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A New Meshless Interpolation Scheme for MLPG_R Method

Q.W. Ma1

Abstract: In the MLPG_R (Meshless Local
Petrove-Galerkin based on Rankine source solu-
tion) method, one needs a meshless interpola-
tion scheme for an unknown function to discre-
tise the governing equation. The MLS (moving
least square) method has been used for this pur-
pose so far. The MLS method requires inverse of
matrix or solution of a linear algebraic system and
so is quite time-consuming. In this paper, a new
scheme, called simplified finite difference inter-
polation (SFDI), is devised. This scheme is gen-
erally as accurate as the MLS method but does not
need matrix inverse and consume less CPU time
to evaluate. Although this scheme is purposely
developed for the MLPG_R method, it may also
be used for other meshless methods.

Keyword: Simplified finite difference interpo-
lation (SFDI), MLPG, MLPG_R, nonlinear water
waves.

1 Introduction

A meshless method, called Meshless Local
Petrove-Galerkin (MLPG) method, has been in-
vented by Atluri and Zhu (1998) and Atluri and
Shen (2002) and has been developed into many
forms as summarised in Atluri, Liu and Han
(2006). This method is based on a local weak
form over local sub-domains (circles for two di-
mensional problems and spheres for three di-
mensional ones). The success of the MLPG
method has been reported in solving fracture
mechanics problems [Batra and Ching (2002)],
beam and plate bending problems [Atluri and
Zhu (2000)], three dimensional elasto-static and
-dynamic problems [Han and Atluri (2004a,b)]
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and some fluid dynamic problems, such as steady
flow around a cylinder [Atluri and Zhu (1998)],
steady convection and diffusion flow [Lin and
Atluri (2000)] in one and two dimensions and lid-
driven cavity flow in a two dimensional box [Lin
and Atluri (2001)].

In Ma (2005a), the MLPG method was extended
to simulating nonlinear water waves and produced
some encouraging results. In that paper, the sim-
ple Heaviside step function was adopted as the
test function to formulate the weak form over lo-
cal sub-domains, resulting in one in terms of pres-
sure gradient.

In Ma (2005b), the MLPG method was developed
into a new form called the MLPG_R method, suit-
able for modelling nonlinear water waves. In
the MLPG_R method, the solution for Rankine
sources rather than the Heaviside step function
was taken as the test function. Based on this
test function, a weak form of governing equations
was derived, which did not contain the gradients
of unknown functions, therefore made numerical
discretisation of the governing equation relatively
easier and more efficient. A semi-analytical tech-
nique was also developed to evaluate the domain
integral involved in this method, which dramati-
cally reduce the CPU time spent on the numerical
evaluation of the integral. Numerical tests showed
that the MLPG_R method could be twice as fast
as the MLPG method for modelling nonlinear wa-
ter wave problems.

In the MLPG_R method, the water wave prob-
lems are solved using a time-step marching pro-
cedure. This starts from a particular instant when
the velocity and the geometry of fluid flow are
known and then evolves to next time step, at
which all physical quantities are updated by solv-
ing the governing equations. During each time
step, the problem is formulated using a well-
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known time-split procedure, in which the veloc-
ities of particles are updated by

�u(n+1) =�u(∗)− Δt
ρ

∇p(n+1) (1)

where �u(n+1) is the velocity at time tn+1, �u(∗) is
the intermediate velocity evaluated by the veloc-
ity and external forces in previous time step and
p(n+1) is the pressure at time tn+1. The pressure is
found by solving
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(
�u(∗)

)
(2a)

where RI is the radius of integration domain ΩI ,
α=1 for 2D cases, α=2 for 3D cases and G
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(2b)

where u(∗)
r is the radial component of the interme-

diate velocity�u(∗).
In order to discretise Eq. (2) and to evolve the
velocity in Eq. (1), one needs a meshless inter-
polation scheme for evaluating the pressure and
its gradient in terms of discrete values of pressure
at nodes. Computational costs spent on them are
considerable. Reducing these costs can make the
method more efficient. The main contribution of
this paper is to develop a new meshless interpola-
tion scheme, requiring less computational efforts,
and thus to further enhance the overall efficiency
of the MLPG_R method.

2 Brief review on meshless interpolation
schemes for MLPG methods

Various available meshless interpolation schemes
have been reviewed by Atluri and Shen (2002)
and also by Atluri (2005). They include the
Shepard function (SF), the partition of unity
(PU), the reproducing kernel particle interpolation

(RKPM), radial basis function (RBF) and moving
least square (MLS) methods. The simplest one
among them is the SF method, which is the same
as the interpolation of an unknown function used
in a moving particle semi-implicit method (MPS)
and can suffer a problem of large errors as dis-
cussed below. The PU method is more computa-
tional expensive and so is not good choice for the
family of MLPG methods. The RKPM is equiv-
alent to the MLS method if the basis and weight
functions used in them are the same. Atluri and
Shen (2002) carried out numerical investigations
and demonstrated that the RBFs was not as accu-
rate as the MLS method for the same number of
nodes or needed more nodes to achieve the same
accuracy. Therefore, the MLS method is more
popular than other interpolation schemes for the
MLPG methods. It is also the reason why it was
utilised by the author in Ma (2005a and 2005b).

For the sake of completeness and convenience of
discussions below, the MLS method is outlined
here. To be more general, the unknown function
is represented by f (�r) with �r denoting the posi-
tion vector of a point, which may also be the pres-
sure (p) in the MLPG_R method. With the MLS
method, the unknown function f (�r) can be writ-
ten as

f (�r) ≈
N

∑
J=1

ΦJ(�r) f̂J (3a)

where N is the number of nodes that affect the
function at point�r; f̂J are nodal variables but not
necessarily equal to the nodal values of f (�r). In
the equation, ΦJ(�r) is called the interpolation or
shape function and is given as

ΦJ(�r) =
m

∑
l=1

ψl(�r)
[
A−1(�r)B(�r)

]
lJ

=ψψψT (�r)A−1(�r)BJ(�r)
(3b)

with the basis function, assuming to be linear, be-
ing

ψψψT (�r) = [ψ1,ψ2,ψ3] = [1,x,y] (m=3) for 2D
cases

and

ψψψT (�r) = [ψ1,ψ2,ψ3,ψ4] = [1,x,y, z](m=4) for 3D
cases;
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and with the matrixes B(x) and A(x) being de-
fined as

B(�r) =ΨΨΨT W(�r)
=[w1 (�r−�r1)ψψψ (�r1) ,w2 (�r−�r2)ψψψ (�r2) , · · ·]

(3c)

and

A(�r) = ΨΨΨT W(�r)ΨΨΨ = B(�r)ΨΨΨ,

where W(�r) and ΨΨΨ are, respectively, expressed by

W(�r−�rJ) =

⎡
⎢⎢⎣

w(|�r−�rJ |) 0 · · · 0
0
· · ·
0 w(|�r−�rJ |)

⎤
⎥⎥⎦

(3d)

and

ΨΨΨT = [ψψψ (�r1) ,ψψψ (�r2) , · · · ,ψψψ (�rN)] , (3e)

which shows each column of the matrix ΨΨΨT is the
value of the basis function ψψψ at a particular point.
w(|�r−�rJ|) in Eq. (3d) is a weight function. Its
specific form will be given later. The gradient of
the unknown function is estimated by

∇ f (�r) ≈
N

∑
J=1

∇ΦJ(�r) f̂J (3f)

The partial derivatives (or the gradient) of the
shape function with respect to y are found by di-
rectly differentiating Eq. (3b), that is,

ΦJ,y = ψψψT
,yA−1BJ +ψψψT A−1

,y BJ +ψψψT A−1BJ,y (3g)

where A−1
,y is the partial derivative of A−1 (the in-

verse of A(�r)), with respect to y (x or z) and is
evaluated by A−1

,y = −A−1A,yA−1 and BJ is J-th
column of Matrix B whose partial derivative is es-
timated by

BJ,y =
∂wJ (�r−�rJ)

∂y
ψψψ (�rJ) .

The interpolations given by Eqs. (3a) and (3f)
are accurate for a linear function independent on
the node distribution. This is a good feature par-
ticularly for the problems, such as about non-
linear water waves, involving large deformation

of computational domain. Nevertheless, they do
have some drawbacks. (1) The interpolation func-
tion will not be well defined if the number of
nodes (N) affecting the concerned point is not
large enough. This implies that it may not always
work properly when modelling the problems asso-
ciated with fragment phenomena, such as break-
ing waves. Although this may be overcome by
enlarging the support domain, the larger support
domain may lead to over-smoothing and so de-
grade the accuracy. (2) Interpolation of the func-
tion in Eq. (3a) needs the inverse of matrix A,
which is the order of m × m. Although m may
be only 3 for 2D case and only 4 for 3D cases,
the computational cost spent on it is not negligible
due to the fact that the number of points at which
the function f (�r) needs to be estimated is much
larger (at least 8 times for 2D and 16 times for 3D)
than the total number of nodes when discretising
Eq. (2a) and that the computational cost for the
inverse of the matrix is proportional to m3. (3)
The evaluation of the gradient by direct differenti-
ation as shown in Eqs. (3f) and (3g) is even more
expensive due not only to the inverse of matrix
but also to the successive multiplication of several
matrixes. To avoid the direct differentiation on
the interpolation function, Prof. Atluri and his re-
search group suggested a mixed approach in their
several recent publications. In particular, Atluri,
Liu and Han (2006) describe the following new
formulation. The unknown function is still evalu-
ated using Eq. (3a) but its gradient is estimated
by a finite difference method. In this method,
the components of the gradient are determined
by minimising the norm of the unknown function
with respect to the gradient components (similar
to a least square method) and are expressed (dif-
ferent symbols used in this paper to avoid some
confusion with other equations) as

f I
,y (�rI) =

N

∑
J=1

HJ
y f (�rI +ςΔ�rIJ)−Hy f (�rI) (4)

Hy =
N

∑
J=1

HJ
y

where f I
,y (�rI) is the y-component (y can be

changed into x or z to give other compo-
nents) of the gradient of f (�r) at Node I, H =
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(hT Wh)−1hT W, hT = ς [Δ�rI1, Δ�rI2, Δ�rI3. . .. . ..
Δ�rIN], Δ�rIJ =�rJ −�rI, W is the same matrix as in
Eq. (3d) and ς is a shrink factor, controlling the
position of sample points that are not necessarily
the nodes. If the shrink factor is not equal 1, the
value of f (�rI +ςΔ�rIJ) must be found by Eq. (3a)
before estimating the gradient.

Another relevant meshless interpolation is the one
used in the moving particle semi-implicit method
(MPS) developed by Koshizuka and Oka (1996)
and adopted by others [e.g. Koshizuka, Ikeda and
Oka, (1999), Heo, Koshizuka and Oka, (2002)].
In the MPS method, a function and its gradient
are modelled by

f (�r0) =
∑
J

f (�rJ)w(|�rJ −�r0|)
∑
J

w(|�rJ −�r0|) (5a)

( f,y)�r0
=

d

∑
J

w(|�rJ −�r0|) ∑
J

[ f (�rJ)− f (�r0)]

· (�rJ,y−�r0,y)

|�rJ −�r0|2
w(|�rJ −�r0|) (5b)

where J represents the neighbour nodes of Point
�r0, w(|�rJ −�r0|) is a weight function as mentioned
above, f,y is the partial derivative with respect to
y (changeable to x or z),�rJ,y is the component of
the position vector in y (x or z) direction and d
is a number of spatial dimensions, equal to 2 in
2D cases and 3 in 3D cases. Although these ex-
pressions are very easy to evaluate, they are only
rough approximations. This can be seen by the
following fact. Eq. (5a) is accurate for any distri-
bution of nodes only if the function is a constant
or accurate for a linear function only when the
nodes are symmetrical about Point�r0. The con-
dition of symmetry is not met even if all nodes
are located at intersection points of a rectangular
grid unless Point �r0is also a node, not arbitrary.
Eq. (5b) is even worse. In order to give accu-
rate value of the gradient for a linear function, it
does not only require that the point (�r0) must be
a node and all nodes lie on intersection points of
rectangular grid but also require that the grid must
be square. To remove the restriction to the square

grid, Yoon, Koshizuka and Oka (2001) suggested
another expression for the gradient, i.e.

( f,y)�r0
=

1
n0,y

∑
J

[ f (�rJ)− f (�r0)]
(�rJ,y −�r0,y)
|�rJ −�r0|2

w(|�rJ −�r0|)
(5c)

where

n0,y = ∑
J

(�rJ,y −�r0,y)
2

|�rJ −�r0|2
w(|�rJ −�r0|).

Similarly, this one is not accurate either for a lin-
ear function unless Point�r0and all the nodes lie on
the intersection points of a rectangular (not nec-
essarily being square) grid. Nevertheless, if the
linear function is one dimensional, Eq. (5c) does
not depend on the nodes distribution to give accu-
rate results but this feature is rarely useful because
problems we consider are generally two or three
directional. If Eq. (5b) or (5c) is used to evolve
the velocity in Eq. (1) for an irregular distribution
of nodes, large errors may be caused.

Based on the discussions above, it could be seen
that interpolations used in the MPS method are
not as good as the corresponding expressions in
the MLS formulation in terms of accuracy. The
problems with Eq. (5a) and Eq. (5b) or (5c) may
become severe if they are used to model the vio-
lent water waves, in which it is impossible to keep
all the nodes at the intersection points of rectan-
gular grids. If they are really used in such cases,
much more number of nodes must be required
to achieve the same accuracy, compared with the
MLS formulation. However, they are cheaper to
compute than those in the MLS scheme mainly
because matrix inverse is not involved.

3 Simplified finite difference interpolation
(SFDI) scheme

In this section, a new scheme for interpolating an
unknown function will be developed, which is in
the same order of accuracy as Eq. (3a) in the MLS
using a linear basis function but does not need in-
verse of matrix and so needs less CPU time to
evaluate. This scheme will be particularly useful
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for the MLPG_R method, in which the values of
unknown pressure have to be evaluated at a large
number of points when discretising Eq. (2a), as
indicated above.

To achieve this, a general function f (�r) is ex-
panded into a Taylor series near Point�r0:

f (�r) = f (�r0)+(∇ f )�r0 · (�r−�r0)+O
(
|�r−�r0|2

)
(6)

Applying the above expression to a set of nodes
(J) around �r0, multiplying a weight function
w(|�rJ −�r0|) on both sides and taking the sum of
equations at all relevant nodes yields:

N

∑
J

f (�rJ)w(|�rJ −�r0|)

=
N

∑
J

f (�r0)w(|�rJ −�r0|)

+(∇ f )�r0 ·
N

∑
J

(�rJ −�r0)w(|�rJ −�r0|)

+O

(
N

∑
J

|�rJ −�r0|2 w(|�rJ −�r0|)
)

(7)

where N is the total number of nodes and (∇ f )�r0 is
the gradient of f (�r) at Point�r0. This gives

f (�r0) =

N
∑
J

f (�rJ)w(|�rJ −�r0|)
N
∑
J

w(|�rJ −�r0|)

− (∇ f )�r0 ·

N
∑
J
(�rJ −�r0)w(|�rJ −�r0|)

N
∑
J

w(|�rJ −�r0|)

−O

⎛
⎜⎜⎝

N
∑
J
|�rJ −�r0|2W (|�rJ −�r0|)

N
∑
J

w(|�rJ −�r0|)

⎞
⎟⎟⎠ .

(8)

Defining

�R0 =
∑N

J (�rJ −�r0)w(|�rJ −�r0|)
∑N

J w(|�rJ −�r0|)
and

ε�r0 = O

(
∑N

J |�rJ −�r0|2w(|�rJ −�r0|)
∑N

J w(|�rJ −�r0|)

)
,

one can write the above equation as

f (�r0) =

N
∑
J

f (�rJ)w(|�rJ −�r0|)
N
∑
J

w(|�rJ −�r0|)
− (∇ f )�r0 ·�R0 −ε�r0

(9)

Omitting the error term (ε�r0), the value of the
function at Point�r0 is approximated by

f (�r0) ≈

N
∑
J

f (�rJ)w(|�rJ −�r0|)
N
∑
J

w(|�rJ −�r0|)
− (∇ f )�r0 ·�R0 (10)

It is obvious that the error of the approximation is

ε�r0 < O(max(|�rJ −�r0|2)).
In other words, if f (�r) is a linear function and
(∇ f )�r0 is its accurate gradient, the expression for
f (�r0) is accurate. On the other hand, if f (�r) is
a general function, the expression has a second
order of accuracy. This is similar to the approx-
imation of the MLS using a linear basis. Never-
theless, the gradient (∇ f )�r0

is generally unknown.
Although we may derive another set of equations
for (∇ f )�r0 and solve them together with Eq. (10)
as in Liszka, Duarte and Tworzydlo (1996), it con-
flicts with our purpose to derive a shape function
that does not require matrix inverse or solution
of linear algebraic equations. To circumvent the
difficulty, it is suggested that (∇ f )�r0is replaced
by (∇ f )�rI , where �rI is one of nodes among �rJ(
J = 1,2, . . .. . .), that is,

f (�r0) ≈

N
∑
J

f (�rJ)w(|�rJ −�r0|)
N
∑
J

w(|�rJ −�r0|)
− (∇ f )�rI ·�R0 (11)

The alternation to the gradient in the above equa-
tion is a key point of the new scheme. Because of
this, it is called as ‘simplified’ finite difference in-
terpolation (SFDI). It is noted that this alternation
does not affect the accuracy of the expression if
f (�r0) is a linear function because (∇ f )�r0 = (∇ f )�rI

for such a function. In other words, it does not af-
fect the order of accuracy for a general function.
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It is also noted that�rI may be the nearest node to
Point�r0 but not necessary. Of course, the gradient
(∇ f )�rI must be evaluated to obtain the final form
of the shape function. There are variety ways to
do so. For example, the method described in the
next section may be used but it again needs the so-
lution of a linear algebraic system. In this paper
we choose to estimate it by using Eq. (5d), i.e.,
the components of (∇ f )�rI is approximated by

( f,y)�rI
=

1
nI,y

N

∑
J �=I

[ f (�rJ)− f (�rI)]
(�rJ,y−�rI,y)

|�rJ −�rI |2
w(|�rJ −�rI |)

(12)

where

nI,y =
N

∑
J �=I

(�rJ,y−�rI,y)
2

|�rJ −�rI |2
w(|�rJ −�rI |)

with y changed into x or z to give other compo-
nents of the gradient. As already noted for Eq.
(5), the gradient expressed by Eq. (12) is not ac-
curate to the order of O(max(|�rJ −�r0|2) unless all
the nodes are uniformly distributed around Point
�r0 and thus may not be used for estimating the ve-
locity directly. However, in Eq. (11), the term
(∇ f )�rI ·�R0 has higher order than the first term and
so the error in the estimation of (∇ f )�rI may not
significantly degrade the accuracy of f (�r0). This
will be confirmed by the numerical tests in later
sections. Substituting Eq. (12) into (11), it fol-
lows that

f (�r0) =
N

∑
J=1

ΦJ (�r0;�rI) f (�rJ) (13)

where ΦJ (�r0;�rI) is the shape function in the SFDI
interpolation and is defined by

ΦJ (�r0;�rI) =
w(|�rJ −�r0|)

N
∑
J

w(|�rJ −�r0|)
− (1−δIJ)B0,J (�rI)

+ δIJ

N

∑
J �=I

B0,J (�rI)

Where

δIJ =

{
1 I = J

0 I �= J
,

B0,J (�rI) =
w(|�rJ −�rI |)
|�rJ −�rI |2

d

∑
k=1

�R0,xk

nI,xk

(�rJ,xk −�rI,xk),

and

�R0,xk =

N
∑
J
(�rJ,xk −�r0,xk)w(|�rJ −�r0|)

N
∑
J

w(|�rJ −�r0|)
,

where d is still the number of spatial dimensions
as defined above and xk for k=1, 2 and 3 is x, y and
z, respectively. It may be noted that the method-
ology to formulate the above interpolation func-
tion is some what similar to that for formulating
the consistent SPH approximation [Chen and Be-
raun (2000)]. However there are three differences.
(1) Eq. (6) is integrated over a domain in SPH
approximation rather than taken as the weighted
sum. (2) The integration must be performed on a
mesh while Eq. (7) is based only on the weight
function. (3) Therefore, the consistent SPH ap-
proximation relies on a background mesh. Com-
paratively, Eq. (13) is a truly meshless expression.
(4) The consistent SPH approximation for a func-
tion did not have the second term, i.e., similar to
the form used in the MPS method.

4 Gradient interpolation

As pointed out before, the velocity evolvement of
particles in Eq. (1) for the MLPG_R method re-
quires the evaluation of pressure gradient. In this
section, the interpolation for the gradient is devel-
oped by using the similar method to the above in
order to replace Eq. (3f) with the new one elim-
inating the necessity of multiplications of several
matrixes . For this purpose, Eq. (6) is rewritten as

f (�rJ)− f (�r0) = (∇ f )�r0 · (�rJ −�r0)+O(|�rJ −�r0|2)

Multiplying (�rJ,xm−�r0,xm )
|�rJ−�r0|2 w(|�rJ −�r0|) on both sides,

taking the sum of equations at all the relevant
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nodes and ignoring the error term, it follows that

N

∑
J

[ f (�rJ)− f (�r0)]
(�rJ,xm −�r0,xm)

|�rJ −�r0|2
w(|�rJ −�r0|)

=
N

∑
J

(�rJ,xm −�r0,xm)2

|�rJ −�r0|2
w(|�rJ −�r0|) ( f,xm)�r0

+
N

∑
J

d

∑
k=1,k �=m

(�rJ,xk −�r0,k) ( f,xk)�r0

(�rJ,xm −�r0,xm)

|�rJ −�r0|2
·w(|�rJ −�r0|)

Alternatively, we have

( f,xm)�r0
+

d

∑
k=1,k �=m

a0,mk ( f,xk)�r0
= C0,m

(m = 1,2, . . .,d) (14)

where

C0,m =

1
n0,xm

N

∑
J

[ f (�rJ)− f (�r0)]
(�rJ,xm −�r0,xm)

|�rJ −�r0|2
w(|�rJ −�r0|)

and

a0,mk =

1
n0,xm

N

∑
J

(�rJ,xm −�r0,xm) (�rJ,xk −�r0,xk)
|�rJ −�r0|2

w(|�rJ −�r0|).

Solving the system in Eq. (14), one can find the
gradient components. For example, in 2D cases,
they are

( f,x)�r0
=

C0,1 −a0,12C0,2

1−a0,12a0,21

and

( f,y)�r0
=

C0,2 −a0,21C0,2

1−a0,12a0,21
.

In 3D cases, Eq. (14) can be generally written as

[A]{F} = [C]{δF}

where

{F} =
[
( f,x)�r0

, ( f,y)�r0
, ( f,z)�r0

]T
,

{δ f} = [ f (�r1)− f (�r0), f (�r2)− f (�r0), · · · ,
f (�rJ)− f (�r0), · · · ]T ,

[C] is an 3×N matrix with its components defined
as

CmJ =
1

n0,xm

(�rJ,xm −�r0,xm)
|�rJ −�r0|2

w(|�rJ −�r0|) ,

[A] is an 3×3 matrix with its entries given by

Amk = a0,mk (m �= k) and Amm = 1.

At last, the gradient components may be written
as

( f,xm)�r0
=

N

∑
J=1

Γ̃mJ(�r0) [ f (�rJ)− f (�r0)] (15)

with

Γ̃mJ(�r0) =
d

∑
k=1

ÃmkCkJ J = 1,2,3 · · · , (16)

where
[
Ã
]

is the inverse matrix of [A], i.e.
[
Ã
]
=

[A]−1. Γ̃m j(�r0) is the shape function for gradient
components. Compared with Eqs. (3f) and (3g)
in the MLS method, the expressions in Eq. (15)
needs to solve a smaller number of equations, to
evaluate the multiplication of a smaller number
of matrixes, and therefore require less CPU time,
making the method more efficient particularly in
3D cases.

It is easy to deduce that if f (�r) is linear Eq. (15)
gives exact value of gradient components, inde-
pendent of the distribution of nodes. This equa-
tion may be used in Eq. (11) to formulate the
shape function for the interpolation of the un-
known function with sacrifice to CPU time and
with slight improvement to the accuracy. Another
point is worthy to be pointed out is that Eq. (15)
become equivalent to Eq. (4) if the shrink fac-
tor is taken as 1. Therefore the same expression
of the gradient is obtained by using two different
methods. In addition, for some special cases, such
as all neighbour nodes lying on a special line in
2D cases or in a special plane in 3D cases, [A]−1

may not exist. This difficulty may be overcome
simply by making a0,mk = 0 (the SFDI is reduced
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to Eq, (5c) ) for the node concerned. It should
be noted that this difficulty is not only with the
SFDI method but also with schemes such as Eq.
(4) or the MLS method. The real reason is that
for such a special distribution of neighbour nodes,
one actually attempts to model the gradient in a
low-dimensional space (e.g. 2D) using a function
defined in a high-dimensional space (e.g. 3D).

5 Convergent rate

In this section, investigations will be made into
the convergent rate of the new shape functions in
Eqs. (13) and (15) by comparing with their coun-
terparts in other two methods through numerical
tests on assumed functions. Although they can be
used for any problem, the numerical tests will be
carried out on 2D problems.

The computational domain for the tests is cho-
sen as a square with the length of sides being
1. The nodes, at which the nodal values f (�rJ)
are defined, are irregularly distributed by using
quasi-random number [see for example, Faure, H.
(1990)]. A typical node distribution is illustrated
in Fig 1.

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Figure 1: Example of distributions of nodes and
interpolation points (Hollow circles: interpolation
points; Solid squares: nodes)

Generally, as noted before, Eq. (13) is used in

the MLPG_R method to discretise Eq. (2), giv-
ing the relationship between a function value at
any point and nodal values of the same function
at nodes. On the other hand, Eq. (15) is employed
to estimate the pressure gradient of the same func-
tion at nodes by using its nodal values for evolv-
ing the velocity in Eq. (1). Therefore, different
approaches should be adopted when investigating
the convergent rate of Eq. (13) and Eq. (15).

To investigate the convergent rate of Eq. (13), the
assumed functions are interpolated by the equa-
tion at a set of points. These interpolation points
are not necessarily coincided with any node and
the number of the points is not necessary the same
as the number of nodes. In fact, the number of
points in the following tests is fixed as 64 except
for Section 5.3. For clarity, these points are de-
noted by�r0k while nodes are still denoted by�rJ as
above. The distribution of the points is illustrated
in Fig. 1. The error of the results of interpolation
is defined as

Emean =
1
K

K

∑
k

∣∣ f (�r0k)− f (�r0k)
∣∣ (17)

where Emean is the mean error, f (�r0k) is the in-
terpolated value at the interpolation points and
f (�r0k) is the values computed by the formula
defining a function at the same point; K is the
number of interpolation points.

For investigating the convergent rate of Eq. (15),
the gradient of the function is estimated at the
nodes by the equation and the error is found by
the following expression

Egmean,y =
1
M

M

∑
J

∣∣ f,y (�rJ)− f ,y (�rJ)
∣∣ (18)

where Egmean,y represents the mean error of the y-
component of the gradient, f,y (�rJ) is the approxi-
mate value of the y-component of the gradient ob-
tained by interpolation, f ,y (�rJ) is its counterpart
computed by the formula defining the function
and M is the total number of nodes. The mean
error of the x-component of the gradient can be
estimated in the same way by replacing y with x.

There are many options for the weight function. It
is not necessary to use the same one for estimating
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unknown functions and for estimating their gradi-
ents. In this paper, however, we mainly concern
about the convergent rate of different formula-
tions rather then the best weight function. There-
fore, the spline function is employed in all the
cases, i.e.,

w(|Δ�r|) =⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1−6
(
|Δ�r|
hI

)2
+8

(
|Δ�r|
hI

)3
−3

(
|Δ�r|
hI

)4

0 ≤ |Δ�r|
hI

≤ 1

0 |Δ�r|
hI

> 1

where |Δ�r| is the distance of two points as defined
before and hI is the size of the support domain of
the weight function which is given by hI = kh4I

with h4I being the distance between Node I and
the fourth nearest neighbour and with k being a
scale factor.

5.1 Case 1 – second order polynomial function

The fist considered is a polynomial function of
second order expressed by f = 1 + 2x2 + 3y2. Its
gradient components are easy to find and is not
written out here. The total number (M) of nodes
in the square domain described above is selected
as 25, 100, 400, 900 or 1600, respectively, in dif-
ferent runs. The convergent rates for interpola-
tion of the function at 64 points by using three
methods are shown in Fig. 2, where the scale fac-
tors for the SFDI and MLS are 2.5 and for the
MPS two curves are shown corresponding to the
scale factors of 2.5 and 5, respectively. The con-
vergent rates are denoted by the decrease of mean
errors defined in Eq. (17) with the increase in the
total number of nodes. The figure demonstrates
that the errors of all three methods are reduced if
more nodes are distributed in the same domain.
The rates of reduction in errors of the SFDI and
MLS methods are similar while the rate of the
MPS is considerably slow compared with other
two methods. This obviously indicates that the
SFDI and MLS can achieve the similar level of
accuracy while the MPS is not as robust as other
two when nodes are irregularly distributed.

Fig. 3 shows the convenient rates of the three
methods for estimating the gradient components

Figure 2: Convergent rates of three methods for
interpolating the polynomial function

or partial derivative of the polynomial function.
The value of f,y ( f,x is similar and is not neces-
sary to show) is computed by using Eq. (15), (3f)
and (5c), respectively, and the error is yielded by
Eq. (18). It can be seen that the errors of both
the SFDI and MLS methods are almost the same
and decrease with increase in the number of nodes
while the MPS loses its reasonableness for the
scale factor of 2.5 for the irregular distribution of
nodes. The results of the MPS corresponding to
the scale factor of 5 seem to be more reasonable
but still far worse than those of other two methods.
This example demonstrates that Eq. (5c) from the
MPS is not always reliable to estimate the gradi-
ent and should not be considered as an option for
problems with a large deformation where original
regular distribution of nodes may become irregu-
lar.

One may notice from the figures that the scale fac-
tor may affect the convergent property of these
methods. Investigations are then made by select-
ing different scale factors. The results of the SFDI
for the different scale factors of 1.8, 2.1, 2.5 and
3.0 are shown in Fig 4 and Fig. 5. It is interesting
to see that convergent rate of this methods are not
very sensitive to the scale factors. This may be
considered as another advantage of the SFDI be-
cause people may not always know the optimised
values of the scale factor.

The convergent rate of the MLS method corre-
sponding to the scale factors of 1.8, 2.1, 2.5 and
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Figure 3: The convergent rate of three methods
for estimating the gradients

Figure 4: Convergent rate of the SFDI for inter-
polating the polynomial function (Eq. (13))

3.0 are depicted in Fig. 6 and Fig. 7. Compared
with the results in Figs. 4 and 5, the reduction in
the errors for interpolating the polynomial func-
tion seems to be faster here with the decrease of
the scale factor and the reduction in the errors for
estimating the gradients for different scale factors
seem to be the same when the total number of
nodes is large enough. However, when the scale
factor is small and the total number of nodes is
not big enough, the results of the MLS is not as
good as those of the SFDI. This is clearly illus-
trated by the cases with the scale factor being 2.1
or less. That is because the number of neighbour
nodes at some points is not large enough when the
scale factor and so support domain is small. One

Figure 5: Convergent rate of the SFDI for estimat-
ing the gradients (Eq. (15))

may deduce from this fact that the MLS scheme
may not work well in some sub-areas where nodes
are thinly scattered even though total number of
nodes in the whole domain may be large enough.
Such circumstances may happen to simulating vi-
olent flow of fluids, e.g. breaking waves. At the
beginning, one may distribute enough number of
nodes in the whole domain. However when waves
become breaking, nodes in the front area of the
breaking waves may become very fragmentary.
The investigation in this subsection seems to show
that the SFDI may yields better results than the
MLS when modelling such waves.

The results obtained by the MPS method are de-

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

1.00 2.00 3.00 4.00
log(M)

lo
g
(E

m
ea

n
)

MLS k=1.8

MLS k=2.1

MLS k=2.5

MLS k=3.0

Figure 6: Convergent rate of the MLS for interpo-
lating the polynomial function (Eq. (3a))
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Figure 7: Convergent rate of the MLS for estimat-
ing the gradients (Eq. (3f))

picted in Fig. 8 and Fig. 9. As the convergent
property of this method seems to be sensitive to
the scale factor as illustrated in Figs. 2 and 3, a
larger range of the factor, from 1.5 to 12, is in-
vestigated. These figures show that the results of
the MPS can be very different if the scale factor
is not properly selected. They also show that the
best scale factor for interpolation of the function
is different from that for estimating the gradients.
The former is near 1.5 and the latter near 5 for the
second-order polynomial. The requirement of a
large scale factor by the MPS method means that
a large number of neighbour nodes are involved
in the evaluation of the gradients. That does not
only increase the computational costs but also de-
grade the accuracy in the region where the gradi-
ent varies rapidly. Therefore, a great care must be
taken when choosing the scale factor for the MPS
method.

5.2 Case 2 – cosine function

The second function considered is defined by f =
cos(0.5πx)cos(0.5πy). The same investigations
as for the polynomial function are made for this
cosine function, i.e. the computational domain,
the number of nodes and the values of the scale
factor are all the same. The convergent rates for
interpolating the cosine function and for estimat-
ing its derivative by the three methods are plotted
in Fig. 10 and Fig. 11, respectively. Compared
Fig. 10 with Fig. 2 and Fig. 11 with Fig. 3, it can

Figure 8: Convergent rate of the MPS for interpo-
lating the polynomial function (Eq.(5a))

Figure 9: Convergent rate of the MPS for estimat-
ing the gradients (Eq. (5c))

be seen that the curves in the corresponding fig-
ures are largely similar, though specific values are
not the same due to different functions concerned
with.

The effects of the scale factors on the convergent
rates for the cosine function are also looked at.
All the results are presented in Fig. 12 to Fig. 17.
These figures seem to support the following con-
clusions obtained by using the polynomial func-
tion. 1) The results of the SFDI are not sensitive
to the scale factors. 2) The MLS method generally
works well but may not be as good as the SFDI
when the scale factor has a small value and when
the total number of nodes is not large enough. 3)
The results of the MPS method do not converge
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Figure 10: Convergent rates of three methods for
interpolating the cosine function
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Figure 11: Convergent rates of three methods for
estimating the gradient of cosine function

as fast as those of other two methods and are sen-
sitive to the scale factors. The best scale factors
are different for interpolating the function and for
estimating the gradient (1.5 for the former and 8
for the later in this case).

5.3 CPU time

As has been seen, the SFDI can be as accurate
as the MLS method. Based on the discussions in
Sections 3 and 4, one has known that the SFDI
should need less CPU time than the MLS method
for a same problem. In this section, the ratio of
CPU time required by the SFDI to that by the
MLS method will be quantified. For this purpose,
calculations of interpolating the polynomial func-
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Figure 12: Convergent rate of the SFDI for inter-
polating the cosine function (Eq. (13))
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Figure 13: Convergent rate of the SFDI for esti-
mating the gradient of cosine function (Eq. (15))

tion and estimating its gradient are performed 100
times on the same computer (a Laptop with 1 GB
RAM and 1.8 GHz processor) by using the two
methods with the scale factor of 2.5. To find the
ratio of CPU time for interpolating the function,
the total number (M) of nodes is selected as 1600
but the number of interpolation points (K) varies
from 64 to 6400. To find the ratio of CPU time for
estimating the gradient at nodes, the total number
of nodes varies from 400 to 1600. Fig. 18 shows
the ratio of CPU time for interpolating the func-
tion used by the SFDI to that by the MLS method
while Fig. 19 gives the ratio of CPU time for es-
timating the gradient used by the SFDI to that by
the MLS method. It can be seen that the ratio in
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Figure 14: Convergent rate of the MLS for inter-
polating the cosine function (Eq. (3a))
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Figure 15: Convergent rate of MLS for estimating
the gradient of cosine function (Eq. (3f))
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Figure 16: Convergent rate of the MPS for inter-
polating the cosine function (Eq.(5a))
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Figure 17: Convergent rate of the MPS for esti-
mating the gradient of cosine function (Eq.(5c))
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Figure 18: Ratio of CPU time used by the SFDI
to that by the MLS for interpolating the function

Fig. 18 is about 0.76 while the ratio is only 0.16 in
Fig. 19. In addition to this, the ratio seems not to
vary significantly with the change in the number
of interpolation points or nodes. It is noted that
the specific values of the ratios may depend on
the scale factor. However, according to numerical
tests (not given here), it is found that reduction in
the scale factor tends to decrease the ratios. It is
also noted that both ratios should be smaller for
3D cases based on discussions in Sections 3 and
4.
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Figure 19: Ratio of CPU time used by the SFDI
to that by the MLS method for estimating the gra-
dient

6 Conclusions

In this paper, a new meshless interpolation
scheme, named as the SFDI, for the MLPG_R
method is developed and numerically investi-
gated. This method is derived by using the Tay-
lor series with ignoring the terms of second and
higher order derivatives and is therefore of second
order accuracy. Based on the numerical tests, one
observes the following features of the scheme. (1)
The SFDI is as accurate as the MLS method gen-
erally but may be more accurate than the later
when the number of neighbour nodes is small.
(2) The SFDI needs considerably less CPU time
to evaluate than the MLS. (3) The scheme is
not sensitive to the scale factors. (4) It is much
more accurate than the scheme used in the MPS
method when nodes are irregularly distributed.
Although this scheme is purposely developed for
the MLPG_R method, it may also be used for in-
terpolation of a function and calculation of its gra-
dients in the other meshless methods.
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