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Perfectly matched layer for acoustic waveguide modeling — benchmark
calculations and perturbation analysis

Ya Yan Lu1 and Jianxin Zhu2

Abstract: The perfectly matched layer (PML)
is a widely used technique for truncating un-
bounded domains in numerical simulations of
wave propagation problems. In this paper, the
PML technique is used with a standard one-way
model to solve a benchmark problem for under-
water acoustics modeling. Accurate solutions are
obtained with a PML layer with a thickness of
only a quarter of the wavelength. The effect of
a PML is analyzed in a perturbation analysis for
waveguides.
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1 Introduction

As a simple model used in ocean acoustics
[Jensen et al (2004); deSanto (1992); Frisk
(1994)], the sea-bottom is approximated by an
infinite fluid layer. In numerical simulations for
sound waves in the ocean, for example using the
Parabolic Equation (PE) method [Tappert (1977)]
and the step-wise coupled mode method [Evans
(1983)], the depth is usually truncated. To re-
duce spurious reflections from the lower bottom
boundary (as a result of truncating the depth), an
artificial absorbing layer [Tappert (1977); Evans
(1983)] can be used. For some problems, a large
truncation depth is needed to obtain a satisfac-
tory solution when this technique is used. For
PE models, the non-local transparent boundary
conditions [Papadakis et al (1992); Arnold and
Ehrhardt (1998); Yevick and Thomson (1999);
Schmidt et al (2001)] can also be used. However,
they require all the previous acoustic field along
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the bottom boundary in each marching step. The
transparent boundary conditions cannot be used in
the step-wise coupled mode method.

Yevick and Thomson (2000a) applied the per-
fectly matched layer (PML) technique [Berenger
(1994); Chew and Weedon (1994)] to PE mod-
els and demonstrated that PML is efficient at
truncating the unbounded sea-bottom with min-
imal spurious reflections. The PML was origi-
nally introduced by Berenger (1994) for time do-
main electro-magnetic problems [Ha et al (2006);
Hassan et al (2004). In the frequency domain,
the PML corresponds to a complex coordinate
stretching [Chew and Weedon (1994)]. The PML
technique has been analyzed by the reflection
of plane waves incident on the layer [Berenger
(1994)]. The influence of a discretization on the
reflection coefficient has been studied by Yevick
et al (1997).

In section 3, we provide new numerical evidence
that the PML technique is truely effective at trun-
cating the unbounded sea-bottom. Previous nu-
merical results in Yevick and Thomson (2000a)
are based on the classical PML and for range-
independent problems. We apply the modified
PML [Chen et al (1995); Fang and Wu (1995)]
in a wide-angle PE model to solve a range-
dependent benchmark problem (wedge with pen-
etrable bottoms) [Jensen and Ferla (1990)]. Accu-
rate solutions are obtained by truncating the depth
to 215 m, where the maximum depth of the water
column is 200 m and the thickness of PML is 15 m
(a quarter of the wavelength). These numerical re-
sults indicate that the PML is much more effective
than artificial absorbing layers.

The objective of section 4 is to develop a theo-
retical understanding of the PML technique con-
cerning its application for waveguides. Previous
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theoretical results on reflection coefficients of the
PML are not sufficient for waveguide problems
where a large distance in the propagation direc-
tion is involved. A small reflection coefficient
cannot guarantee that the solution is still reliable
after propagating a large distance. Our approach
is to find out how the modes of a simple waveg-
uide are modified by a PML. We develop a per-
turbation theory for normal modes in waveguides
terminated below by a PML. Our theory reveals
that the originally real horizontal wavenumber of
a trapped mode (in a lossless waveguide) may be-
come complex leading to possible instability or
non-physical attenuation of the mode. Therefore,
the PML parameters must be chosen carefully if
the total propagation distance is large.

2 The PML and its reflection coefficient

We consider the two dimensional Helmholtz
equation:
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)
+k2u = 0, (1)

where x is the horizontal distance (called range
in ocean acoustics), z is the depth, ρ is the den-
sity and k is the wavenumber. Both ρ and k are
functions of x and z. For ocean acoustics, the
pressure-release condition u = 0 is typically used
at z = 0. If the ocean bottom is modeled by an in-
finite fluid layer, equation (1) is valid for the half
plane z > 0. To use the PML, we need to assume
that the medium is homogeneous for a sufficiently
large depth. That is, we have some G, such that
ρ = ρ2 and k = k2 for z > G, where ρ2 and k2 are
constants.

The PML corresponds to changing the depth z
to the complex variable ẑ [Chew and Weedon
(1994)]:

ẑ = z+ i
∫ z

0
σ(τ) dτ (2)

where σ(z) = 0 for 0 < z ≤ H, σ(z) > 0 for z >

H and H ≥ G. If we replace ∂z in (1) by ∂ ẑ =
[1 + iσ(z)]∂ z, we obtain the following modified

Helmholtz equation:
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Notice that (1) and (3) are different only if z >

H. For numerical computations, it is necessary
to truncate the variable z to a finite interval, say
0 < z < D, where D > H. The interval (H,D) is
then the actual PML layer. Equation (3) is solved
with a suitable boundary condition at z = D. In
the simplest case, we let

u = 0 at z = D. (4)

Alternatively, we can assume

uz = au at z = D (5)

for some constant a.

Standard analysis [Berenger (1994)] of the PML
is concerned with the reflection of a down-going
plane wave incident upon the interface at z = H.
In the vicinity of z = H, the density and wavenum-
ber are constants and the Helmholtz equation is
simplified to uxx + uzz + k2

2u = 0. For G < z <
H, we consider a down-going (towards z = +∞)
plane wave solution

u(d) = ei(αx+βz),

where β > 0 and α2 + β 2 = k2
2. For the origi-

nal Helmholtz equation (1), the above solution is
extended to z > H without any reflections. For
the modified equation (3), the incident wave u(d)

above is connected to

u(d) = ei(αx+β ẑ) = ei(αx+βz)e−β
∫ z

0 σ (τ)dτ for z > H.

With σ(z) > 0 for z > H, if
∫ z

0 σ(τ)dτ → ∞ as
z → ∞, then u(d)(x, z) → 0 as z → ∞. Therefore,
the radiation condition for the Helmholtz equation
is equivalent to the condition

lim
z→∞

u = 0 (6)

for the modified equation (3). In practice, the
PML has a finite thickness and a boundary con-
dition is imposed at z = D. If the zero Dirichlet
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condition (4) is used, we have the following solu-
tion of (3):

u = u(d) +u(u) = ei(αx+β ẑ) +Rei(αx−β ẑ) for z > H,

where

R = −e2iβDe−2β
∫ D

H σ (τ)dτ.

Notice that |R| = exp(−2β
∫ D

H σ(τ)dτ), thus the
reflection coefficient is exponentially small with∫ D

H σ(τ)dτ , but it also depends the angle of inci-
dence. Let θ be the angle between the z axis and
the wave vector (α ,β ), we have β = k2 cos(θ ).
Therefore, the reflection coefficient is smallest for
pure down-going waves (θ = 0). When θ is close
to ±π/2, β is small and the reflection coefficient
is relatively large. One observation is that |R| de-
pends on the integral

∫ D
H σ(τ)dτ , rather than on

|H−D|. Therefore, if a larger σ is used, the thick-
ness of the PML can be reduced while keeping the
magnitude of the reflection coefficient unchanged.
In reality, when the z variable is discretized in
a numerical scheme, the truncation error may be
dominant. Therefore, |H−D| cannot be too small.
A study of the reflection coefficient including the
effect of discretizing z can be found in Yevick et al
(1997). Furthermore, when the Helmholtz equa-
tion is solved with some numerical method, it is
natural to require that the reflection coefficient is
as small as the errors introduced in the discretiza-
tion of the domain. For example, when a second
order finite difference method is used, we could
require that

e−k2 cos(θ∗)
∫ D

H σ (τ)dτ ∼
(

Δz
λ

)2

,

where λ = 2π/k2 is the wavelength in the homo-
geneous sea-bottom, Δz is the grid size in z and θ∗
is the maximum angle of incidence for which an
accurate solution is needed.

The above reflection coefficient analysis is actu-
ally incomplete, since waves that decay in the pos-
itive z direction are not considered. For a range-
independent waveguide (i.e, ρ and k are indepen-
dent of x), we have the trapped modes given in the
form

u(d) = eiαx−γ(z−H)

for z > G, where γ > 0 and α2 − γ2 = k2
2. The

solution decays exponentially in the positive z di-
rection. With the transform z → ẑ, the solution
still decays exponentially in z and it is consistent
with condition (6). When the PML is truncated at
z = D with the boundary condition (4), the solu-
tion of (3) for z > H is now given by

u = u(d) +u(u) = eiαx−γ(ẑ−H) +Reiαx+γ(ẑ−H)

for

R = −e−2γ(D−H+i
∫ D
H σ (τ)dτ).

Here, we have defined the reflection coefficient
relative to the solution at z = H, therefore, H is in-
volved in the formula of R. Since |R|= e−2γ(D−H),
we can see that the magnitude of the reflection co-
efficient is independent of σ . In order to reduce
the reflection, we could increase D. Alternatively
[Chen et al (1995); Fang and Wu (1995)], we can
include a new term in the real part of ẑ:

ẑ = z+
∫ z

0
[γ(τ)+ iσ(τ)]dτ , (7)

where γ(z) = 0 for z ≤ H and γ(z) > 0 for z >
H. In this case, the formula of R can be easily
obtained by replacing σ with σ − iγ .

3 Application of PML to a benchmark prob-
lem

Yevick and Thomson (2000a) applied the PML
technique to the PE method. They compared the
PML method with the artificial absorbing layer
technique for a number of range-independent
problems. In this section, we consider a range-
dependent benchmark problem — wedge with a
penetrable bottom [Jensen and Ferla (1990)]. As
shown in Fig. 1, the problem is concerned with
a homogeneous water column (sound speed c =
1500m/s, density ρ = 1g/cm3) above a homoge-
neous sea-bottom (c = 1700m/s, ρ = 1.5g/cm3),
the water-bottom interface is a linear function of
the radial variable r which has a maximum of
200 m at r = 0 and it reaches zero at r = 4000 m.
A point source of frequency f = 25 Hz is located
at r = 0 and z = 100 m.
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Figure 1: Benchmark wedge problem with a pen-
etrable sea-bottom.

For this problem, the maximum depth of the
water column is 200m. Previous PE solu-
tions [Jensen and Ferla (1990); Thomson (1990);
Collins (1990)] of this benchmark problem based
on artificial absorbing layers typically use a total
depth of 2000m to 4000m. When a transparent
boundary condition is used with a wide-angle PE
model [Yevick and Thomson (1999)], a very small
total depth is possible. With a PML, we obtain
accurate results by truncating the depth at 215m.
The thickness of the PML is only 15m. Since the
frequency is 25 Hz, this corresponds to a quarter
of the wavelength. Compared with the transparent
boundary condition method, the PML technique is
much easier to implement.

For PE modeling of a point source in a radially
symmetric medium, the Helmholtz equation (1)
is regarded as the far field equation, where x is
now replaced by the radial variable r, i.e., the hor-
izontal distance to the source. For a given refer-
ence wavenumber k0 and the function φ defined
in u = φeik0r, the far field equation is further ap-
proximated by the following one-way Helmholtz
equation:

∂φ
∂ r

= ik0

[√
1+X(r)−1

]
φ , (8)

where X(r) is the operator defined by

X(r) =
ρ
k2

0

∂
∂ z

(
1
ρ

∂
∂ z

)
+

k2

k2
0
−1, (9)

where k and ρ are functions of r and z. This equa-
tion must be supplemented with a suitable starting
field at r = 0. For a step from r j to r j+1 = r j +Δr,

Eq. (8) is formally discretized as

φ j+1 = Pφ j, P = P(Xj+1/2) = eis(
√

1+Xj+1/2−1),
(10)

where s = k0Δr, Xj+1/2 is X evaluated at r j +
Δr/2, φ j approximates φ at r j, etc. If P(X) is
approximated by a rational function of X [Collins
(1993b)],

P(X)≈ a0 +
p

∑
l=1

al

X +bl
, (11)

where p is a positive integer, a0, a1, b1, ... are
coefficients that depend on both s and p, then φ j+1

can be evaluated as

φ j+1 = a0φ j +
p

∑
l=1

alwl, (12)

where wl must be solved from

(
Xj+1/2 +bl

)
wl = φ j. (13)

PE solutions of the benchmark wedge problem
were obtained by Jensen and Ferla (1990), Thom-
son (1990) and Collins (1990). These PE re-
sults are consistent with each other, they are
roughly consistent with the one-way coupled
mode solution [Jensen and Ferla (1990)] which
approximates (8) better. The PE results are not
satisfactory when compared with the full two-
way coupled mode solution [Jensen and Ferla
(1990)]. This has lead to the development of im-
proved one-way models [Porter et al (1991)] using
energy-conserving corrections [Collins and West-
wood (1991); Collins (1993a)] or the single scat-
ter approximation [Lu and Ho (2002a); Ho and
Lu (2003)]. Since the purpose of the present work
is to demonstrate the capability of the PML, we
will not consider these improved one-way models.
All three PE solutions [Jensen and Ferla (1990);
Thomson (1990); Collins (1990)] are calculated
with the grid sizes Δr = 5 m and Δz = 1 m and the
reference wavenumber k0 = 2π f/c0, where c0 =
1500 m/s. The Greene’s starting field [Greene
(1984)] is used in Jensen and Ferla (1990) and
Collins (1990). Thomson and Bohun’s starting
field [Thomson and Bohun (1988)] is used in
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Thomson (1990). In the following, we use the
same Δr, Δz, k0 and Greene’s starting field. The
implicit finite difference PE solutions in Jensen
and Ferla (1990) and Thomson (1990) are based
on the wide-angle PE model of Claerbout and the
Crank-Nicolson scheme for discretizing r. This is
identical to the [1/1] Padé approximant of P:

P(X)≈ 1+e1X
1+e1X

, e1 =
1
4
− is

4
, (14)

and it can be written as (11) for p = 1 and

a0 =
1+ si
1− si

, a1 =
−8si

(1− si)2 , b1 =
4

1− si
.

PE solutions based on higher order Padé approx-
imants are also calculated in Collins (1990), but
they are close to the solution based on (14). In the
following, we will only consider the [1/1] Padé
approximant (14).

In the case of a lossless bottom, artificial attenu-
ation is used in the PE calculations [Jensen and
Ferla (1990); Thomson (1990); Collins (1990)].
In Thomson (1990), the artificial attenuation is
linearly increased from zero at z = 512 m to
2 dB/λ at z = 2048 m and the depth is terminated
at D = 2048 m with a pressure release boundary
condition. We repeated this calculation and ob-
tained a solution which is denoted as AA1. In
Jensen and Ferla (1990) and Collins (1990), the
depth is truncated at D = 4000 m. We did a sim-
ilar calculation with an artificial attenuation in-
creased linearly from zero at 1500 m to 2 dB/λ
at z = 4000 m. The latter solution will be de-
noted by AA2 and it serves as our reference so-
lution. In Fig. 2, the solution AA2 is shown as
the solid curves. The transmission loss curve at
z = 150m exhibits some oscillations as in the orig-
inal works [Jensen and Ferla (1990); Thomson
(1990); Collins (1990)]. The one-way coupled
mode solution [Jensen and Ferla (1990)] which
solves the one-way Helmholtz equation (8) more
accurately does not have these oscillations. Pre-
sumably, these oscillations are caused by evanes-
cent modes excited by the staircase approximation
of the sloping interface. The [1/1] Padé approxi-
mant (14) is an unitary operator which incorrectly
propagates the evanescent modes. These oscil-
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Figure 2: Propagation losses versus range for the
lossless penetrable wedge. Wide-angle PE predic-
tions based on an artificial absorbing layer (solu-
tion AA2 obtained with D = 4000 m shown as the
solid curves) and a PML (solution PML1 obtained
with D = 215 m shown as the dots) are compared.
The solid curve and the dotted curve are nearly
identical.

lations can be removed if the one-way propaga-
tor P is properly approximated by a rational ap-
proximant that can suppress the evanescent modes
[Milinazzo et al (1997); Lu (1998); Yevick and
Thomson (2000b); Lu and Ho (2002b); Chui anbd
Lu (2004)].

When the PML is used, the operator X is modified
as

X(r) =
ρ

k2
0η

∂
∂ z

(
1

ρη
∂
∂ z

)
+

k2

k2
0

−1, (15)

where η = 1 + γ(z)+ iσ(z) for γ and σ defined
in (7). The actual PML layer is H < z < D. We
have η = 1 for z ≤ H. In the following, we set
H = 200 m, D = 215 m and

σ(z) =
200τ3

1+τ2 , γ(z) =
100τ3

1+τ2 , τ =
z−H
D−H

.

The depth z is terminated at z = D with the bound-
ary condition u = 0 at z = D = 215 m. The numer-
ical solution with this choice of the PML will be
denoted as PML1 and it is shown as the dotted
curves in Fig. 2. The two curves in Fig. 2 can
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Figure 5: Errors in wide-angle PE transmission
loss predictions for lossy penetrable wedge, as-
suming that the solution AA4 (obtained with an
artificial absorbing layer and a maximum depth
of D = 4000 m) is exact. The differences be-
tween AA4 and PML2 (obtained with a PML and
D = 215 m) are shown as the solid curves. The
differences between AA4 and AA3 (obtained with
an artificial absorbing layer and D = 2048 m) are
shown as the dots.

to r = 4000m) of these errors are shown for each
amax. It appears that the best choice of amax de-
pends on the receiver depth. At z = 30m, the most
accurate solution is obtained when amax = 10. In
this case, the largest error in transmission loss is
about 0.4dB. If the receiver is at z = 150m, the
most accurate solution is obtained when amax = 5
and the maximum error is about 4dB. In all cases,
these solutions are clearly less accurate than the
PML solution obtained with D = 215m.

4 Perturbation analysis

The reflection coefficient formula of a PML given
in section 2 does not reveal how the solutions of
the original Helmholtz equation (1) and the mod-
ified Helmholtz equation (3) differ. This is es-
pecially important for waveguide problems, since
we are interested in the solution over a large range
distance. The relatively small side-effects intro-
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Maximum transmission error at z=30m

a
max

dB

0 5 10 15 20
0

10

20

a
max

Maximum transmission error at z=150m

dB

Figure 6: Maximum errors in transmission loss
versus amax based on a wide-angle PE model and a
linear artificial attenuation profile from 0.5 dB/λ
at z = 300 m to amax at z = D = 500 m. The bottom
is terminated with a pressure-release condition at
z = D. The errors are calculated assuming that the
solution AA4 (obtained with an artificial absorb-
ing layer and a maximum depth of D = 4000 m)
is exact.

duced by the PML may accumulate over a large
range distance leading to a significant error in the
solution. This has motivated us to study the ef-
fect of the PML on normal modes in a range-
independent waveguide.

Consider a trapped mode, φ (z)eiβx, of the acous-
tic waveguide satisfying the following eigenvalue
problem

ρ
d
dz

(
1
ρ

dφ
dz

)
+k2φ = β 2φ for z > 0, (16)

φ (0) = 0, (17)

lim
z→∞

φ (z) = 0. (18)

For z > G, we assume that the wavenumber and
the density are constants:

k(z) = k2, ρ(z) = ρ2.

To satisfy condition (18), we must have λ = β 2 >
k2

2 and φ should decay to zero (as z → ∞) like

e−
√

λ−k2
2 z. This gives rise to

φz = i
√

k2
2 −λ φ for z > G,
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where the square root follows the standard defini-
tion, such that the square root of a negative num-
ber is a pure imaginary number with a positive
imaginary part. This allows us to reduce the orig-
inal eigenvalue problem to a nonlinear eigenvalue
problem on the finite interval 0 < z < H, where
H > G. It is

ρ
d
dz

(
1
ρ

dφ
dz

)
+2 φ = λ φ for 0 < z < H, (19)

φ = 0 at z = 0, (20)

φz − i
√

k2
2 −λ φ = 0 at z = H. (21)

If we multiply equation (19) by ρ−1φ and inte-
grate over (0,H), we obtain

λ
∫ H

0

1
ρ
|φ |2 dz−

∫ H

0

1
ρ

k2|φ |2 dz

=
1

ρ(H)
i
√

k2
2 −λ |φ (H)|2−

∫ H

0

1
ρ
|φz|2 dz.

(22)

Let λ be a real eigenvalue of the system (19-21),

from (22), we conclude that i
√

k2
2 −λ must be

real, thus λ ≥ k2
2. Furthermore, the two terms in

the right hand side of (22) are negative, therefore

λ
∫ H

0

1
ρ
|φ |2 dz <

∫ H

0

1
ρ

k2|φ |2 dz.

This gives rise to λ < k2
1, where k1 = maxk(z).

The system (19-21) also has complex eigenvalues
corresponding to the leaky modes of the waveg-
uide. Since the branch-cut of the standard square
root is the negative real axis, we have Re(k2

2 −
λ )1/2 > 0 if λ is complex with a non-zero imag-
inary part. Comparing the imaginary parts of the
two sides of (22), we have Imλ > 0. Therefore, a
leaky mode (which depends on x as ei

√
λx) decays

exponentially in the propagation direction x.

When the PML is used, we have the following
eigenvalue problem

ρ
1+ iσ

d
dz

(
1

ρ(1+ iσ)
dφ̃
dz

)
+k2φ̃ = λ̃ φ̃ (23)

for 0 < z < D and

φ̃ = 0 at z = 0, (24)

φ̃ = 0 at z = D, or (25)

dφ̃
dz

−a φ̃ = 0 at z = D, (26)

corresponding to the boundary conditions (4) or
(5), respectively. For z > G, Eq. (23) is simplified
to

d2φ̃
dẑ2 +k2

2φ̃ = λ̃ φ̃ .

We can write down the solution as

φ̃ (z) = C1ei
√

k2
2−λ̃ (ẑ−H) +C2e−i

√
k2

2−λ̃ (ẑ−H)

for z > G (27)

where C1 and C2 are constants. This gives rise to

dφ̃
dz

= q(λ̃)φ̃ at z = H, (28)

where

q(λ̃) = i
√

k2
2 − λ̃

1+ r(λ̃)ε(λ̃)
1− r(λ̃)ε(λ̃)

,

for

ε(λ̃) = e2i
√

k2
2−λ̃[D−H+i

∫ D
0 σ (τ)dτ]. (29)

For boundary conditions (25) or (26), we have
r(λ̃) = 1 or

r(λ̃) =
a− i

√
k2

2 − λ̃ [1+ iσ(D)]

a+ i
√

k2
2 − λ̃ [1+ iσ(D)]

, (30)

respectively. Notice that as |a|→ ∞, the boundary
condition (26) is reduced to (25) and r(λ̃) con-
verges to 1. Since σ(z) = 0 for z ≤ H, Eq. (23) is
simplified to

ρ
d
dz

(
1
ρ

dφ̃
dz

)
+k2φ̃ = λ̃ φ̃ for 0 < z < H.

(31)

Therefore, the original PML eigenvalue problem
(23), (24) with (25) or (26) is reduced to a non-
linear eigenvalue problem on a smaller interval:
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(31), (24) and (28). Notice that the only differ-
ence between the original and the PML eigen-
value problems is the boundary condition at z =
H.

Let λ 
= k2
2 be an eigenvalue of the original prob-

lem (19-21), we establish a perturbation result for
λ̃ assuming that |ε(λ )|<< 1, where the function
ε is defined in (29). Although for a given waveg-
uide and a given PML, the nonlinear eigenvalue
problem (31), (24) and (28) can be solved by a
numerical method, the perturbation result gives a
useful explicit relationship between the PML pa-
rameters and λ̃ .

Multiply equations (31) and (19) by ρ−1φ and
ρ−1φ̃ , respectively, and integrate from z = 0 to
z = H, we obtain

q(λ̃)−i
√

k2
2 −λ =(λ̃ −λ )

∫ H

0

ρ(H)φ (z)φ̃(z)
ρ(z)φ (H)φ̃(H)

dz.

To the leading order, φ̃ ≈ φ (up to a constant). A
Taylor series of q around λ gives rise to

λ̃ −λ =
q(λ )− i

√
k2

2 −λ

F −q′(λ )
+O(ε2),

where

F =
∫ H

0

ρ(H)φ 2(z)
ρ(z)φ 2(H)

dz.

Since q(λ ) and q′(λ ) are still related to ε(λ ), we
can simplify the above and obtain

λ̃ −λ =
−4(k2

2 −λ )r(λ )

2iF
√

k2
2 −λ −1

ε(λ )+O(ε2) (32)

where r(λ ) follows the definition of r(λ̃) given
earlier. For the more general PML with a real part
in the coordinate stretching given in (7), the per-
turbation result can be easily obtained by replac-
ing σ by σ − iγ .

To verify the above perturbation result, we con-
sider a Pekeris waveguide given by

ρ = ρ1 = 1000 kg/m3, for 0 < z < G

c = c1 = 1500 m/s, for 0 < z < G

ρ = ρ2 = 1700 kg/m3, for z > G,

c = c2 = 1666.67 m/s, for z > G,

ω = 480, G = 50m.

Thus, the frequency is approximately 76.394 Hz.
A PML is placed in H < z < D where

H = 70 m, D = 80 m. (33)

The function σ is defined such that σ(z) = 0 for
z ≤ H and

σ(z) =
10t3

1+ t2 , t =
z−H
D−H

for z > H. (34)

The Pekeris waveguide has two trapped modes
given by

λ (trap)
1 = 9.9794×10−2, λ (trap)

2 = 9.1597×10−2

and an infinite sequence of leaky modes. The first
two leaky modes are

λ (leak)
1 = 7.8000×10−2 +1.7270×10−3i,

λ (leak)
2 = 5.4287×10−2 +4.3156×10−3i.

Next, we calculate a few modes for the Pekeris
waveguide truncated with a PML together with
the simple zero Dirichlet boundary condition (25).
These results and the perturbation results from
(32) are compared in Table 1. We observe that λ̃ is

Table 1: Exact (left column) and approximate
(right column) of two trapped modes and the first
two leaky modes of a Pekeris waveguide termi-
nated by a PML.

λ̃ (32)
9.9795E-2−4.8227E-7i9.9795E-2−4.8235E-7i
9.1607E-2+3.0579E-6i9.1607E-2+3.1054E-6i
7.8435E-2+1.2133E-3i7.8802E-2+1.3989E-3i
5.4385E-2+4.2507E-3i5.4389E-2+4.2539E-3i

complex, even when the original λ is real (which
corresponds to a trapped mode). This is undesir-
able, since it implies that the corresponding PML
mode will decay or grow exponentially along the
waveguide. For this example, these side-effects
are negligible. When the two trapped modes are
propagated over a range of 10 km, the first mode
will gain a 0.77% in its magnitude and the second
mode will lose about 5% in its magnitude. The
second column in Table 1 is the perturbation re-
sult (32). Notice that our perturbation result gives
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a good prediction to the small imaginary part of λ̃
(when λ is real). The exact and perturbation re-
sults for the first two leaky modes are also listed in
Table 1. A perturbation result for the eigenfunc-
tion φ̃ is presented in the Appendix.

From (32), we observe that the difference between
λ and λ̃ is on the order of ε . This means that
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Let the eigenvalues and eigenfunctions be μ j and
ϕ j for j = 1,2, ..., these eigenfunctions are “or-
thogonal” to each other:
∫ H

0

1
ρ

ϕ jϕkdz = 0, if j 
= k.

Furthermore, we can assume that μ1 = λ and ϕ1 =
φ , thus the right hand side of (38) can be expanded
as

sφ −L v0 =
∞

∑
j=2

c jϕ j,

where the coefficient of ϕ1 is zero because of (37)
and

c j = −
∫ H

0
1
ρ ϕ jL v0 dz∫ H
0

1
ρ ϕ2

j dz
.

This gives rise to

w =
∞

∑
j=2

c j

μ j −λ
ϕ j.

One way to construct a function v0 is to let

1
ρ

dv0

dz
= A+Bz

for some constants A and B. From (35), we have

v0(z) =
∫ z

0
(A+Bτ)ρ(τ)dτ .

The other two conditions (36) and (37) give rise
to the following linear system:
[
c11 c12

c21 c22

][
A
B

]
=

[
sFφ (H)

−s
∫ H

0 ρ−1φ 2(z)dz

]
,

where

c11 =ρ(H)− i
√

k2
2 −λ

∫ H

0
ρ(τ)dτ ,

c12 =Hρ(H)− i
√

k2
2 −λ

∫ H

0
τρ(τ)dτ ,

c21 =
∫ H

0

φ (z)
ρ(z)

[
k2(z)−λ

][∫ z

0
ρ(τ)dτ

]
dz,

c22 =
∫ H

0

φ (z)
ρ(z)

[
k2(z)−λ

][∫ z

0
τρ(τ)dτ

]
dz

−
∫ H

0
φ (z)dz.
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