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Lattice Boltzmann Method Simulation of Channel Flow with Square Pillars
inside by the Field Synergy Principle

Cha’o-Kuang Chen1, Shing-Cheng Chang1 and Szu-Yu Sun1

Abstract: In this study, the channel flow is dis-
cussed by the LBM simulations. In the cases
of channel with obstacles inside, the square pil-
lars play the role of causing interruption within
the fluid field, and hence change the direction of
fluid flow. The recirculation region is formed be-
hind the obstacles and influences the fluid passed
through not only in the velocity field but also in
the temperature field. Therefore, heat transfer is
enhanced in local region.
The field synergy principle is applied in the re-
search to demonstrate that the increased interrup-
tion within the fluid increases the synergistic level
between the velocity field and temperature gradi-
ent field. As the intersection angle between the
velocity vector and the temperature gradient vec-
tor is decreased by inserting square pillars to fluid
field, the thermal efficiency of the channel is im-
proved significantly.

Keyword: lattice Boltzmann method, field syn-
ergy principle, channel flow

1 Introduction

The lattice Boltzmann method (LBM) [Chen
and Doolen (1998)] is a relatively new ap-
proach which utilizes parallel computing to study
transport phenomena and has achieved consider-
able success in the computational fluid dynamics
(CFD) simulations in the recent years. On the ba-
sis of the microscopic nature, the LBM treats the
fluid on a statistical level and simulates the flow
by tracking the evolution of one-particle phase
space distribution rather than solving the macro-
scopic variables in the Navier-Stokes equations as
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the traditional CFD methods. The fundamental
idea of the LBM is to construct simplified kinetic
models which incorporate the essential physics of
microscopic processes for the simulation of the
flow with macroscopic averaged properties.

The lattice Boltzmann equation as a numeri-
cal scheme was first proposed by McNamara
and Zanetti (1988). It simulates the move-
ment and interaction of ensemble-average parti-
cle density distribution function of fluid by solv-
ing a velocity discrete Boltzmann equation and re-
sults in smooth macroscopic behaviors. Higuera
and co-workers [Higuera and Jimenez (1989),
Higuera, Succi and Benzi (1989)] introduced
a linearized collision operator to simplify the
scheme and eliminated the statistical noise. Cur-
rent LBM adopt the simple relaxation Bhatnagar-
Gross-Krook (BGK) model [Bhatnagar, Gross
and Krook (1954)] for the collision operator. The
lattice Boltzmann BGK (LBGK) model can be re-
covered to the Navier-Stokes equation success-
fully by the Chapman-Enskog expansion [Hou,
Zou, Chen and Doolen (1995)], and therefore has
been extensively applied to many kinds of the
fluid research.

2D incompressible viscous flow [Nicolas and
Bermudez (2004)] is a typical topic in the research
of fluid flow and is studied by the LBM method
in the recent years. By the coupled lattice Boltz-
mann method (LBM) and the discrete element
method (DEM), Han, Feng and Owen (2007) in-
vestigated the irregular particle transport in turbu-
lent flows. The current study investigates the flow
and heat transfer phenomena of the 2D channel
flow by the LBM simulation. In a channel with
square pillars inside, the fluid flow would be sepa-
rated by the pillars so the recirculation regions are
formed in back of the pillars. Since the stream-
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lines of flow in the channel with pillars inside are
more complex than that in the empty channel, the
convective effect on heat transfer is also different.

To analyze the velocity and temperature fields in
the channel flow, the field synergy principle [Guo,
Li and Wang (1998), Wang, Li and Guo (1998)]
is used in the study of the channel flow. Based on
an analog between heat convection and heat con-
duction, Guo and co-workers studied the mech-
anism of convective heat transfer from a second
look. They revealed that the convection term can
be transformed into the form of dot product of ve-
locity and temperature gradient, and the energy
equation is integrated over the thermal boundary
layer. The novel approaches of enhancing con-
vective heat transfer involve improving the unifor-
mity of velocity and temperature profiles as well
as reducing the included angle between dimen-
sionless velocity and temperature gradient vec-
tors. Tao and co-workers (2002) called this con-
cept the field synergy principle and extended from
parabolic to elliptic fluid flow.

By the LBM simulation, the convective heat
transfer phenomena of backward-facing step were
studied in our previous work [Chen, Yen and
Yang (2006)] with the field synergy principle. In
this paper, the LBM is applied to simulate two-
dimensional incompressible steady channel flow
under low Reynolds number. The local influence
on velocity and temperature fields is also analyzed
by the field synergy principle.

2 Numerical Method

2.1 Lattice Boltzmann hydrodynamics model

In a fluid system, the evolution of the single-
particle density distribution obeys the Boltzmann
equation of BGK approximation:

∂ f
∂ t

+�v ·∇ f = − 1
τυ

( f − f eq), (1)

where f (�r,�v, t) is the single-particle density dis-
tribution function, �v is the microscopic velocity,
and τυ is the relaxation time of the density distri-
bution function towards the local equilibrium f eq

with respect to the Maxwell-Boltzmann equilib-
rium distribution function. The Boltzmann equa-
tion of BGK approximation can be transformed

into the LBGK model by applied a lattice model
with n dimensions and b lattice velocities, namely
DnQb model [Qian, d’Humiéres and Lallemand
(1992)], and described as

∂ fα

∂ t
+�eα ·∇ fα = − 1

τυ
( fα − f eq

α ), (2)

where fα(�r, t) and �eα are the components of lo-
cal distribution function and velocity respectively
in the α direction of the lattice model. The dis-
cretized lattice Boltzmann equation is

fα(�r +�eα Δt, t +Δt)− fα(�r, t)

= − 1
τυ

[ fα(�r, t)− f eq
α (�r, t)]. (3)

Figure 1: The D2Q9 model for LBM simulation.

In the present study, the D2Q9 lattice model is
used to simulate the two-dimensional flow. The
discrete velocity sets of this particular model are
shown in Figure 1 and defined as
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where c = δx/δ t = δy/δ t is the lattice stream-
ing speed defined by the time stepδ t and the grid
spacing δx and δy. The equilibrium density dis-
tribution in LBGK model is given as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f eq
α (�r, t) = 4

9ρ
[
1− 3

2�u
2
]
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f eq
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2
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,
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(5)

where �u(�r, t) is the velocity vector at the lattice
node of position�r. In LBM simulation, the den-
sity distribution function fα is obtained at each
time step according to the evolution equation (3)
with the equilibrium density distribution and the
related relaxation time τυ . The macroscopic mass
and momentum density are then calculated by

ρ = ∑
α

fα , (6)

ρ�u = ∑
α

�eα fα . (7)

By the Chapman-Enskog expansion [Hou, Zou,
Chen and Doolen (1995)], the LBGK model
can be recovered to the continuity equation and
Navier-Stokes equation as below:

∂tρ +∇ · (ρ�u) = 0, (8)

∂t(ρ�u)+∇ · (ρ�u�u)

= −∇p+υ
[
∇2(ρ�u)+∇(∇ · (ρ�u))

]
, (9)

where p = c2
s ρ is the pressure from the equation of

state for the ideal gas and cs = c/
√

3 is the sound
speed. The kinematic viscosity is given by

υ =
2τυ −1

6
(δx)2

δ t
. (10)

The incompressible limit of fluid flow is ap-
proached with the low Mach number assumption,

i.e. M � 1, where M = �u/cs. The incompress-
ible continuity equation and Navier-Stokes equa-
tion are expressed as

∇ ·�u = 0, (11)

∂t�u+�u ·∇�u = −∇p
ρ

+υ∇2�u. (12)

2.2 Lattice Boltzmann thermal model

The thermal model for LBM simulation used
in this study is proposed by Peng, Shu and
Chew (2003), which is the simplified thermal en-
ergy distribution model of He, Chen and Doolen
(1998). In the work of He, Chen and Doolen, the
internal energy distribution function was intro-
duced to simulate the temperature field for solv-
ing real thermal problems. However, the model
contains one complicated gradient operator term
in the evolution equation for the temperature, and
hence the simplicity property of the LBM has
been lost. Another disadvantage for this model is
that the viscosity is involved not only in the mo-
mentum equation but also in the energy equation.
To keep the consistent of viscosity in the govern-
ing equations for the thermal energy distribution
model and avoid the implicitness of the schemes,
new additional variables for the thermal energy
distribution function are used. The detail of the
thermal lattice Boltzmann model is given by He,
Chen and Doolen (1998) and will not be shown
here.

For incompressible flow, Peng, Shu and Chew in-
dicated that the compression work done by the
pressure and the viscous heat dissipation can be
neglected, so the gradient term can be dropped
out in the model of He, Chen and Doolen. The
evolution model of simplified thermal energy dis-
tribution for LBM simulation is expressed as

gα(�r+�eα Δt, t +Δt)−gα(�r, t)

= − 1
τc

[
gα(�r, t)−geq

α (�r, t)
]
, (13)

where τc is the relaxation time of the internal en-
ergy distribution function, gα(�r, t). The equilib-
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rium energy distribution function is given as
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(14)

where ε is calculated according to equation (13)
by

ρε = ∑
α

gα . (15)

Then the macroscopic temperature can be ob-
tained by the relation of ε = DRT/2, in which R
is the gas constant and D is the dimension. Peng,
Shu and Chew (2003) showed that the macro-
scopic energy equation can be derived from the
evolution equation (13) for the thermal energy
distribution function by the Chapman-Enskog ex-
pansion, and expressed as

∂t(ρε)+∇ · (ρ�uε) = χ∇2(ρε), (16)

where the diffusivity χ is determined by

χ =
2
3

(
τc − 1

2

)
c2δ t. (17)

Comparing with the model of He, Chen and
Doolen, the simplified thermal energy distribution
model by Peng, Shu and Chew does not use the
new variables that would complicate the calcula-
tion process. Otherwise, it does not include the
complex gradient term in the evolution equation
and keeps the same simple form as the isother-
mal LBM. Since the variables for the evolution
equations and the boundary conditions are con-
sistent, the boundary condition is very easy to
implement for this model, e.g. the bounce-back
rule of the non-equilibrium distribution function
is adoptable.

2.3 Simulation model

Figure 2 showed the simulation model of the
channel flow without any build-in obstacles. This

case is denoted as case (1) in contrast to the cases
with square pillars inside the channel. The lat-
tice streaming speed, c = 1, is applied in all simu-
lation model for the dimensionless uniform grids
δx = δy = 1 and time step δ t = 1. The boundary
conditions for the inlet, outlet, and the wall in the
case (1) are detailed as follows.

(a) The inlet (boundary ab):

At the entrance of the channel, a uniform veloc-
ity flow is specified. The velocity is chosen to
be lower than 10% of the speed of sound for the
LBM simulation to avoid significant compress-
ibility effects which are known to be increased
with the square of the Mach number. By the
method of pressure and velocity boundary condi-
tions proposed by Zou and He (1997) for LBM,
the equilibrium density distribution function is
computed from the given velocity and imposed at
the first lattice column. In the inlet, the unknown
components of mass density distribution function
in the evolution of time step are f1, f5, and f8.
These can be obtained by the mass and momen-
tum equations, i.e. equation (6) and (7), as the
form of

f1 + f5 + f8 = ρ − ( f0 + f2 + f3 + f4 + f6 + f7),
(18)

f1 + f5 + f8 = ρux +( f3 + f6 + f7), (19)

f5 − f8 = ρuy − ( f2− f4 + f6 − f7), (20)

with f1, f5, and f8 left. In the equations �u =
(ux,uy) is the given velocity of the inlet. Note that
the local density ρ is not a given value and can be
calculated by

ρ =
1

1−ux
[ f0 + f2 + f4 +2( f3 + f6 + f7)] , (21)

according to equation (18) and (19).

To solve the unknowns, the bounce-back rule of
the non-equilibrium distribution is introduced for
the term perpendicular to the boundary, i.e.

f1 − f eq
1 = f3 − f eq

3 , (22)

or

f1 = f3 +
2
3

ρux, (23)
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Figure 2: The simulation case (1) of channel flow without any build-in obstacles.

with corresponding to the equilibrium density dis-
tribution in equation (5). Then f5 and f8 can be
given by solving the mass and momentum equa-
tions as

f5 = f7− 1
2
( f2− f4)+

1
6

ρux +
1
2

ρuy, (24)

f8 = f6 +
1
2
( f2− f4)+

1
6

ρux − 1
2

ρuy. (25)

In the research of heat transfer phenomena, the
Dirichlet type condition is applied on the inlet
boundary with a given temperature, Tin. The ther-
mal energy distribution function at the entrance
satisfied:

gneq
α −e2

α f neq
α = −

(
gneq

β −e2
β f neq

β

)
, (26)

where eα and eβ have opposite directions.

(b) The outlet (boundary cd):

At the outlet a fixed pressure is imposed in terms
of the equilibrium distribution function. The pres-
sure boundary condition is also implemented by
the method of Zou and He (1997) with the same
procedure as the velocity boundary above. The
Dirichlet type condition is also applied on the out-
let by a given temperature, Tout < Tin.

(c) The fixed wall (boundary ad and bc):

The bounce-back rule of the non-equilibrium dis-
tribution applied in the inlet and outlet bound-
ary is also used for no slip boundary condition
on the fixed wall. Additionally, a given temper-
ature, Tw = Tout < Tin, is applied on the wall for
the Dirichlet type condition.

By the implementation of boundary conditions,
the flow and thermal field in the channel of case
(1) is discussed in the later section. In the simu-
lation case (2), a build-in square pillar of the size
and position shown in Figure 3 is located in the
channel. The velocity and thermal boundary con-
ditions of the inlet, outlet, and fixed wall are the
same as in the case (1). To eliminate the effect
of other factors, the inserted obstacle is particu-
larly assumed to be thermally isolated from other
heat source so that the only function of that is to
introduce interruption within the fluid. For the
Neumann type condition, i.e. adiabatic or con-
stant heat flux condition, it was transferred to the
Dirichlet type condition through the conventional
second-order finite difference approximation to
get the temperature on the boundary [Shu, Peng
and Chew (2002)]. When the temperature gradi-
ent is given, the temperature on the boundary can
be calculated by

∂T
∂y

∣∣∣∣
x,1

=
−3Tx,1 +4Tx,2 −Tx,3

2Δy
. (27)

No matter the adiabatic or constant heat flux
boundary condition we choose, through the equa-
tion (27) we can get the corresponding Dirichlet
type boundary condition.

The effect of a build-in obstacle on the flow and
temperature field in the channel is investigated by
comparing with case (1) and (2). In addition, an-
other square pillar is inserted at the back of the
first one with the same size in case (3) to further
study the enhancement of convective heat trans-
fer by obstacles inside the channel. The related
position of the obstacles is shown in Figure 4.
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Figure 3: The simulation case (2) of channel flow with a square pillar inside.

Figure 4: The simulation case (3) of channel flow with two square pillars inside.

Figure 5: (a) Velocity profiles and (b) temperature distribution of case (1) with Re=90 and Pr=0.7.
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In each run, the following inequality is used as the
criterion of convergence,

∑i, j

∥∥�u(ri, j, t +δ t)−�u(ri, j, t)
∥∥

∑i, j

∥∥�u(ri, j, t)
∥∥ ≤ 1.0×10−6,

(28)

∑i, j

∥∥ε(ri, j, t +δ t)−ε(ri, j, t)
∥∥

∑i, j

∥∥ε(ri, j, t)
∥∥ ≤ 1.0×10−6.

(29)

3 Results and Discussion

3.1 Analysis of the channel flow without obsta-
cles

In a channel, the phenomena of heat fluid flowing
to an outlet of low temperature are investigated.
The temperature of the wall in the channel is con-
sidered to be the same as the outlet, i.e. the cool-
ing wall is adopted in the simulation. By applying
a uniform velocity in the entrance, the velocity
profiles in the channel are changed from a plug-
like form to a full developed curve of a parabolic
form due to the effect of viscosity, as shown in
Figure 5(a). The Reynolds number, Re=90, and
the Prandtl number, Pr=0.7 are specified in this
case. In the LBM simulation, the Reynolds num-
ber is given by

Re =
UH

ν
, (30)

and the Prandtl number is defined as the ratio of
momentum diffusivity to heat diffusivity by

Pr =
ν
χ

=
τν −0.5

2(τc −0.5)
. (31)

relating to the relaxation time of the density dis-
tribution function, τν , and of the internal energy
distribution function, τc.

Because of the temperature difference between
the hot entering fluid and the cooling wall, the
thermal boundary layer is formed by the effects
of convective and conductive heat transfer. The
temperature distribution of this case is shown
in Figure 5(b), in which the temperature values
are presented as a dimensionless form of T ∗ =

(T − Tw)/(Tin − Tw). Figure 5(b) reveals that as
the distance of fluid from the inlet increases, the
local temperature in the channel decreases be-
cause of the thermal boundary effect. Actually,
an exponential-type decay relation is observed in
Figure 6 of the diagram of Nusselt number, Nu, in
the bottom wall related to x direction.
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Figure 6: Influence of Reynolds number on Nus-
selt number for case (1) with Pr=0.7.

The influence of different Reynolds number of
Re=30, 50, 70, 90, and 110 on Nusselt number is
also displayed in Figure 6. The Prandtl number is
fixed to Pr=0.7 here. It reveals that the convective
effect on heat transfer is enhanced as the Reynolds
number is increased. Obviously, heat can be fur-
ther transported in high Reynolds number, i.e.
higher temperature can be observed downstream
in the case of Re=110 than of Re=30 and 70, as
shown in Figure 7. By choosing Pr=0.4, 0.7, 1.0
and Re=70, the influence of the Prandtl number
on the temperature distribution is investigated and
the diagram of Nusselt number variation is shown
in Figure 8. The case of high Prandtl number is
found to be with good convective effect because
of the powerful momentum diffusivity. The re-
lated temperature contours of the three cases are
shown in Figure 9.
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Figure 7: Temperature contours of case (1) with Pr=0.7 and (a) Re=30, (b) 70 and (c) Re=110.

Figure 9: Temperature contours of case (1) with Re=70 and (a) Pr=0.4, (b) Pr=0.7 and (c) Pr=1.0.
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Figure 10: (a) Velocity profiles and (b) temperature distribution of case (2) with Re=90.

Figure 12: Velocity profiles of case (3) with Re=90.
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Figure 8: Influence of Prandtl number on Nusselt
number for case (1) with Re=70.

3.2 Analysis of the channel flow with obstacles

In the analysis of the channel flow with obsta-
cles, the effect of the Prandtl number on heat
transfer is no more emphasized, and an identical
Prandtl number, Pr=0.7, is used in the simulation
cases here. By inserting a square pillar located
within the channel center, the entering fluid flows
through the obstacle via a narrowed sub-channel
of the size with 2/3 channel width with raising ve-
locity. Figure 10 shows the velocity profiles and
temperature distribution of case (2) with Re=90.
It shows that flow separation phenomena appear
near the back corner and a stable recirculation re-
gion is formed behind the obstacle with two sym-
metrical eddies. It is found that the size of recir-
culation region would be enlarged as the Reynolds
number is increased. The simulation results indi-
cate that heat of fluid is transferred accompany-
ing with the mass diffusion through the same path.
Comparing with Figure 5(b) and Figure 10(b), it
presents that energy transportation is hindered by
the adiabatic obstacle so that the temperature be-
hind the obstacle is lower in the case (2) than that
in the case (1) in the same section. Nevertheless,
temperature in the section between the inlet and
the obstacle in the case (2) is higher than that in

the case (1) due to the heat rebounding.

Inspecting the diagram of Nusselt number in case
(2) with different Reynolds number, as shown in
Figure 11, a distinct peak of the decay curve ap-
pears at the location in front of the obstacle in the
cases of Re=30, 50, and 70. When the Reynolds
number is raised over Re=90, another peak of the
position in the section of recirculation region is
observed. The first peak is due to the influence
of channel narrowing. The fluid is accelerated
with y-component velocity arisen when flowing
through the obstacle. This enhances the convec-
tive effect and causes the energy density distribu-
tion to be increased ahead of the obstacle. The
second peak is caused by the eddy, which is large
enough to contribute to convective effect in the
cases of high Reynolds number. In the low Re
cases in Figure 11, the enhancement of heat trans-
fer by recirculation region is not obvious.
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Figure 11: Influence of Reynolds number on Nus-
selt number for case (2).

To further investigate the influence of multi-
obstacles inside the channel on the convective
heat transfer, two square pillars are put in the
channel with positions as mentioned above in the
case (3). The velocity profiles in this case are dis-
played in Figure 12. It is observed that the recir-
culation regions are generated both between the
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two obstacles and after the second obstacle. In
Figure 12, it is deserved to be mentioned that al-
though the section among the obstacles has the
same width as the unhindered channel, the width
of flow path is not extended apparently when the
fluid flows through the section. This is because
the obstacle-like eddy in the region keeps on nar-
rowing the channel. In other words, this eddy and
the obstacles can be viewed as a combined rectan-
gular object. The effect of combination is impor-
tant not only on velocity field but also temperature
field. Figure 13 showed the diagram of Nusselt
number for the case (3). It is found that the peak
caused by the second pillar is not distinct as that
by the first one in all cases of different Reynolds
number. The results show that the influence of
channel narrowing by the second obstacle is not
overemphasized as by the first obstacle. How-
ever, the effect of big eddy on enhancing convec-
tive heat transfer is still presented in the case of
Re=110. Two additional peaks are found in the
curve of Re=110 in Figure 13.
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Figure 13: Influence of Reynolds number on Nus-
selt number for case (3).

3.3 Demonstration for enhancing convective
heat transfer by the field synergy principle

The steady state 2D incompressible energy equa-
tion of fluid flow and heat transfer over a channel

is

ρcp

(
u

∂T
∂x

+υ
∂T
∂y

)

=
∂
∂x

(
k

∂T
∂x

)
+

∂
∂y

(
k

∂T
∂y

)
. (32)

In this elliptic fluid flow, the definition of the Int
value is defined as [Tao, Guo and Wang (2002)]

Int =
∫

Ω
ρcp(�V ·∇T )dxdy, (33)

where

�V ·∇T =
∣∣∣�V ∣∣∣ |∇T |cosθ . (34)

By raising the Int number of the integral of the
convection term, i.e. heat source, over the com-
putation domain, the convective heat transfer can
be enhanced. From the field synergy principle’s
point of view, the average intersection angle, θm,
between the velocity vector and the temperature
gradient in the computation domain is as impor-
tant as the Reynolds number and the Prandtl num-
ber for enlarging the Int number. That is to say,
the better synergy of the flow and temperature
field leads to the better thermal efficiency.

There are three mechanisms to enhance single
phase convective heat transfer, including increas-
ing the flow interruption, decreasing the thermal
boundary layer, and increasing the velocity gradi-
ent near a solid wall [Guo, Li and Wang (1998)].
By inserting obstacles inside the channel, the fluid
flow is interrupted and the thermal performance
of the channel is enhanced. The influence of
Reynolds number on average Nusselt number in
the channel of case (1), (2), and (3) is shown in
Figure 14. The thermal efficiency of the channel
with two obstacles is found to be better than the
other cases, especially in high Reynolds number
case. Figure 15 shows the dimensionless Int num-
ber of the three simulation cases about the differ-
ent Reynolds number. The trend of Int number is
consistency with the result of Figure 14. Larger
Int number is obtained in the case (3) than in the
other cases, i.e. the thermal efficiency of the flow
is better by inserting two square pillars.

The variation of average intersection angle is
shown in Figure 16 to inspect the synergy of the
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Figure 14: Effect of Reynolds number on average
Nusselt number in the channel.

Figure 15: Effect of Reynolds number on dimen-
sionless Int number.

velocity and the temperature field of the flow. If
the local value of θ is greater than 90◦, its value is
taken as (180◦−θ ) when added to the summation
of the intersection angle [Tao, He, Wang, Qu and
Song (2002)]. In the condition of Re=110, the av-
erage intersection angle of case (1) is 3.88◦ and
5.46◦ smaller than that in the case (2) and (3) re-
spectively. It shows that by inserting obstacles in
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Figure 16: Effect of Reynolds number on average
intersection angle.

the channel, the intersection angle is decreased,
i.e. a better synergy is attained, so that the Int
value or the thermal efficiency is increased.

4 Conclusions

The lattice Boltzmann method is applied to sim-
ulate the two-dimensional incompressible steady
flow in a channel with or without obstacles in-
side. The D2Q9 lattice model [Qian, d’Humiéres
and Lallemand (1992)] for density distribution
function of fluid and the thermal lattice model
by Peng, Shu and Chew (2003) for internal en-
ergy distribution function are adopted in the LBM
simulation. In the case of channel with build-
in square pillars, the fluid is interrupted as flow-
ing through the obstacles, and the recirculation
regions are formed behind the obstacles. As an
obstacle-like body, the eddy affected not only the
velocity profiles of the fluid passed through, but
also the heat transfer efficiency of the local flow
region.

In the statement of the field synergy principle, the
thermal efficiency of the parabolic or elliptic fluid
flow can be enhanced by increasing the synergis-
tic level of the flow field. To study the heat trans-
fer efficiency of the channel flow, the integral of
heat source term and the average intersection an-
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gle are calculated in the simulation. The results
presented that the thermal efficiency is improved
significantly by inserting obstacles inside a chan-
nel, i.e. the average Nusselt number or the Int
number is increased as the average intersection
angle is decreased. By the analysis of the field
synergy principle, the results showed that there is
still many ways to enhance the heat transfer effi-
ciency in a channel flow.
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