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A Meshless Local Petrov-Galerkin Method for Magnetic Diffusion in
Non-magnetic Conductors
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Abstract: In this paper, we propose a Mesh-
less Local Petrov-Galerkin method for studying
the diffusion of a magnetic field within a non-
magnetic (μ = μ0) conducting medium with non-
homogeneous and anisotropic electrical resistiv-
ity. We derive a local weak form for the mag-
netic diffusion equation and discuss the effects
of different trial/test functions and nodal spac-
ings on its solution. We then demonstrate that the
method produces convergent results for several
relevant one-dimensional test problems for which
solutions are known. This method has the poten-
tial to be combined with other mesh-free methods
such as Smoothed Particle Hydrodynamics (SPH)
to solve problems in resistive magnetohydrody-
namics, which has several applications in astro-
physics, plasma physics, and engineering.
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1 Introduction

The study of magnetic fields within electrical con-
ductors has become an area of great interest in re-
cent years. The dynamics of these systems have
applications spanning several length scales in na-
ture and in the laboratory, from astrophysical sys-
tems to metalurgy [Davidson (2001)]. In partic-
ular, the conductivity of the material in which
a magnetic field exists greatly affects the behav-
ior of that magnetic field–in a perfect conductor,
the field is “frozen" into the medium and remains
stationary with respect to it [Jackson (1999)]; in
a conductor with finite conductivity (nonzero re-
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sistivity), the magnetic field diffuses out of the
medium in some finite amount of time. To de-
scribe such magnetic diffusion, it is necessary to
accurately represent both the material’s conduc-
tivity and the governing equations for the mag-
netic field.

Several methods have been used to study mag-
netic fields in conducting media. Hyman and
Shashkov (2001) describe the application of their
Mimetic Finite Difference method to problems
in electromagnetics and magnetic diffusion with
a spatial discretization that preserves the con-
tinuum vector identities. Brauer and Mayer-
goyz (2004) use a Finite Element method to
study eddy currents and magnetic diffusion in
magnetic materials in axisymmetric configura-
tions. More recently, the Vector Finite Element
(VFE) and Element Free Galerkin (EFG) methods
have been applied to these problems [Rieben and
White (2006), Bottauscio, Chiampi, and Manzin
(2006)]. All of these methods are mesh-based ex-
cept for the EFG method (though this technique
does, in fact, rely upon a background mesh for
performing numerical integration).

Mesh-free methods have recently become very
popular in the solution of various types of bound-
ary value problems [Belytschko, Krogauz, Organ,
Fleming, and Krysl (1996)]. These methods can
often adapt easily to the geometry of the problem,
and they avoid the need to generate a mesh (a task
which can be cumbersome for complex geome-
tries). A particular strength of mesh-free methods
is that they are well-suited for describing solu-
tions on sets of moving or disordered points. If the
magnetic diffusion problem can be solved with a
mesh-free method, this method can also be ap-
plied to problems in which the conductor moves,
dragging the magnetic field along with it. If this
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method is then combined with another mesh-free
method that incorporates deformations in the ma-
terial, it can be applied to problems in magneto-
hydrodynamics (MHD), which describe a broad
class of problems from galaxy formation to the
magnetic confinement [Chen (1984)] and accel-
eration [Hwang, Horton, Howard, Evans, and
Brockington (2006)] of plasmas.

In this paper, we develop a Meshless Local
Petrov-Galerkin (MLPG) method [Atluri and Zhu
(1998)] for the solution of the magnetic diffu-
sion equation. This method has been used to
model a number of different types of systems,
most prominently in solid mechanics problems
but also in studying convection-diffusion [Lin
and Atluri (2000)], incompressible Navier-Stokes
flows [Lin and Atluri (2001)], the heat equa-
tion [Sterk, Robic, and Trobec (2005)] and even
nanoscale physics [Atluri (2004)]. We choose the
MLPG formulation because it has a great deal of
flexibility in the representation of the solution and
does not rely upon a background mesh for the
computation of numerical quadrature. This makes
it a truly mesh-free method, suitable for prob-
lems in which computational points move and the
material becomes increasingly distorted with re-
spect to its initial configuration. We intend even-
tually to study the equations of resistive MHD
by combining this flexible method with a form of
Smoothed Particle Hydrodynamics (SPH) [Mon-
aghan (1992), Price and Monaghan (2004)], treat-
ing magnetic diffusion with the weak form of the
former and the fluid/field ∇ × v×B and J × B
coupling with the strong form of the latter.

In the next section, we derive the magnetic dif-
fusion equation. We develop a local weak form
from which we can construct our method in sec-
tion 3. In section 4 we describe the fully discrete
form of the magnetic diffusion equation with time
stepping. In section 5 we discuss specific issues
with the implementation that affect the accuracy
of the solution. We demonstrate the convergence
of the method for various one-dimensional test
problems using selected variants of the MLPG
method in section 6. Section 7 contains the con-
clusions of the study and outlines future and on-
going work.

2 Magnetic Diffusion

The dynamics of electromagnetic fields are de-
scribed most generally by Maxwell’s equations.
Those pertaining to the evolution of the magnetic
field are:

∇×E = −∂B
∂ t

(1)

∇×B = μ0J+ μ0ε ∂E
∂ t

(2)

∇ ·B = 0 (3)

where B is the magnetic induction in Tesla (T), E
is the electric field in Volts per meter (V/m), J is
the electric current density in Amperes per square
meter (A/m2), ε is the permittivity of the material,
and μ0 is the permiability of free space.

The characteristic time scale for magnetic diffu-
sion is much larger than that for that of the prop-
agation of electromagnetic waves, so we are not
interested in the time evolution of E. Rather,
we assume that the electrons within a conduc-
tor respond instantaneously to the magnetic field.
We express this by ignoring the second term in
Eq. 2 and using Ohm’s Law to relate E to J [Chen
(1984)]:

E = ηηη ·J (4)

Here, ηηη is the electric resistivity, or inverse con-
ductivity, of the material, expressed in Ohm-
meters (Ω-m).

2.1 Electrical Resistivity Models

The resistivity ηηη can have a scalar or a symmetric
tensor value and depends upon the material prop-
erties and thermodynamic state of the medium.
The resistivity must be positive definite, as the en-
ergy deposited by the magnetic field into the ma-
terial from Joule heating is J ·ηηη ·J, a quantity that
is always positive for non-zero resistivity.

One example of a resistivity model used to treat
simple metals is the Bloc-Grüneisen equation
[Gruneisen (1933)]:

η = η0 +A

(
T
Θ

)5 ∫ Θ/T

0

x5

(ex −1)(1−e−x)
dx
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where T is the metal’s temperature, Θ is its Debye
temperature, η0 is a “residual resistivity" present
because of defect scattering, and A is a constant
depending upon the configuration of its electrons.
On the other hand, the anisotropic resistivity of
a plasma is typically computed using the Spitzer
model [Chen (1984)]:

η‖ = 5.2×10−5 Z lnΛ
T 3/2

η⊥ ≈ 2η‖

where η‖ and η⊥ denote the diagonal compo-
nents of the resistivity tensor that are “parallel"
and “perpendicular" to the magnetic field in the
region, Z is the ion charge number within the
plasma, Λ is the maximum impact parameter for
electron-ion scattering, and T is the temperature
of the plasma in electron Volts (eV).

Obviously these two physical models for resis-
tivity differ greatly from one another, and both
are very sensitive to the temperature of the mate-
rial. This underscores the importance in develop-
ing a numerical method that can handle inhomo-
geneous, anisotropic, and strongly dynamic mod-
els for electrical resistivity. Presently, though, we
will verify the MLPG method for simpler resis-
tivity models while verifying that these basic re-
quirements are met.

2.2 The Diffusion Equation

We take Eq. 1 as the basis for evolving the mag-
netic field. When we combine this equation with
Eq. 4 and the truncated form of Eq. 2, we obtain

∂B
∂ t

= − 1
μ0

∇× (ηηη ·∇×B) (5)

This is our governing equation, with Eq. 3 as a
constraint. From the vector identity ∇×∇×A =
∇(∇ ·A)−∇2A, we see that Eq. 5 is a kind of dif-
fusion equation. If we define the magnetic “diffu-
sivity" as

Dm =
max(ηii)

μ0
(6)

then the characteristic time (in seconds) over
which a magnetic field decays within a conduc-
tor with no external field can be estimated using

the usual time scale for diffusion equations:

τ ≈ L2

Dm
(7)

where L is the characteristic scale length (in me-
ters) of the conductor. Tab. 1 contains some re-
sistivities and values of Dm and τ for some typ-
ical materials of length L = 1 m. Clearly, good
conductors retain magnetic fields for much longer
than poor ones.

Table 1: Resistivities of typical materialsa

Material η (Ω-m) Dm (m2/s) τ (s)
Copper 1.7×10−8 0.014 74
Gold 2.44×10−8 0.0194 52
Plasmab 5×10−7 0.4 3
Carbon 3.5×10−5 28 0.036
Seawater 0.20 1.6×105 6.3×10−6

Glass 1012 8×1017 10−18

a en.wikipedia.org/Resistivity and [Chen
(1984)].

b Here, we take a “typical" plasma to have ther-
mal energy KbT ≈ 100 eV

Note that Eq. 5 can be modified to accomodate
materials for which the magnetic permittivity μ �=
μ0. In this paper, we restrict our attention strictly
to nonmagnetic materials (for which μ = μ0).

2.3 Boundary conditions

Consider a domain Ω that is filled with a conduct-
ing medium. Let Γ represent the boundary of the
domain.

If the conductor is surrounded by an external mag-
netic field BΓ(x, t), then the value of the magnetic
field at the boundary Γ of the conductor is given
by the following essential boundary condition:

B = BΓ(x, t) on Γ (8)

On the other hand, if a good conductor is con-
nected to a source of electrical current so that a
sheet of current K(x, t) runs across its surface, the
tangential components of the magnetic field are
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given by the following essential boundary condi-
tion [Jackson (1999)]:

n ·B = Bn on Γ (9)

n×B = K(x, t) on Γ

where n is the outward normal of the boundary,
and Bn is the component of B that is normal to
the boundary (also specified). Such surface cur-
rents can be used to drive magnetic fields within
conductors and form the basis for the acceleration
of plasmas [Hwang, Horton, Howard, Evans, and
Brockington (2006)]. Thus, we see that our tech-
nique must accommodate essential boundary con-
ditions in order to realistically describe problems
of interest.

If the electric field E = EΓ at the surface of the
conductor (for example, if no current enters or
exits the conductor through its surface, so that
it is electrically insulated), the associated natural
boundary condition is

n×ηηη ·μ0∇×B = n×EΓ on Γ (10)

For magnetic materials (those for which μ � μ0),
a discontinuity in the normal component of B can
exist at the material boundary [Jackson (1999)].
We will not discuss these materials here.

2.4 The Divergence of B

An important feature of magnetic fields is that
their divergence is exactly zero. A non-zero diver-
gence implies the presence of magnetic “charge"
analogous to the electric charge to which the di-
vergence of the electric field is proportional in
Poisson’s equation of electrostatics:

∇ ·E =
ρe

ε
(11)

The test problems in this study have one-
dimensional symmetry so that the y and z deriva-
tives of the magnetic induction are zero, reducing
Eq. 3 to

∂Bx

∂x
= 0

meaning that Bx cannot depend upon any spa-
tial coordinate. In future work, we will measure

any non-zero magnetic divergence and determine
whether it dynamically affects the system. Anal-
ysis of this sort is especially important in the con-
text of magnetohydrodynamics, where spurious
magnetic signals can visit disaster upon the hy-
drodynamics.

3 The Local Weak Form

Consider again a conducting medium within a do-
main Ω. The medium has a dynamic symmetric-
tensor-valued electrical resistivity ηηη(x, t) that is
related to temperature, density, and other prop-
erties. Within the medium is a magnetic field B
given at time t = 0 by B0(x, t). The initial bound-
ary value problem (IBVP) for the magnetic field
is given everywhere in Ω by Eq. 5 as discussed
previously. On the boundary Γ = ΓB ∪ΓK ∪ΓE ,
the following boundary conditions hold:

B = BΓ(x, t) on ΓB

n×B = K(x, t) on ΓK

1
μ0

n×ηηη∇×B = n×EΓ on ΓE

To devise a MLPG method for this IBVP, we in-
troduce a set of computational points, or nodes
within Ω at positions xi. A weak form for Eq. 5
can then be constructed over a set of local subdo-
mains Ωi corresponding to these points. The sub-
domain Ωi represents the support of the ith node,
and so the subdomains will typically overlap one
another and cover the entire global domain Ω. In
general, the subdomains may be of any shape or
size; presently, we discuss circular subdomains
for which the radius of the support of the ith point
is given by Ri.

We write the desired local weak form by multi-
plying both sides of Eq. 5 by a test function ψi(x)
and integrating over Ωi:

∫
Ωi

∂B
∂ t

ψidΩ = − 1
μ0

∫
Ωi

∇× (ηηη ·∇×B)ψidΩ

ψ can be any weight function or mesh-free shape
function that has compact support on the subdo-
main Ωi. The right hand side of the equation can
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be integrated by parts using Green’s Theorem for
vectors to obtain∫
Ωi

∂B
∂ t

ψidΩ = − 1
μ0

∫
Γi

n×ηηη ·∇×BψidΓ (12)

+
1
μ0

∫
Ωi

ηηη ·∇×B ·∇×ψi dΩ

Here, Γi is the intersection of the boundary Γ with
the subdomain Ωi for the ith node. In addition,
we have defined a curl of the test function ψi(x),
which we have previously introduced as a scalar
function. We will discuss its evaluation shortly.

The first term in the right hand side of Eq. 12
represents the contribution of a natural boundary
condition on B. If Γi intersects ΓE , this term may
be written as

−
∫
Γi

n×EΓψidΓ

Otherwise, we leave the term in its original form
and proceed with our analysis.

3.1 Semi-discrete equations

We wish to represent the vector-valued solution
for the magnetic field on our set of nodes in Ω.
The solution is approximated using a trial func-
tion φ (x) in the usual manner:

B(x, t)≈ ∑
j∈Ωi

φ j(x)B̂ j (13)

where {B̂ j} is a set of “fictitious" nodal values
representing the projection of B(x, t) onto the ba-
sis {φ j}. φ can be any mesh-free shape function
and is generally different from ψ (since this is
a Petrov-Galerkin method). Substituting Eq. 13
into Eq. 12 and pulling the sums outside the inte-
grals yields

∑
j

∫
Ωi

ψiφ j
∂ B̂ j

∂ t
dΩ =

− 1
μ0

∑
j

∫
Γi

n× (ηηη ·∇×φ j)ψiB̂ jdΓ (14)

+
1
μ0

∑
j

∫
Ωi

ηηη ·∇×φ j · B̂ j ·∇×ψidΩ

Using the fact that ηηη is either a scalar or a sym-
metric tensor, we observe that ηηη ·∇ × φ j · B̂ j =
B̂ j ·∇× φ j ·ηηη and so the last term in Eq. 14 be-
comes

1
μ0

∑
j

∫
Ωi

B̂ j · (∇×φ j ·ηηη ·∇×ψi)dΩ

or

1
μ0

∑
j

∫
Ωi

(∇×ψi ·ηηη ·∇×φ j) · B̂ jdΩ

Eq. 14 is the MLPG semi-discrete form of the
magnetic diffusion equation on the subdomain Ωi.
It is a vector valued equation with 3 components:
one for each of the components of the magnetic
induction B. At this point, we can follow the com-
mon practice for Galerkin and Petrov-Galerkin
methods and express this vector equation as a lin-
ear system, interpreting {B̂ j} as the components
of a solution vector b:

M
∂b
∂ t

=
1
μ0

K(ηηη)b+
1
μ0

f (15)

where M, the “mass matrix," K, the “stiffness ma-
trix," and f, the “boundary vector" are defined as
follows:

Mi j ≡
∫
Ωi

ψiφ jdΩ

K(ηηη)i j ≡
∫
Ωi

∇×ψi ·ηηη ·∇×φ jdΩ (16)

−
∫

Γi∪(ΓB∪ΓK )

ψi(n×∇×φ j)dΓ

f ≡ −
∫

Γi∪ΓE

n×EΓψidΓ

The matrices M and K are 3×3 matrices, and b
and f are 3-vectors. If the domain Ω contains N
nodes, the global linear system will thus comprise
N linear systems described by Eq. 15 and the so-
lution vector b will have 3N values as expected.

As expected for a MLPG method, M and K are
not symmetric matrices [Atluri and Zhu (1998),
Atluri, Kim, and Cho (1999)]. Consequently, we
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do not expect that the fully discrete global lin-
ear system will have a symmetric matrix. How-
ever, since several freely available linear solvers
(for example, PETSc [Balay, Buschelman, Gropp,
Kaushik, Knepley, McInnes, Smith, and Zhang
(2001)]) can quickly and accurately solve non-
symmetric systems, this is not an issue.

3.2 Specific forms of matrices

We now obtain explicit expressions for Eq. 16 in
terms of the test and trial functions and their par-
tial derivatives. Consider a trial function φi(x).
Since electric and magnetic fields are always
three-dimensional (even in problems with one-
dimensional symmetry), we can treat the function
as a scalar function multiplied by the 3×3 iden-
tity tensor. Then, if we approximate a vector field
F by

F(x) = ∑
j

φ jF̂ j (17)

and its curl by

∇×F(x) ≡ ∑
j

∇×φ j · F̂ j (18)

we can equate the components of the curl of
Eq. 17 to the components of Eq. 18:

[∇×F(x)]x = ∑
j∈Ωi

φ j,yF̂z −φ j,zF̂y

[∇×F(x)]y = ∑
j∈Ωi

φ j,zF̂x −φ j,xF̂z

[∇×F(x)]z = ∑
j∈Ωi

φ j,xF̂y −φ j,yF̂x

and can infer that

∇×φ j(x) =

⎛
⎝ 0 −φ j,z(x) φ j,y(x)

φ j,z(x) 0 −φ j,x(x)
−φ j,y(x) φ j,x(x) 0

⎞
⎠
(19)

where the subscripts ,x, ,y, and ,z refer to the x, y
and z derivatives of the trial functions.

A similar analysis of n×F yields

n×· =
⎛
⎝ 0 −nz ny

nz 0 −nx

−ny nx 0

⎞
⎠ (20)

To obtain an expression for n× ∇× φj, we may
take the matrix product of Eq. 20 with Eq. 19. We
can use the same method to derive an expression
for the curl of the test function ψi(x).

Using these definitions of the curl for both the trial
and test functions, we can rewrite the matrices and
the load vector in Eq. 16 in terms of the shape
functions and their partial derivatives, clarifying
the analysis. The explicit 3×3 form of the mass
matrix is

Mi j =
∫
Ωi

⎛
⎝ψiφ j 0 0

0 ψiφ j 0
0 0 ψiφ j

⎞
⎠dΩ

The stiffness matrix is

K(ηηη)i j =

∫
Ωi

⎛
⎝ 0 −ψi,z ψi,y

ψi,z 0 −ψi,x

−ψi,y ψi,x 0

⎞
⎠ ·

⎛
⎝ηxx 0 0

0 ηyy 0
0 0 ηzz

⎞
⎠ ·

⎛
⎝ 0 −φ j,z φ j,y

φ j,z 0 −φ j,x

−φ j,y φ j,x 0

⎞
⎠dΩ

−
∫

Γi∪(ΓB∪ΓK)

ψi

⎛
⎝ 0 −nz ny

nz 0 −nx

−ny nx 0

⎞
⎠ ·

⎛
⎝ 0 −φ j,z φ j,y

φ j,z 0 −φ j,x
−φ j,y φ j,x 0

⎞
⎠dΓ

(21)

The load vector is

fi = −
∫

Γi∪(ΓB∪ΓK)

⎛
⎝nyEΓz −nzEΓy

nzEΓx −nxEΓz

nxEΓy −nyEΓx

⎞
⎠dΓ

3.3 Meshless Shape Functions

We have mentioned that the trial function φ
and the test function ψ can take various forms.
One of the great strengths of the MLPG method
is that it allows one to choose these functions
from a larger cast of mesh-free shape functions
and weight functions that have compact support.
These typically include Shepard functions, Mov-
ing Least Squares (MLS) functions, Radial Basis
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Functions (RBF), and others. These shape func-
tions are extremely popular not only in MLPG
methods [Atluri and Zhu (1998)] but also in sev-
eral other mesh-free methods (Belytschko, Kro-
gauz, Organ, Fleming, and Krysl (1996), Diltz
(1999)). There are several excellent expositions
of these shape functions in the above references
and also in [Atluri (2004), Atluri, Han, and Ra-
jendran (2004)]; for completeness, we briefly de-
scribe the MLS shape functions, which we em-
ploy in the present method.

Consider a domain Ω in space in which a continu-
ous function F is defined at several discrete points
{xi}. To approximate the value of F at some point
x within this domain, we define the MLS approx-
imant (itself a continuous function of space) as

F̃(x) = pT (x)a(x), x ∈ Ω (22)

where pT (x) is some polynomial basis of order m
(i.e. [p1(x), p2(x), . . ., pm(x)]) and a(x) is the cor-
responding projection of F onto that basis. Some
examples of pT (x) for various dimensions and or-
ders appear below:

pT (x) = [1,x], 1D, linear (m = 2)

pT (x) = [1,x,x2], 1D, quadratic (m = 3)

pT (x) = [1,x,y], 2D, linear (m = 3)

pT (x) = [1,x,y,x2,xy,y2], 2D, quadratic (m = 6)

pT (x) = [1,x,y, z], 3D, linear (m = 4)

pT (x) = [1,x,y, z,x2,xy,y2, yz, z2,xz],
3D, quadratic (m=10)

To project F onto the desired basis, one assumes a
set of fictitious nodal values {F̂i} that exist on all
points {xi} within Ω and then proceeds to mini-
mize a weighted L2 norm defined by

J(x) = ∑
i∈Ω

Wi(x)
[
pT (xi)a(x)− F̂i

]2
(23)

where Wi(x) is some compactly-supported weight
function centered about the point xi in the domain
Ω. In general, F̂j �= F̃(x j). Rather, the relation-
ship between the fictitious and the “actual" nodal
values can be expressed in terms of the desired
shape functions {φi(x)} as in Eq. 17.

Supposing that there are N points within Ω and
that the dimension of our polynomial basis is
m, the problem of minimizing Eq. 23 (and thus
projecting F onto the basis pT ) is equivalent to
solving a least-squares problem described by the
m×m linear system

A(x)a(x) = B(x)F̂ (24)

where the matrices A and B are defined by

A(x) =
N

∑
i=1

Wi(x)p(xi)pT (xi)

B(x) = [W1(x)p(x1), . . .,WN(xN)]

and F̂ is the vector of fictitious nodal values {F̂i}.
Note that A and B are m×m and m×N matrices,
respectively. Thus, a(x), the projection of F onto
pT (x), becomes A−1(x)B(x)F̂ and we obtain the
MLS shape functions {φi(x)}, defined by

φi(x) = ∑
j∈Ω

p j(x)[A−1(x)B(x)] ji (25)

The moment matrix A is symmetric, and so as
long as it is nonsingular, Eq. 24 can be solved us-
ing Cholesky factorization. In practice, one can
ensure that A is positive definite by choosing suf-
ficient numbers of points in the neighborhood of
x. A rule of thumb adopted by many practition-
ers is to choose m as roughly twice the number of
points as is needed to find a unique solution. This
helps to ease difficulties encountered in regions
where F is not smooth.

The partial derivatives of these shape functions
can be obtained directly using the expression

∂φi

∂xk
=

q

∑
j=1

[
∂ p j

∂xk
(A−1B) ji + p j(A−1 ∂B

∂xk
+

∂A−1

∂xk
B) ji

]
(26)

(where ∂A−1

∂xk
= −A−1 ∂A

∂xk
A−1) [Atluri and Zhu

(1998)], or by using the “diffuse derivatives" ex-
plored by Nayroles, Touzot, and Villon (1992).
Presently, we directly compute the derivatives us-
ing Eq. 26.
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As we have mentioned, each mesh-free shape
function is constructed using a weight function
with compact support [Atluri and Zhu (1998)].
Our implementation uses a quartic spline function
identical to that used in several previous studies of
MLPG methods:

Wi(ξ ) =

{
1−6ξ 2 +8ξ 3 −3ξ 4 0 ≤ ξ < 1,

0 ξ ≥ 1.

(27)

Here, ξ ≡ |x− xi|/Ri, where Ri is the radius of
support of Wi about xi.

Atluri, Kim, and Cho (1999) have found that the
convergence rates for Shepard functions and MLS
functions exceed h-convergence, which is given
for computed and exact solutions uc and ue:

‖uc −ue‖ ∝ hm+1−k (28)

where ‖·‖k is the k-norm in the Sobolev space
and m is the order of completeness in the poly-
nomial interpolation. We have verified that h-
convergence is indeed a conservative estimate for
the convergence of the interpolation error of the
mesh-free shape functions. The MLPG method,
like any weak form, is based upon the integra-
tion of interpolated quantities, so the convergence
rates of the meshless interpolation functions rep-
resent a characteristic rate of convergence in the
spatial discretization for methods that use them.

In the MLPG framework, ψ can assume a dif-
ferent form than φ . Several popular variants
of MLPG exist in the literature (for example,
MLPG1-6 [Atluri (2004)]), each one prescribing
a relationship between these two functions. Here
we focus our attention on the MLPG1 method,
which specifies that φ is one of the aforemen-
tioned mesh-free shape functions, and that ψ is
the aforementioned weight function W that was
used in the construction of φ . This is the original
version of the MLPG method and produces accu-
rate results, but suffers from complexities in nu-
merical integration that will be discussed in Sec-
tion 5. Another variant based upon MLPG5 has
been demonstrated by Atluri, Han, and Rajendran
(2004) to alleviate these difficulties by eliminat-
ing the numerical integration in the stiffness ma-

trix and shows even better accuracy. More re-
cently, a MLPG method based upon a general-
ized finite difference method has been described
by Atluri, Liu, and Han (2006b); this method
avoids the the direct differentiation of the shape
functions, using the nodal quantities to compute
derivatives instead. We hope to explore these vari-
ants in the future.

3.4 Current density

Once the magnetic diffusion has been solved and
the magnetic induction B obtained, the current
density J can be computed using the truncated
form of Eq. 2:

J =
1
μ0

∇×B (29)

Using the definition of the curl given by Eq. 19,
we can relate the current density to the fictitious
nodal values {B̂}:

J(x) =

∑
j∈Ωi

⎛
⎝ 0 −φ j,z(x) φ j,y(x)

φ j,z(x) 0 −φ j,x(x)
−φ j,y(x) φ j,x(x) 0

⎞
⎠

⎛
⎝B̂x j

B̂y j

B̂z j

⎞
⎠
(30)

where the subscripts ,x, ,y, and ,z refer to the x, y
and z derivatives of the trial functions.

4 Time Integration

The characteristic time scale over which diffu-
sion occurs (Eq. 7) can serve as a CFL-like rela-
tionship between the time step size and the nodal
spacing. Unfortunately, if one adopts this ap-
proach, one finds quickly that a time step that
scales quadratically with the nodal spacing be-
comes impractically small for realistic problems.
To avoid this issue, we adopt a variable, implicit,
Crank-Nicholson-based time integration method
that has become popular for solving diffusion and
diffusion-like equations [Chinchapatnam, Djid-
jeli, and Nair (2006), Rieben and White (2006)].
We begin with our semi-discrete linear system
(Eq. 15), using a superscript n to denote quantities
that are time-centered about the time tn. Here, we
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introduce a weighting factor θ (with 0≤ θ ≤ 1) to
control the “implicitness" of the time discretiza-
tion:

M
(

∂b
∂ t

)n+ 1
2

=
1
μ0

K(ηηηn+θ)bn+θ (31)

We then approximate(
∂b
∂ t

)n+ 1
2

≈ bn+1−bn

Δt

and

bn+θ ≈ θbn+1 +(1−θ )bn

where Δt = tn+1− tn, rearranging the terms to ob-
tain[

M−θΔtμ−1
0 K(ηηηn+θ)

]
bn+1 = (32)[

M+(1−θ )Δtμ−1
0 K(ηηηn+θ )

]
bn +

1
μ0

fn

This linear system must be solved for each time
tn to evolve the magnetic induction to its state at
time tn+1. The time integration scheme is uncon-
ditionally stable for θ ≥ 1/2. If θ = 0, we recover
the explicit Forward Euler integration method. If
θ = 1, this discretization gives us the implicit
Backward Euler scheme. Both of these are first-
order accurate in time. If θ = 1/2, we get the
second-order Crank-Nicholson scheme. With this
scheme, we can scale the time step size linearly
with the nodal spacing and still obtain accurate,
stable results.

Note that θ also determines the time centering of
the electrical resistivity ηηη in Eq. 31, which must
be computed at tn+θ = tn + θΔt. This is crucial
if one wishes to obtain the predicted convergence
rate for the selected time discretization.

For the test problems in this paper, we use θ =
1/2 and scale the maximum time step size down
with the nodal spacing to control the amount of
time discretization error in the solution. If one
were to use a value of θ less than 1/2, one must
take care to ensure that the spectral radius of the
amplification matrix

A =
[
M−θΔtμ−1

0 K(ηnηnηn)
]−1 ·[

M+(1−θ )Δtμ−1
0 K(ηnηnηn)

]

is less than 1 in order to achieve stability [Stoer
and Bulirsch (1991)]. Alternatively, one may use
Eq. 7 as an estimate for the maximum time step
(though this becomes impractical as the nodal
spacing in a problem becomes small). In prac-
tice, one must be careful even when θ = 1/2, as
problems with discontinuities may develop oscil-
lations; these can be eliminated by increasing θ
or more carefully controlling the time step size.

5 Implementation

In this section we discuss various issues in the im-
plementation of the technique. The truly mesh-
free nature of the MLPG method gives it many
advantages over other techniques that rely upon
some sort of regular connectivity, but the use of
overlapping subdomains also complicates the al-
gorithm in areas that are straightforward in other
methods.

5.1 Numerical Quadrature

In the computation of the mass and stiffness
matrices defined by Eq. 16, the Meshless Lo-
cal Petrov-Galerkin method produces integrands
with complicated shapes. The shape functions
are typically ratios of piecewise polynomials, so
straightforward Gaussian integration cannot be
relied upon to obtain precise results. Atluri,
Kim, and Cho (1999) provides an excellent dis-
cussion of the trouble encountered by naively us-
ing Gauss integration with these techniques, and
recommends the use of partitioned integration,
with each partition containing a different region
of overlapping trial and test functions. We have
found that this type of partitioning is more accu-
rate and efficient than performing the integration
on a single region with large numbers of Gauss
points.

In our numerical experiments, we use a one-
dimensional distribution of points like that shown
in Fig. 1. Each point xi has a support domain Ωi

Tr
on which the trial function {φi} is defined and in
which its neighbor points may be found. Mean-
while, the test function ψi is defined on a subdo-
main Ωi

Te (which we have previously called sim-
ply Ωi) that is typically smaller than Ωi

Tr. Each of
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the integrals in Eq. 16 is evaluated over Ωi
Te.

Figure 1: 1D point distribution

To perform this integration, we divide ΩTe into
several partitions, each of which contains a region
where ψi and {φ j} overlap in a specific way, as
shown by the intervals I1, I2, and I3 in Fig. 2. We
perform the integration over each partition with a
Gauss quadrature rule. By guaranteeing that the
form of the integrand remains the same over each
partition, we can obtain accurate results without
resorting to integration rules of extremely high or-
der. We have used a 15-point Gauss integration
rule and obtained very good results.

� �

�� �� ��

Figure 2: 1D integration segments

5.2 Essential Boundary Conditions

Since our method is based on local weak forms,
the values of the solution incorporate all points
within their subdomains. This makes it difficult
to enforce essential boundary conditions directly
even when trial functions possessing the Dirac
delta function property are used [Atluri, Han, and
Rajendran (2004)]. One way to indirectly im-
pose values on the boundary Γ of the domain Ω
is to use a penalty method with some multiplier
α � 1. This adds the effect of a strong spring
on the boundary that holds the solution at the pre-
scribed value. In this case, penalty terms

α
∫
Γi

ψi(x)φ j(x)dΓ

and

α
∫
Γi

BΓ(x)ψi(x)dΓ

are added to the left and the right hand sides of
Eq. 14, respectively. A problem with this ap-
proach is that α must be “big enough" so that
the penalty terms overshadow the others, but not
so large that it renders the matrix ill-conditioned.
In other words, α is a free parameter that can
be sensitive to the nodal spacing in the prob-
lem, meaning that it must vary with the reso-
lution. Nevertheless, it is a straightforward ap-
proach that gives convergent solutions. We have
found that values of α between 106 and 108 give
the best results when using MKS units (in which
μ0 = 4π ×10−7N ·A2).

Other approaches have been suggested. The
transformation method, described in Atluri, Kim,
and Cho (1999), imparts the Dirac delta func-
tion property to the solution at the boundary via
a transformation of the linear system Eq. 32. The
transformation matrix {Ri j} = {φ j(xi)}−1 can be
computed using LU decomposition to invert the
matrix of trial functions, but care must be taken
to mitigate numerical errors and the expense of
transforming the system. A modified colocation
method, described in Zhu and Atluri (1998), uses
the interpolation

B(xi, t) = ∑
j∈Ωi

φ j(xi)B̂(t)

to replace each row of Eq. 32 corresponding to a
node on Γ, with the right hand side set to the value
prescribed by the function BΓ.

∑
j∈Ωi

φ j(xi)B̂(t) = BΓ(xi, t), i∈ Γ (33)

Here, one must be careful to eliminate all other
entries on these boundary rows in order to avoid
introducing spurious errors on the boundary.
More recently, Atluri, Liu, and Han (2006a) have
described the application of this method to their
“mixed" finite-volume MLPG approach in elas-
ticity problems.

We have used both the penalty method and the
modified colocation method and have found that
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both give convergent results for our test problems.
However, the treatment of essential boundary con-
ditions for this method remains an open issue, as
surfaces in two and three dimensions are invari-
ably more complicated.

5.2.1 The n×B boundary condition

When we discuss essential boundary conditions,
it is clear that we mean those such as Eq. 8. How-
ever, the aforementioned techniques also apply to
Eq. 9, which is equivalent to the former in the fol-
lowing sense: if we take the cross product of both
sides of n with Eq. 9 and use the vector identity

n× (n×B) = n(n ·B)−B(n ·n)

we obtain an equation relating B directly to Bn and
K:

B = Bnn−n×K on Γ (34)

This equation is substantially equivalent to Eq. 8,
with the functions Bn(x, t) and K(x, t) specifying
the value of B at the boundary.

5.3 Domains of Support, Condition Number

We have briefly mentioned the distinct support
domains for the trial and test functions (Ω j

Tr and
Ωi

Te, respectively) and that their sizes are typi-
cally different. It is crucial to choose proper sizes
for these domains, since the accuracy of the solu-
tion depends upon both the reproducibility of the
mesh-free shape functions and the conditioning of
the linear system. We now discuss some rules of
thumb for choosing the radii of support for the test
and trial functions with these factors in mind.

A trial function at xi interpolates very accurately
in the interior of Ωi

Tr, but not near its boundary.
This means that one should evaluate φi(x) only in
its interior. Since we only evaluate the trial func-
tions within the subdomain of the test functions,
we can accomplish this by making Ωi

Te smaller
than Ωi

Tr. However, the test functions {ψi} should
overlap one another so that Eq. 32 is satisfied
everywhere on the global domain Ω. A typical
choice for Ωi

Te is some small multiple of the nodal
spacing h. We choose the radius of the support
for the test functions to be 0.9h, a setting that has

been advocated for the MLPG1 variant by Atluri
and Zhu (1998) and Atluri, Kim, and Cho (1999).

On the other hand, we cannot make the trial
function support radius too large, since this can
smooth out important features in the solution. It
can also worsen the condition number C of the
matrix in Eq. 32. Tab. 2 shows some condition
numbers that result when the radius of Ωi

Tr, RTr, is
chosen as a multiple of the nodal spacing h. Note
that because of the factor of 1/μ0 = 7.95× 105

in the stiffness matrix, it is wise to use diagonal
scaling before solving the linear system, render-
ing the system numerically “dimensionless" and
reducing the condition number. It is evident C in-
creases with both the resolution of the problem
and RTr. Earlier studies of the MLPG1 method
used RTr = 5h in order to make sure that the mesh-
free shape functions incorporated enough neigh-
bor values, but more recent studies have shown
that lower values will produce more accurate re-
sults. In particular, a “mixed" MLPG method for
elasticity described by Atluri, Han, and Rajendran
(2004) has been developed in order to reduce RTr

while retaining the accuracy of the trial functions.
We have found that RTr ≈ 3h works quite well for
second order MLS shape functions, and that this
radius can be decreased for the shape functions of
lower-order consistency.

The condition numbers in Tab. 2 were computed

Table 2: Typical condition numbers

h RTr/h C (no scaling) C (scaling)
0.01 3 6.3×107 830
0.005 3 9.2×108 2200
0.0025 3 1.4×1010 6500
0.00125 3 2.2×1011 21000
0.01 4 3.6×108 6000
0.005 4 5.5×109 12300
0.0025 4 8.6×1010 25000
0.00125 4 1.4×1012 51000
0.01 5 2.5×109 57000
0.005 5 1.6×1011 4.8×105

0.0025 5 1.4×1012 5.9×105

0.00125 5 2.6×1013 5.1×106
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numerically using C = ‖AAA−1‖‖AAA‖, where AAA is the
matrix on the left-hand side of Eq. 32, and ‖·‖ is
the 2-norm of the matrix.

6 Verification

The following test problems have been chosen
to verify the present method. We first demon-
strate that the method can evolve a Gaussian pulse
(the fundamental solution to the diffusion equa-
tion) with scalar and tensor resistivities. A square
pulse is then evolved to show that the method can
achieve the expected convergence rate (first or-
der) for a discontinuous solution. Because we
intend later to use this technique to model prob-
lems with moving conductors, we evolve moving
pulses to show that MLPG can accommodate a
moving coordinate frame. We then demonstrate
that the technique can reproduce the well-known
Fourier series solutions for the diffusion equation
with both natural and essential boundary condi-
tions. Then, to test the capability of the method
to represent dynamic essential boundary condi-
tions, we impose an oscillating magnetic field on
one surface of a medium and evolve the result-
ing field on the interior. Finally, to test the abil-
ity of the method to treat inhomogeneous and
time-dependent resistivities, we use the Method
of Manufactured Solutions (MMS) to test nonlin-
ear diffusion problems.

Most of the test problems are run with 100, 200,
400, 800, 1600, and 3200 nodes so that accurate
estimates for orders of convergence are obtained,
and to verify that the conditioning of the linear
system does not cripple the technique at higher
resolutions. The last three problems, which are
based upon the Method of Manufactured Solu-
tions, are run with 25, 50, 100, and 200 nodes,
since they exhibit time-dependent resistivity mod-
els implemented in an interpreted language, mak-
ing larger studies less practical. Regardless, we
are able to establish evidence of convergence in
all cases.

We study both the convergence of the magnetic
induction B and the current density J, related to
the former by Eq. 29 and computed using Eq. 30.
Convergence rates are measured for the L1, L2,
and L∞ norms of the error in the solution, where

these norms are defined as

Lp(q) =
(

∑N
i=1 qi −qe

i

N

)1/N

(35)

L∞(q) = max
1≤i≤N

|qi −qe
i |

where q is the quantity under consideration, qi is
its computed solution at the point x0, and qe

i is
the corresponding exact solution. In the problems
presented, we expect second-order convergence in
these norms, as dictated by our Crank-Nicholson
time discretization. The exception is to this rule
is the square pulse decay problem, which has dis-
continuous initial conditions and therefore should
converge at first order.

We use second order MLS shape functions as the
trial functions for these test problems, and the
test functions are simply the spline functions W
(Eq. 27) used to construct the trial functions. The
radius of ΩTr (ρ) is taken to be 3h, and the radius
of ΩTe is 0.9h.

To solve the linear system in Eq. 32, we use
a Generalized Minimum Residual (GMRES) it-
erative solver with a residual error tolerance of
10−18. We use diagonal scaling to remove the
factor of 1/μ0 and reduce the condition number
of the matrix before solving the system.

It is worth noting that in 1D problems (those that
only vary along one spatial dimension, in which
∂
∂y = ∂

∂z = 0), the x component of the magnetic
induction remains constant according to Eq. 3.
Therefore, we will only discuss the evolution of
By and Bz in the test problems.

To test the sensitivity of the technique to irregular-
ities in the point distribution, we run each prob-
lem both on a uniform line of points and on a
randomly distorted distribution. In this distorted
configuration, a point may be displaced to the left
or right of its “uniform" position by up to 20%
of the nodal spacing h. No attempt is made to
adjust the support radii of the trial functions to
accommodate these distortions–thus, we measure
the degree to which variations in neighbors affects
the accuracy of the solution.
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(a)

(b)

Figure 8: (a) Computed decaying square pulse so-
lution for B at t = 0.25 s, and (b) associated cur-
rent density

The computed solutions at t = 0.25 s are shown
in Fig. 8 and their convergence is shown in Fig. 9,
with no significant difference between the uni-
form and distorted point distributions. We obtain
first-order converge in all norms in both B and J,
proving that this MLPG method can reliably treat
problems with discontinuities.

6.3 Moving Pulse

Having established that the present method suc-
cessfully simulates the decay of a magnetic field
within a stationary conducting medium, we now
consider the same problem applied to a rigid mov-
ing conductor. Specifically, we place Gaussian

(a)

(b)

Figure 9: Convergence of B and J for decaying
square pulse problem with (a) uniform node dis-
tribution, (b) distorted node distribution. Conver-
gence rates (labeled m) are given for each norm.

and square-shaped initial magnetic fields into a
conductor that is moving with velocity v = v0 in
the x̂ direction to ensure that the motion of the
conductor does not affect the solution. With an
eye toward combining the MLPG method with
a Lagrangian mesh-free hydrodynamics method
such as SPH, we evolve the positions of the nodes
according to

dx
dt

= v0

with v0 = 1.0 m/s and make the substitution x →
x − v0t in the solutions of the aforementioned
problems. The initial conditions and subsequently
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We construct an initial magnetic field By(x,0) out
of a randomly-generated polynomial that fits the
boundary conditions and then compute its Fourier
coefficients {an}. Then we evolve the system
along the time interval [0,0.2]. The convergence
rates for B and J are shown in Fig. 12. As with
the other continuous problems we have demon-
strated, we achieve second-order convergence in
both quantities, with slightly lower rates for the
distorted point distribution than for the uniform
one. This could result from the fact that we have
not adjusted our support radii to accommodate
the disordered point positions. Nevertheless, both
distributions produce convergent results, demon-
strating that the technique can accurately treat ho-
mogeneous essential boundary conditions.

6.4.2 Homogeneous Natural Boundary Condi-
tions

The solution to Eq. 5 with ∂By

∂x (0, t) = ∂By

∂x (L, t) =
0 is the Fourier cosine series

By(x, t) =
∞

∑
n=0

bn cos
(nπx

L

)
exp

(
−Dn2π2t

L2

)

with corresponding coefficients

bn =
2
L

∫ L

0
By(x,0)cos

(nπx
L

)
dx

The current density for this solution is

Jz(x, t) =

− π
μ0L

∞

∑
n=0

nbn sin
(nπx

L

)
exp

(
−Dn2π2t

L2

)
(38)

As with the sine series, we construct an ini-
tial magnetic field By(x,0) from a randomly-
generated polynomial that fits the boundary con-
ditions and then compute its Fourier coefficients
{bn}. Likewise, we compute the solution on the
time interval [0,0.2]. The convergence rates for
B and J are shown in Fig. 13. Again, we ob-
serve second order convergence, showing that the
method works with homogeneous natural bound-
ary conditions even when the supports of its trial
and test functions overlap the domain boundary.
As we have observed with previous tests, the con-
vergence rates for the uniform and distorted point
distribution are similar.

(a)

(b)

Figure 12: Convergence of B and J for Fourier
sine series with (a) uniform node distribution, (b)
distorted node distribution. Convergence rates
(labeled m) are given for each norm.

6.5 Oscillating Field at the Boundary

To verify that the method can represent time-
dependent essential boundary conditions, which
are relevant to problems in current-driven plasma
acceleration as well as those involving dynamic
external magnetic fields, we consider a conduc-
tor with an oscillating external field at one of its
boundaries. This problem is sometimes called the
“wine cellar problem", as its application to the
heat equation can be used to estimate the depth
at which a wine cellar should be buried to mini-
mize effects from fluctuations in the outside tem-
perature. This problem has been used to verify
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(a)

(b)

Figure 13: Convergence of B and J for Fourier
cosine series with (a) uniform node distribution,
(b) distorted node distribution. Convergence rates
(labeled m are given for each norm.

the Vector Finite Element Method for magnetic
diffusion problems of the sort in which we are in-
terested [Rieben and White (2006)].

Once again, we consider a domain [0,L] with
an oscillating external magnetic field Bz(0, t) =
cos(ωt). The solution to Eq. 5 is the real part of
the complex expression:

Bz(x, t) =
sin(β (L−x))

sin(β L)
exp(−iωt)

with β =
√

iΩ
D . The current density in this case is

the real part of

Jy(x, t) =
1
μ0

β
cos(β (L−x))

sin(β L)
exp(−iωt)

We choose Dm = 0.01 and L = 1 and evolve
the system to t = 0.5 s. The computed solu-
tions for B and J are shown in Fig. 14. The
error for both quantities converges at second or-
der, as shown in Fig. 15. This means that prob-
lems with non-homogeneous and time-dependent
essential boundary conditions can be accurately
treated with this method. Note that the essen-
tial boundary conditions must be enforced at tn+1

(and not tn) in order to achieve second-order con-
vergence. Again, the uniform and distorted point
distributions yield no significant difference in the
convergence of the error norms.

6.6 Manufactured Nonlinear Solutions

The Method of Manufactured Solutions (MMS)
provides a way to generate analytic solutions with
complex structure for the verification of a nu-
merical method [Roache (2002)]. Since analytic
solutions to nonlinear differential equations are
scarce, we use the MMS to generate a solution
to Eq. 5 that demonstrates the ability of the tech-
nique to model magnetic fields in conductors with
more complicated electrical resistivities than we
have used so far.

To test a manufactured solution that yields a time-
dependent resistivity, we begin with the solution
(and corresponding current density)

By(x, t) =
cosx

t

Jz(x, t) = −sinx
μ0t

(39)

on the domain [0,1]. Substituting Eq. 39 into
Eq. 5, we find that the corresponding resistivity
is η(x, t) = μ0/t. We also use Eq. 39 to spec-
ify essential boundary conditions. We then run
a simulation along the time interval [1,1.1], with
a fixed step size determined by the characteristic
time scale in Eq. 7 with η = η(x,1), but scaled
linearly with the nodal spacing instead of quadrat-
ically.
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(a)

(b)

Figure 14: Computed (a) magnetic induction and
(b) current density for wine cellar problem at t =
0.5 s

The convergence rates for B and J are shown in
Fig. 16, and are second-order as expected. This
means that our treatment of time-dependent re-
sistivities, as specified by Eq. 31, is sufficient to
achieve the expected convergence rate with little
difference in the uniform and distorted point dis-
tributions.

Our second manufactured solution tests a spa-
tially inhomogeneous and time-dependent resis-
tivity, where the non-zero components of B and J
are

By(x, t) = 1+x+ t

Jz(x, t) =
1
μ0

(40)

(a)

(b)

Figure 15: Convergence of B and J for wine cel-
lar problem with (a) uniform node distribution,
(b) distorted node distribution. Convergence rates
(labeled m) are given for each norm.

Here, the resistivity is given by η = μ0(1+x+ t),
and the essential boundary conditions are pre-
scribed according to Eq. 40. Again, we compute
the solution on the domain [0,1] for the time inter-
val [1,1.1], fixing the step size this time according
to η = η(x,1.1), its maximum value. The second
order MLS shape functions can exactly represent
the solution, which is linear in space and time, and
so we obtain a solution for B at machine precision
( 10−14) and for J at 6 orders of magnitude greater
(10−14×μ−1

0 ≈ 10−8). Thus, the method can treat
spatially-inhomogeneous and time-dependent re-
sistivities at machine precision with both the uni-
form and distorted point distributions.
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typically around 10−5.

The one-dimensional test problems presented
demonstrate the successful treatment of rele-
vant boundary conditions, anisotropic diffusion,
rigidly moving conductors, discontinuous mag-
netic fields, inhomogeneous and time-dependent
models for electrical resistivity. Thus we can ex-
pect this method to give good results in realistic
magnetic diffusion problems.

Much work remains in the study of this method.
We are interested in exploring a MLPG5 formula-
tion (in which the test functions are the Heaviside
step function) to alleviate some of the complex-
ity we faced in computing the integrals in Eq. 16.
Another benefit of this variant is that it allows
the use of smaller test and trial function support
domains, improving the conditioning of the lin-
ear system and lessening the computational effort
for large problems. Many practitioners of MLPG
methods have put MLPG5 to good use in elas-
todynamics [Atluri, Han, and Rajendran (2004)]
and other challenging problems.

Our primary motivation for exploring this
method, though, is the development of a mesh-
free method for studying magnetohydrodynamics
(MHD), which describes the dynamics of mag-
netic fields within deformable moving conduc-
tors. Other mesh-free methods such as Gradi-
ent Particle Magnetohydrodynamics (GPMHD)
[Maron and Howes (2003)] and Smoothed Parti-
cle Magnetohydrodynamics (SPMHD) [Price and
Monaghan (2004)] have shown great promise in
treating ideal MHD, which deals exclusively with
fields in perfect conductors. Now that we have es-
tablished its worth in treating the diffusion associ-
ated with imperfect conductors, we hope to com-
bine this MLPG method with one of these meth-
ods to extend their capabilities. This will be the
main emphasis of future work.

In treating more realistic and physically relevant
problems, we will also extend the technique to
solve fully three-dimensional problems, and to
adapt the radii of the trial functions dynamically
to disordered distributions of points. Our analysis
so far has been general enough to describe a three-
dimensional spatial discretization; it remains for
us to produce a functional 3D implementation.
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