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A Class of Wavelet-based Flat Shell Elements Using B-spline Wavelet on the
Interval and Its applications

Xiang Jiawei1, Chen Xuefeng2, Yang Lianfa3 and He Zhengjia4

Abstract: A class of flat shell elements is con-
structed by using the scaling functions of two-
dimensional tensor product B-spline wavelet on
the interval (BSWI). Unlike the process of direct
wavelets adding in the wavelet Galerkin method,
the element displacement field represented by the
coefficients of wavelets expansions was trans-
formed from wavelet space into physical space
via the constructed two-dimensional transforma-
tion matrix. Then, the BSWI flat shell element is
constructed by the assembly of BSWI plane elas-
tomechanics and Mindlin plate elements. Because
of the good character of BSWI scaling functions,
the BSWI flat shell element combine the accu-
racy of B-spline functions approximation and var-
ious wavelet-based elements for structural analy-
sis. Some static and dynamic numerical exam-
ples are studied to demonstrate the present ele-
ment with higher efficiency and precision than the
traditional element.

Keyword: B-spline wavelet on the interval,
Wavelet-based element, Flat shell element,
Folded plate, Shell

1 Introduction

High performance computing is an essential issue
for some numerical simulation problems in civil
and mechanical engineering. Some new numeri-
cal methods have been developed in recent years
[Atluri, Liu and Han(2006a, 2006b); Han and Liu
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et al. (2006); Parussini (2007)], such as Mesh-
less local Petrov-Galerkin (MLPG) mixed collo-
cation method, Meshless local Petrov-Galerkin
(MLPG) mixed finite difference method and fic-
titious domain approach for spectral/hp element
method etc. The wavelet-based numerical analy-
sis is also a new method developed in recent years.
It can be viewed as a method in which the ap-
proximation functions are defined by the scaling
or wavelet functions, similar to those used in sig-
nal and image processing [Cohen (2003)]. The
desirable advantages of wavelet-based numerical
method are multi-resolution properties and vari-
ous basis functions for structural analysis. By
means of “two-scale relations” of scaling func-
tions, we can change the adopted scaling func-
tions freely according to analytical requirements
to improve solving precision. So the method
is well argued by many researchers not only
in numerical analysis domains [Dahmen (2001);
Canuto, Tabacco and Urban (1999, 2000); Dahlke
and Dahmen et al. (1997)] but also in struc-
tural analysis fields [Ko et al. (1995); Chen and
Wu (1995, 1996a, 1996b); Zhou et al. (1998);
Basu et al. (2003); Ma and He et al. (2003);
Chen and He et al. (2004); Han and Ren et
al. (2005); Mitra and Gopalakrishnan (2006);
Xiang and Chen et al. (2006a, 2006b, 2007);
He and Chen et al. (2005)]. Cohen proposed
the adaptive wavelet methods framework for the
numerical treatment of partial differential equa-
tions (PDEs) but failed to deal with the com-
plex boundary conditions [Cohen (2003)]. Dah-
men discussed the development of wavelet-based
methods for PDEs and pointed out some of the
important challenges which remain in this area
[Dahmen (2001)]. Canuto, Tabacco and Urban
demonstrated the possibility for the construction
of wavelet-based element [Canuto, Tabacco and
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Urban (1999, 2000)]. The wavelet-based numer-
ical method was proved to converge for a wide
class of elliptic operator equations including in
particular differential operators as well as singu-
lar integral operators by Dahlke and Dahmen et
al. [Dahlke and Dahmen et al. (1997)]. Ko et al
constructed a class of one-dimensional wavelet-
based element by using orthonormal, compactly
supported Daubechies wavelets [Ko et al. (1995)].
Chen and Wu proposed wavelet-based elements
using spline wavelet for the vibration analysis of
frame and membrane structures with high per-
formance [Chen and Wu (1995, 1996a, 1996b)].
Zhou proposed wavelet-based Galerkin method to
bending analysis of beam and plate structures but
cannot be applied easily as finite element method
[Zhou et al. (1998)]. Basu indicated that the fi-
nite difference and Ritz type methods of the pre-
computer era had largely been replaced in the
computer era by FEM, boundary element method
(BEM), Meshless method, and in the near future
it might be the turn for wavelet method [Basu et
al. (2003)].

Recently, one-dimensional Daubechies wavelet
Euler beam element had been constructed by
Ma [Ma and He et al. (2003)]. The two-
dimensional Daubechies wavelet element for thin
plate-bending problems had also been constructed
by Chen [Chen and He et al. (2004)]. How-
ever, for discrete wavelets lacking of the explicit
function expression, traditional numerical inte-
grals such as Gauss integrals cannot provide de-
sirable precision, the key problem is to calculate
connection coefficients [Ma and He et al. (2003);
Chen and He et al. (2004)]. Since the connection
coefficients derivation can only be obtained for in-
tegration in global coordinates, it will fail when
the integrand involves variant Jacobians. More-
over, the connection coefficients calculation is a
complex process, which will increases the cod-
ing work and calculating costs [Chen and Wu
(1996a)]. Han and Ren et al. extended the
wavelet-based finite element method to thick plate
by using mixed variational principle [Han and
Ren et al. (2005)]. Mitra and Gopalakrishnan pro-
posed a 2-D wavelet based spectral finite element
(WSFE) to study wave propagation in an isotropic

plate [Mitra and Gopalakrishnan (2006)]. Xiang
and Chen et al. successfully constructed classes of
1D wavelet-based elements, plane elastomechan-
ics and Mindlin plate elements and truncated con-
ical shell elements by using B-spline wavelet on
the interval [Xiang and Chen et al. (2006a, 2006b,
2007)]. He summarized the advanced in theory
study and engineering application of wavelet fi-
nite element [He and Chen et al. (2005)].

In the construction of wavelet-based element, in-
stead of traditional polynomial interpolation, scal-
ing or wavelet functions have been adopted to
form the shape function, which embodied with
the prominent advantage that the semi-orthogonal
BSWI have explicit expressions. Therefore,
the element stiffness and mass matrices can be
calculated conveniently. Furthermore, B-spline
wavelets have the best approximation properties
among all known wavelets of a given order L
[Wang (1996)]. However, the originally spline
wavelets are defined on the whole real space. Us-
ing the wavelets defined on the whole real space
as interpolating functions will bring the numer-
ical instability phenomenon [Bertoluzza, Naldi
and Ravel. (1994)]. To overcome this limitation,
Chui and Quak et al. [Chui and Quak (1992);
Quak and Weyrichm (1994)] constructed BSWI
and presented the corresponding fast decompo-
sition and reconstruction algorithm. Goswami
and Chui et al. also used the BSWI solving the
first-kind integral equations [Goswami, Chan and
Chui. (1995)]. The wavelets on a bounded in-
terval have limited dimension towards every scal-
ing and wavelet space. So any functions on
the interval can be expanded as a sum of finite-
dimensional wavelet series, which plays a very
important role in constructing element interpo-
lating (or shape) functions [Jia, Wang and Zhou
(2003)]. Moreover, because there are more nodes
in each BSWI element than traditional one, fewer
BSWI elements are needed than traditional ones
to get the same accuracy. However, wavelet-
based finite element method is always used in
wavelet space, and the wavelet coefficients are
used as its degree of freedoms (DOFs). In this
way, when a complex structure is analyzed, it be-
comes very difficult that neighboring element or
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different classes of elements are connected. At
the same time, boundary conditions cannot be
processed simply as done in traditional element.
These shortcomings limit the wide applications of
wavelet-based FEM. So the transformation matrix
[Xiang, Chen and He et al. (2006a, 2006b, 2007)]
is introduced to benefit the connection of the con-
structed C0 and C1 type BSWI elements.

Flat shell elements are used extensively in engi-
neering practice for the simplicity of the formula-
tion, the effectiveness of the computation and the
flexibility in applications (shells and folded plate
structures). In this paper, we used BSWI scal-
ing functions as interpolation functions to con-
struct BSWI plane elastomechanics and Mindlin
plate elements via the constructed element trans-
formation matrix. Therefore, a class of BSWI flat
shell element is constructed by the assembly of
BSWI plane elastomechanics and Mindlin plate
elements.

The outline of this paper is as follows. In Sec-
tion 2, we present a brief introduction of the basic
theory of BSWI scaling functions and wavelets.
In Section 3, BSWI plane elastomechanics and
Mindlin plate elements are constructed by intro-
ducing the C0 type element transformation ma-
trix and then assembled them directly to generate
BSWI flat shell element. Section 4 provides some
numerical examples which demonstrate the accu-
racy and efficiency of the constructed BSWI flat
shell element.

2 Two-dimensional BSWI tensor product
scale functions

B-splines for a given simple knot sequence can be
constructed by taking piecewise polynomials be-
tween the knots and joining them together at the
knots in such a way as to obtain a certain order
of overall smoothness. B-splines of order m are
in Cm−2. Since the function f (x) on the interval
[a, b] can be transferred to the interval [0, 1] by
the transformation formula ξ = (x−a)/(b−a), it
only needs to construct mth order B-spline space
on the interval [0, 1]. Generally, the interval [0, 1]
can be divided into 2 j, ( j ∈ Z+ is the scale) seg-
ments, and then increasing m-1 knots outside each
endpoint and looking the two lateral m−1 knots

as multiple knots of the endpoint 0 and 1. Let
{ξ j

k }2 j+m−1
k=−m+1 be a knot sequence with m-multiple

knots at 0 and 1, then the whole knot number is
2 j +2m−1, and the knot sequence form B-spline
functions, which can be further constructed to the
mth order nested B-spline subspace V [0, 1]

j . Its ba-
sis functions are given below

B j
m,k(x) = Nm

(
2 jξ −k

)
;

for k = −m+1, · · · ,2 j −1;

suppB j
m,k =

[
ξ j

k ,ξ j
m+k

] (1)

where Nm(x) is cardinal splines. Let φ j
m,k(ξ ) =

B j
m,k(ξ ) be the scaling functions of BSWI, we can

obtain the multi-resolution analysis (MRA) on the
bounded interval [0, 1] [Chui and Quak (1992);
Quak and Weyrichm (1994)]. The smoothness or-
der of scaling functions φ j

m,k(ξ ) is m−1.

The support of the inner (without multiple knots)
B-splines occupies m segments and that of the
corresponding semi-orthogonal (SO) wavelet oc-
cupies 2m-1 segments. At any scale j, the dis-
cretization step is 1/2 j which, for j > 0, gives 2 j

number of segments on [0, 1]. Therefore, to have
at least one inner wavelet on the interval [0, 1],
the following condition must be satisfied

2 j ≥ 2m−1 (2)

While 0 scale mth order B-spline functions and
the corresponding wavelets [Goswami, Chan and
Chui. (1995)] are given, j scale mth order BSWI
(simplely denoted as BSWIm j) scaling functions
φ j

m,k(ξ )and the corresponding wavelets ψ j
m,k(ξ )

can be evaluated by the following formula

φ j
m,k(ξ ) =⎧⎪⎨
⎪⎩

φ l
m,k(2 j−lξ ); k = −m+1, · · · ,−1

φ l
m,2 j−m−k(1−2 j−lξ ); k=2 j−m+1, · · · ,2 j−1

φ l
m,0(2 j−lξ −2−lk); k = 0, · · · ,2 j −m

(0 boundary scaling fuctions)
(1 boundary scaling fuctions)
(inner scaling fuctions)

(3)

ψ j
m,k (ξ ) =
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⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ψ l
m,k(2 j−lξ ); k = −m+1, · · · ,−1

ψ l
m,2 j−2m−k+1

(
1−2 j−lξ

)
; k=2 j−2m+2, · · ·

· · · ,2 j−m

ψ l
m,0

(
2 j−lξ−2−lk

)
; k=0, · · · ,2 j−2m+1

(0 boundary wavelets)
(1 boundary wavelets)
(inner wavelets)

(4)

The wavelets compactly supported intervals are

suppψ j
m,k(ξ ) =

⎧⎪⎨
⎪⎩
[
0, (2m−1+k)2− j

][
k2− j, 1

][
k2− j, (2m−1+k)2− j

] (5)

Let j0 be the scale for which the condition Eq.
(2) is satisfied. Then for each j > j0, let l = 0,
we can get the scaling and wavelet functions eas-
ily through Eq. (3) and Eq. (4). There are
m−1 boundary scaling functions and wavelets at
0 and 1, 2 j −m + 1 inner scaling functions, and
2 j −2m+2 inner wavelets. Fig. 1(a) and Fig.1(b)
shows all the scaling functions of BSWI42 and
BSWI43, respectively.

Tensor product of one-dimensional wavelets
[Mallat (1999)] is the easy and direct way
to construct two-dimensional BSWI. A semi-
orthonormal wavelet basis at scale j of L2(R2)
is constructed with tensor product of the one-
dimensional MRA approximation space V 1

j and
V 2

j . Tensor product subspace Fj = V 1
j ⊗V 2

j ⊂
L2(R2) (For BSWI, the initial scale is j0).

When the one-dimensional BSWIm j scaling func-
tions are employed to form the two-dimensional
tensor product wavelet on the interval, the scaling
functions are

φφφ = φφφ 1 ⊗φφφ 2 (6)

where

φφφ 1 =
{

φ j
m,−m+1(ξ ) φ j

m,−m+2(ξ ) . . . φ j
m,2 j−1(ξ )

}
is the row vector combined by the scaling func-
tions for m at the scale j.

φφφ 2 =
{

φ j
m,−m+1(η) φ j

m,−m+2(η) . . . φ j
m,2 j−1(η)

}

(a) BSWI42 scaling functions on the interval [0, 1]

(b) BSWI43 scaling functions on the interval [0, 1]

Figure 1: One dimensional BSWI scaling func-
tions

is the row vector combined by the one-
dimensional BSWIm j scaling functions. ⊗ is the
kronecker symbol.

The wavelets are ψψψ1 = φφφ 1 ⊗ψψψ2, ψψψ2 = ψψψ1 ⊗φφφ2
and ψψψ3 = ψψψ1 ⊗ψψψ2. Fig. 2(a) shows all the ten-
sor product BSWI scaling functions, which are
generated by the one-dimensional BSWI43 scal-
ing functions. The two-dimensional BSWI scal-
ing functions that generated by one-dimensional
BSWI22 is shown in Fig. 2(b).

3 BSWI flat shell element

For many practical purposes, the flat element ap-
proximation gives very adequate answers. In-
deed in many practical problems the structure
is in fact composed of flat surfaces especially
for folded plate structure. BSWI flat shell ele-
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ξ η
(a) Two-dimensional BSWI43 scaling functions

ξ η
(b) Two-dimensional BSWI42 scaling functions

Figure 2: Tensor product BSWI scaling functions
φφφ = φ 1 ⊗φ 2

ment can be constructed by combining the BSWI
plane elastomechanics and Mindlin plate ele-
ments [Zienkiewicz and Taylor (1988)].

Fig.3 shows the layout of BSWI flat shell ele-
ment nodes and the corresponding degree of free-
doms (DOFs). lex and ley denote the element
length. The element possesses (n + 1)2 (where,
n = 2 j + m − 1) nodes. At each node i (where,
i = 1,2, · · · ,n2), three displacements and two ro-
tations will be prescribed, i.e. ui,vi,wi,θix,θiy. In
order to transform element matrix from the local
coordinate to global coordinate, the rotation θiz is
consider and the corresponding element stiffness
and mass matrices and loading column vector will
be modified by inserting an appropriate number of
zeros. So the element physical DOFs in the local

system are

ae =
{

u1 v1 w1 θ1x θ1y θ1z · · ·un+1 vn+1 wn+1

θ(n+1)x θ(n+1)y θ(n+1)z

}�
(7)

and the total nodal DOFs are 6n2.

ley

lex

2

n+2

n+3

n2+n+1

2(n+1)n+1
(n+1)2

1
x

z

ix

wi

iy

vi

ui
i

y
eΩ

Figure 3: BSWI flat shell element on the element
solving domain Ωe

BSWI flat shell element stiffness matrix is now
made up of the following sub-matrices

Ke
p,q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K(m)
p,q

0 0 0
0 0 0

0
0

0 0
0 0
0 0

K(b)
p,q

0
0
0

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;

for p, q = 1, · · · , (n + 1)2 (8)

where (m) denotes membrane stress situations
and (b) denotes bending stress situations. In or-
der to describe the insignificant parameter θiz, we
insert one row and one column vectors in the ele-
ment stiffness sub-matrices Ke

p,q respectively.

To describe simply, the exterior bending moments
are neglected and the loading column vector can
be written by

Pe
i =

{
pu,i pv,i pw,i 0 0 0

}�
(9)

The above formulation is validity for any shape
of quadrilateral element which can be mapped
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to standard rectangle element by using iso-
parametric transformation [Zienkiewicz and Tay-
lor (1988)].

BSWI plane elastomechanics element solving
equations are [Xiang and Chen et al. (2006a)]

K(m)a(m) = P(m) (10)

where

a(m) =
{

u1 v1 u2 v2 · · · u(n+1)2 v(n+1)2

}�
(11)

P(m) =
{

pu,1 pv,1 pu,2 pv,2 · · ·

pu,(n+1)2 pv,(n+1)2

}�
(12)

K(m)
p,q =

[
ke,1

p,q ke,2
p,q

ke,3
p,q ke,4

p,q

]
(13)

in which the element stiffness submatrices and
loading vector can be solved by the following for-
mulae

Pu = ((Re)−1)�

⎧⎨
⎩
∫
Sσ

pxφφφ�ds+
∫
Ωe

fxφφφ�dΩe

⎫⎬
⎭

Pv = ((Re)−1)�

⎧⎨
⎩
∫
Sσ

pyφφφ�ds+
∫
Ωe

fyφφφ�dΩe

⎫⎬
⎭

Ke,1 =
E

1−μ2

{
A11

1 ⊗A00
2 +

1−μ
2

A00
1 ⊗A11

2

}

Ke,2 =
E

1−μ2

{
μA10

1 ⊗A01
2 +

1−μ
2

A01
1 ⊗A10

2

}

Ke,3 =
(
Ke,2)�

Ke,4 =
E

1−μ2

{
A00

1 ⊗A11
2 +

1−μ
2

A11
1 ⊗A00

2

}

A00
1 =

[
(Te

1)
−1]�{lex

∫ 1

0
(φφφ1)

�φφφ1dξ
}

(Te
1)

−1

A01
1 =

[
(Te

1)
−1]�{∫ 1

0
(φφφ 1)

� dφφφ1

dξ
dξ
}

(Te
1)

−1

A10
1 =

[
(Te

1)
−1]�{lex

∫ 1

0

(
dφφφ1

dξ

)�
φφφ 1dξ

}
(Te

1)
−1

A11
1 =

[
(Te

1)
−1]�{ 1

lex

∫ 1

0

(
dφφφ 1

dξ

)� dφφφ1

dξ
dξ

}
(Te

1)
−1

Ai j
2 (i, j = 0,1) are similar to Ai j

1 (i, j = 0,1) if
lex, dξ and Te

1 are replaced by ley, dη and Te
2 re-

spectively. μ denotes possion’s ratio, E denotes
Yang’s modulus, f = { fx fy}� is the column vec-
tor of body forces, and p = {px py}�is the column
vector of surface tractions in the x and y direc-
tions.

The C0 type element transformation matrix is
given by

Re = Te
1 ⊗Te

2 (14)

where

{
Te

1 = {φφφ�
1 (ξ1) φφφ�

1 (ξ2) . . . φφφ�
1 (ξn+1)}�

Te
2 = {φφφ�

2 (η1) φφφ�(η2) . . .φφφ�
2 (ηn+1)}�

(15)

Similarly to BSWI plane elastomechanics ele-
ment, BSWI Mindlin plate element solving equa-
tions can be given by[Xiang and Chen et al.
(2006a)]

K(b)a(b) = P(b) (16)

where

a(b) =
{

w1 θ1x θ1y · · · wn+1 θ(n+1)2x θ(n+1)2y

}�

(17)

P(b) =
{

pw,1 0 0 pw,2 0 0 · · · pw,(n+1)2 0 0
}�
(18)

K(b)
p,q =

⎡
⎢⎣ke,1

p,q ke,2
p,q ke,3

p,q

ke,4
p,q ke,5

p,q ke,6
p,q

ke,7
p,q ke,8

p,q ke,9
p,q

⎤
⎥⎦ ;

for p,q = 1, · · · , (n + 1)2 (19)

in which the element stiffness submatrices and
loading vector can be solved by the following for-
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mulae

Pw =
[
(Re)−1]� lexley

∫ 1

0

∫ 1

0
q(ξ ,η)φφφ�dξdη

Ke,1 = C0

{
A1,1

1 ⊗A0,0
2 +A0,0

1 ⊗A1,1
2

}
Ke,2 = −C0A1,0

1 ⊗A0,0
2

Ke,3 = −C0A0,0
1 ⊗A1,0

2

Ke,4 =
(
Ke,2)�

Ke,5 = D0

{
A1,1

1 ⊗A0,0
2 +

1−μ
2

A0,0
1 ⊗A1,1

2

}
+C0A0,0

1 ⊗A0,0
2

Ke,6 = D0

{
μA1,0

1 ⊗A0,1
2 +

1−μ
2

A0,1
1 ⊗A1,0

2

}

Ke,7 =
(
Ke,3)�

Ke,8 =
(
Ke,6)�

Ke,9 = D0

{
A0,0

1 ⊗A1,1
2 +

1−μ
2

A1,1
1 ⊗A0,0

2

}
+C0A0,0

1 ⊗A0,0
2

in which Ai j
1 (i, j = 0,1) and Ai j

2 (i, j = 0,1) are

similar to Eq.(10), D0 = Et3

12(1−μ2) , C0 = 5Et
12(1+μ)

and t is the thickness of shells.

The element stiffness matrix or loading column
vector derived here used a system of local coordi-
nates as the membrane and bending components
are originally derived for this system. when the
BSWI flat shell element is applied to solving engi-
neering structure problems, element DOFs in lo-
cal coordinates must have to transfer to a common
global system to benefit the assembly of the ele-
ments.

The element physical DOFs in the global coordi-
nate system are defined by

ae =
{

u1 v1 w1 θ 1x θ 1y θ 1z · · ·un+1 vn+1

wn+1 θ (n+1)x θ (n+1)y θ (n+1)z

}�
(20)

The transformation relationships between local
and global coordinate systems are

ae = S�ae, ae = Sae (21)

where

S =

⎡
⎢⎢⎢⎣

L1

L2
. . .

L(n+1)2

⎤
⎥⎥⎥⎦ (22)

in which

Ll =
[
λλλ 0
0 λλλ

]
(23)

and

λλλ =

⎡
⎣λxx λxy λxz

λyx λyy λyz

λzx λzy λzz

⎤
⎦ ; for l = 1, · · · , (n+1)2

(24)

in which the direction cosine λxx = cos(x,x),
λxy = cos(x,y) λxz = cos(x, z), etc.

The element stiffness matrix and loading column
vector in global coordinate system are now can be
written by

K
e
ae = P

e
(25)

where

K
e = S�KeS (26)

P
e = S�Pe (27)

Assembling the element stiffness matrix and load-
ing column vector in the common global coordi-
nate system, we can achieve the final solution fol-
low the standard pattern. The resulting displace-
ments calculated are referred to the global system,
and before the stresses can be computed it is nec-
essary to change these for each element of the lo-
cal system.

BSWI flat shell element free vibration frequency
equations are∣∣∣S�KeS−ω2S�MeS

∣∣∣ = 0 (28)

where the element mass matrix is given by
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Me
p,q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M(m)
p,q

0 0 0
0 0 0

0
0

0 0
0 0
0 0

M(b)
p,q

0
0
0

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;

p,q = 1, · · · , (n + 1)2 (29)

in which M(m) and M(b) are the element mass
matrices of BSWI plane elastomechanics element
and BSWI Mindlin plate element respectively, are
given by

M(m)
p,q =

[
Mp,q 0

0 Mp,q

]
(30)

M(b)
p,q =

⎡
⎣Mp,q 0 0

0 Mp,q 0
0 0 Mp,q

⎤
⎦ (31)

where the element mass submatrices can be com-
puted by

M = ρtA00
1 ⊗A00

2 (32)

4 Numerical examples

In order to verify the validity and advantages of
the presented BSWI flat shell element in the prob-
lems of plates and shells, four typical examples
are illustrated. We adopt the BSWIm j (where m is
the order and j is the scale of BSWI scaling func-
tions) plane elastomechanics and Mindlin plate
elements to assemble BSWI flat shell element,
and it is simply marked as BSWIm j flat shell ele-
ment. In order to describe simply, the units of all
parameters are omitted.

Example 1 Fig.4 shows 1/4 square plate with
hole subjected to uniform loading, the physical
parameters and loading are shown in Fig.4. 2
BSWI43 flat shell elements (1386 DOFs) and
10 × 20 (1386 DOFs), 20 × 40 (5166 DOFs),
30×60 (11346DOFs) and 50×100(30906DOFs)
SHELL63 (A common used element in commer-
cial software ANSYS) elements are applied re-
spectively to solve this plate. Fig 5 shows the rela-
tive errors at appointed sides with the nodal stress

x
y

1.5

1.
5

0.5

1500=q

1500=E

25.0=μ
A

B

C D
1=t

Figure 4: 1/4 square plate with hole subjected to
uniform loading

results of 50 × 100 SHELL63 elements when 2
BSWI43 flat shell elements and 10×20, 20×40,
30× 60 SHELL63 elements are applied to solve
this example. Both the σx and σy relative errors
of 2 BSWI43 flat shell elements are smaller than
those of 30×60 SHELL63 elements and that the
total DOFs of 2 BSWI43 flat shell elements far
from those of the 30 × 60 SHELL63 elements.
The results of this example indicate the accuracy
and efficiency of the BSWI flat shell element.

Example 2 Fig.6 shows a folded plate structure
subjected to uniform loading, the parameters and
loading are E = 2.06×1011, L = 50, t = 1, r2 =
100, μ = 0.3, q = 1000 and α = 300 respectively.
Both side AB and EF are free, and the other sides
are simply supported.

2 BSWI43 flat shell elements (1386 DOFs) and
80 × 40 (19926 DOFs) SHELL63 elements are
applied respectively to solve the folded plate
structure. The displacements of appointed sides
are shown in Fig 7. 2 BSWI43flat shell ele-
ments results are in good agree with the 80×40
SHELL63 elements.

Example 3 A folded shell structure modal anal-
ysis, the geometrical shape is shown in Fig.5. Ma-
terial density ρ = 7860, both side AB and EF
are clamped, and the other sides are free, and the
other parameters are shown in Example 2.

2 BSWI43 flat shell elements (1386 DOFs) and
80×40(19926 DOFs) SHELL63 elements are ap-



Wavelet-based Flat Shell Elements Using B-spline Wavelet 9

R
el

at
iv

e 
er

ro
rs

 /
%

y

--- 10 20 PLANE42 

-.- 20 40 PLANE42

30 60 PLANE42

2 BSWI43

(a) Nodal stress σx relative errors at side AB

x

R
el

at
iv

e 
er

ro
rs

 /
%

--- 10 20 PLANE42 

-.- 20 40 PLANE42

30 60 PLANE42

2 BSWI43

(b) Nodal stress σy relative errors at side CD

Figure 5: The relative nodal stresses errors with
50×100 shell63 elements on appointed sides
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Figure 6: Folded plate structure subjected to uni-
form loading q
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Figure 7: Displacement of the appoint sides
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Table 1: Comparison of the frequencies between
80×40 SHELL63 and 2 BSWI43 elements (Hz)

Method f1 f2 f3 f4 f5

SHELL63 1.4982 2.0301 2.1755 2.5863 3.9178
BSWI43 1.4923 2.0143 2.1646 2.5635 3.8571
Error/ % 0.394 0.778 0.501 0.882 1.549
Method f6 f7 f8 f9 f10

SHELL63 4.2829 4.8748 5.5502 5.947 6.4991
BSWI43 4.2111 4.8235 5.4707 5.8808 6.4026
Error/ % 1.676 1.052 1.432 1.113 1.485

4923.11 =f 0143.22 =f

1646.23 =f 5635.24 =f

8571.35 =f 2111.46 =f

Figure 8: The first six mode shapes

plied respectively to the modal analysis of the
folded plate structure. Tab.1 gives the first ten
frequencies fi (i = 1,2, · · · ,10) solutions of both
the 2 BSWI43 flat shell elements and 80 × 40
SHELL63 elements. And the relative errors of the
two kinds of elements are also given in Tab.1. The
small relative errors indicated that the constructed
BSWI flat shell element can achieve high preci-
sion and efficiency not only in static but also in
dynamic analysis fields. Fig.8 gives the first six
mode shapes.

L

R

z

x

y

Figure 9: Simply supported cylindrical shell roof

Example 4 The modal analysis a simply sup-
ported cylindrical shell roof, the geometrical
shape is shown in Fig.9. The parameters are ρ =
1, L = 1, R = 1.91, t = 0.0191, E = 1, μ = 0.3,
β = 300.

4 BSWI22 flat shell elements (510 DOFs) and
are applied to the modal analysis of the simply
supported cylindrical shell roof. Tab.1 gives the
first five frequencies fi (i = 1,2, · · · ,5) solutions
of both the 4 BSWI22 flat shell elements and
the other methods [Shen and Wang (1987)]. 4
BSWI22 calculation results are very high by com-
paring with the other spline functions methods.

5 Conclusions

A new class of BSWI flat shell element is con-
structed based on the combination of BSWI plane
elastomechanics and Mindlin plate elements. Be-
cause the good character of BSWI scaling func-
tions, the element presented in this paper is a use-
ful tool to deal with high performance computa-
tion in shell structures especially for folded plate
structures. Numerical results verify that the pro-
posed wavelet-based shell element can be utilized
to static and dynamic analysis of shell structures
easily, similar to the traditional flat shell element.
And some advantages of BSWI element in engi-
neering structures analysis have been embodied,
i.e. the BSWI elements have higher efficiency and
precision than the traditional element.

Because of the good characteristic of BSWI scal-
ing functions, such as multi-resolution analy-
sis and localization, we can choose the higher
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Table 2: Comparison of the frequencies between 4 BSWI22 elements and the other methods(Hz)

Method f1 f2 f3 f4 f5

Finite strip method 0.284 0.301 0.509 0.527 0.572
Spline FEM 0.2808 0.2999 0.5047 0.5227 0.5710
Spline subdomain method 0.285 0.300 0.507 0.523 0.562
4 BSWI22 0.2843 0.301 0.5067 0.5229 0.570

scale BSWIm j flat shell element easily to deal
with higher performance computation in struc-
tural analysis. However, it is worth pointed out
here that the higher scale BSWIm j flat shell el-
ement might fail to achieve excellent solutions
for the error of geometrical approximation for the
curved shells.
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