⎣ 0 0 0 0

1+
√

3 3+
√

3 3−√
3 1−√

3
0 0 0 0

⎤
⎦

G =
1

4×√
2

×
⎡
⎣ 0 0 0 0√

3−1 3−√
3 −3−√

3 1+
√

3
0 0 0 0

⎤
⎦

Four-band, Separable Sampling Wavelet

Orthogonal, Linear phase, 1-order vanishing mo-
ment (4-M1):

H =

⎡
⎢⎣

0.12438 0.124065 0.134125 0.134441
0.125309 −0.124997 −0.116181 0.134125
0.116492 −0.13257 −0.124997 0.124065
0.115563 0.116492 0.125309 0.12438

⎤
⎥⎦

G1 =⎡
⎢⎢⎣

0.119815 0.103642 −0.128752 −0.129055
0.136266 −0.120253 0.111526 −0.128752
0.117017 −0.143438 0.124518 −0.114555
0.132964 0.142446 −0.124211 −0.114869

0.00393323 −0.0044761 −0.00422041 0.00418892
0.00390188 0.00393323 0.00423092 0.00419957

⎤
⎥⎥⎦

G2 =
[
G21 G22

]
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Figure 4: Lena

Figure 5: Barbara

                   

Figure 6: Barbara

                   

Figure 7: Pepper
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Figure 8: Mandrill

where

G21 =

⎡
⎢⎢⎢⎢⎣

0 0 0.000127888
0 0 0.000145448

0.129237 0.111792 0.130945
0.146981 −0.129709 −0.106902
−0.120619 0.137267 0.125783
−0.119657 −0.120619 −0.133362

⎤
⎥⎥⎥⎥⎦

G22 =

⎡
⎢⎢⎣

0.000110625 −0.000137428 −0.000137751
−0.000128356 0.000119041 −0.000137428

0.115243 −0.00406622 −0.00433127
0.107394 0.00350473 −0.00432173
−0.124314 0.00390884 −0.00387968
−0.132429 −0.00391858 −0.00388954

⎤
⎥⎥⎦

G3 =
[
G31 G32

]
where

G31 =

⎡
⎢⎢⎢⎢⎣

0.124063 0.107316 −0.137383
0.141097 −0.124516 0.110856
−0.111723 0.135288 −0.12695
−0.110242 −0.11987 0.134239
−0.0037948 0.00431857 0.00407185
−0.00376455 −0.0037948 −0.00408203

⎤
⎥⎥⎥⎥⎦

G32 =

⎡
⎢⎢⎢⎢⎣

−0.137147 0.00436924 0.00437951
−0.129236 −0.00378467 0.00436924
0.116734 −0.00407191 0.00404148
0.125177 0.00408205 0.00405175

−0.00404147 0 0
−0.00405178 0 0

⎤
⎥⎥⎥⎥⎦

Orthogonal, 2-order vanishing moment (4-M2):

H =
(3×√

3−1)
416

×⎡
⎢⎣

9
√

3+16 9
√

3+16 4−√
3 4−√

3
16

√
3+27 16

√
3+27 4

√
3−3 4

√
3−3

4−√
3 11

√
3+8 17

√
3−16 5

√
3−20

−8
√

3−7 4
√

3−3 12
√

3−9 −13

⎤
⎥⎦

G1 =
(1+

√
3)

8
×

⎡
⎢⎢⎣

2−√
3 2−√

3
2
√

3−3 2
√

3−3
−√

3 −√
3

1 1

⎤
⎥⎥⎦

G3 =
1
2
×

[
1 −1
−1 1

]

G2 =
(5×√

3+7)
416

×⎡
⎢⎣

4−√
3 4−√

3
√

3−4
√

3−4
4
√

3−3 4
√

3−3 3−4
√

3 3−4
√

3
40−23

√
3 45

√
3−76 16−17

√
3 20−5

√
3

47−28
√

3 40
√

3−69 9−12
√

3 13

⎤
⎥⎦

The peak signal to noise ratio (PSNR) for a gray-
scale image xand its compressed reconstruction x
is given by

RMSE =

√√√√ ∑
i≤M, j≤N

(xi, j −xi, j)2

NM

PSNR = 20log10(
255

RMSE
)

Because this application is image dependent, we
have chosen five images: Lena, Barbara, Goldhill,
Peppers and mandrill of size 256×256. The re-
sults are shown in Figure.4–Figure.8:

As shown in the Figure.4–Figure.8, DB97 has the
best ascendant performance. Although the per-
formance of the non-separable wavelet in these
experiments is not as good as DB97, which is
the best wavelet in image compression applica-
tions, the performance of the four-band, 2-order
vanishing moment non-separable wavelet is close
to that of DB97 and better than that of CDF53
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that is also an excellent wavelet in image com-
pression applications. Multidimensional non-
separable wavelet is far away from being well un-
derstood so far. We believe that the non-separable
wavelet will perform better and better in image
compression applications as the advance of non-
separable wavelet theory.

5 Conclusion

In this paper, we present the comparative re-
sults of image compression preprocessed with two
different wavelet transforms: the non-separable
wavelet transforms (quincunx and four-band) and
the Tensor-product wavelet transform. The re-
sults show that: 1) the vanishing moment is an
important property in still image compression 2)
the four-band, 2-order vanishing moment non-
separable wavelet has better performance in still
image compression than Quincunx non-separable
wavelet 3) the non-separable wavelet has better
ascendant performance than the tensor-product
of univariate wavelet. As the future work, we
will investigate the application of non-separable
wavelets in image compression.
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