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Abstract: Existing theories and computer mod-
els for packed columns are either incapable of
handling complex pellet shapes or based on over-
simplified packing geometry. A digital packing
algorithm, namely DigiPac, has recently been de-
veloped to fill the gap. It is capable of pack-
ing of particles of any shapes and sizes in a con-
tainer of arbitrary geometry, and is a first step to-
wards a practical computational tool for reliable
predictions of packed column properties based on
the actual pellet shapes. DigiPac can operate in
two modes: a Monte Carlo mode in which par-
ticles undergo directional diffusive motions; and
a Discrete Element mode where translations and
rotations of particles are governed by physical
laws. The former is faster but in certain cases
less accurate, whereas the latter is slower but
produces significantly more accurate predictions.
Both modes have been used in simulating packed
columns of real pellet shapes. Results for cylin-
ders – one of the most commonly used shapes for
packed columns – are reported. Comparisons are
made between DigiPac predictions under different
modes and experimental data obtained using nu-
clear magnetic resonance (NMR) imaging tech-
nique. Good agreement between simulation and
NMR results has been observed.
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1 Introduction

Packed columns are common devices frequently
encountered in many areas of chemical engineer-
ing industry which deal with mass transfer op-
erations, such as petroleum refining, petrochem-
ical, pharmaceutical, food processing and envi-
ronmental processing. These applications in gen-
eral include the functions of absorbing, stripping,
distillation, separation or extraction. The perfor-
mances with regard to these operational functions
directly quantify the effectiveness and efficiency
of the packed column. It is generally agreed that
these performances depend heavily on the column
structure, which in turn depends on the column
geometry and, most importantly, the pallets used
and how they are packed to form the bed. The suc-
cess of the operation is, therefore, boiled down to
a design issue where it is vital to be able to relate
the performances to the pallet geometry and the
packing method directly and inexpensively.

Detailed structural characteristics inside the
columns such as local voidage, accessible areas
and void uniformity are generally considered the
main factors affecting the effectiveness and effi-
ciency of the packed bed. Ironically these factors
are not considered directly in the current design
practice, with the major obstacle being the lack of
a reliable tool which can predict the internal de-
tailed packing structure for pallets and columns
of practical complexity. As a result, the current
practice relies either on historical empirical cor-
relations, if the geometry of the pallets and the
column and the type of applications are covered
by these correlations; or on a trial-and-error ap-
proach based on expensive physical experiments,
if not [Strigle, 1994]. In either of these prac-
tices, the column structures are treated as “black
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boxes” and only input-output relations are estab-
lished and the detailed process inside the column
is normally not part of the equation.

A digital packing algorithm, namely DigiPac, has
recently been developed to fill the gap. It is ca-
pable of packing of particles of any shapes and
sizes in a container of arbitrary geometry, and is
a first step towards a practical computational tool
for reliable predictions of detailed packed column
properties based on the actual pellet shapes. The
technique has been successfully applied recently
in various projects [Gan, Gopinathan, Jia and
Williams (2004); Jia, Gan, Williams and Rhodes
(2005)]. DigiPac can operate in two modes:
Monte Carlo mode (MC packing) and Discrete
Element mode (DEM packing), and the suitabil-
ity of the mode in practice will be application de-
pendent. In Monte Carlo mode, particles undergo
directional diffusive motions assigned randomly
and no physical interactions between particles are
considered and therefore it is more likely to pro-
duce loose packing structures in some cases. In
Discrete Element Modelling mode particle trans-
lations and rotations of particles are governed by
physical laws and therefore denser packing struc-
tures can be achieved.

MC packing case studies involving mono sized
spheres and binary and ternary mixtures of
spheres have already been reported elsewhere
[Caulkin, Fairweather, Jia and Williams (2006)]
and will not be repeated here. In the case study re-
ported here, a column is packed with short cylin-
der pallets using both MC and DEM modes and its
packing density and spatial statistical character-
istics are compared with an experimental dataset
acquired by magnetic resonance imaging (NMR).
As expected, MC packing mode of the digital al-
gorithm produces lower packing density while the
DEM mode produces results much closer to that
of the NMR dataset. The structure of the NMR
dataset is believed to be a random dense packing
structure due to vigorous taping used in the pack-
ing process.

2 The digital packing algorithms

The term “digital packing” here specifically refers
to the fact that in the world of digital pack-

ing everything involved is digitized, meaning in
this case that column geometry and all particles
are represented by voxels in 3D or pixels in 2D
during the packing process. Thus any physical
shape is simply a coherent collection of voxels,
which resides and moves in a 3D (2D) lattice grid
representing digitally the space in which parti-
cles pack [Jia and Williams (2001); Gopinathan,
Fairweather and Jia (2003)]. This is in con-
trast to conventional approaches where objects
are in general represented by polygons approx-
imating the surface embracing the objects, ex-
cept for some simple geometrical cases where
an accurate mathematical description is possible,
e.g., spheres, cubes. In packing simulations, the
polygonal surface approach is obviously limited
in its usefulness in practice. The two main draw-
backs include the facts that large numbers of poly-
gons are required to represent even a geometrical
shape with moderate complexity (e.g., an apple),
and equally seriously, it is technically difficult
to derive a general implementation for the con-
tact and overlap detections between particles of
any shapes with certain degree of complexity. As
a result, available commercial packing software
[e.g., MacroPac, SperoPolyhedra] can only deal
with simple geometrical shapes such as spheres
or shapes that can be reasonably approximated by
spheres. In the academic community, a few in-
house packing programs [Dickinson and Knopf
(1998); Kohlus and Bottlinger (1998)] known to
us not only demand super computing power but
also are limited to handle small number of com-
plex shapes. Munjiza and Andrew (1998) has in-
troduced computational solutions such as NBS,
distributed contact force approach for real shaped
particles and finite rotation solver, which enable
large number of particles to be considered on a
PC. However, these algorithms are much more
complex and more difficult to implement than the
digital packing to be described.

The digital packing approach, however, over-
comes these problems in a simple manner. The
number of voxels required to represent an object
does not depend on the complexity of the shape
of the object. Detections of contacts and over-
laps between particles become a simple matter of
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checking if two voxels, each from a different ob-
ject, are adjacent or occupying the same site on
the lattice grid. No complicated geometrical op-
erations are involved. The digitization of particles
does not impose serious overhead either. In fact,
pallets for most packed column applications are
usually designed in a CAD system using a format
that can be easily converted into digital represen-
tations. For applications (e.g., high-performance
liquid chromatography) involving small powder
particles (< 2cm) where the CAD data is not
available, the digitization of particles can be de-
rived from x-ray micro tomography (XMT) im-
ages, confocal microscopy, optical profilometry
or Scanning Electron Microscope/Transmission
Electron Microscope (SEM/TEM) images.

As in all digitization process, however, there is
also an issue of digitization error in the digital
representation of particles. In digital packing al-
gorithms, this error can be quantified by surface
and volume representation errors (i.e., the relative
differences in surface area and volume between
the true and the digital representation), which are
directly related to the scale used and that in turn
will affect the accuracy of the final packing struc-
ture. The two error terms are related. The vol-
ume representation error, however, is more rele-
vant to packing applications as packing density in
general is the major interest of the investigation
in these applications. The surface area represen-
tation error only becomes important for property
(e.g., flow) analysis of the packed structure where
a surface smoothing process can be applied to re-
duce the effect of the error. Detailed discussion of
the surface smoothing is beyond the scope of this
paper.

The size of a voxel in the digital representation
can be mapped into different physical sizes and
therefore different scales of representations of the
objects can be created. For example, Figure 1
shows a sphere of physical diameter of 50 mm and
two digital representation using 50 voxels diame-
ter (hence the scale of s = 1 mm/voxel) and 100
voxels diameter (hence the smaller scale of s = 0.5
mm/voxel). It is in general expected that the vol-
ume digitization errors will diminish as the scale
decreases, implying more accurate representation,

see the example error curves for spherical objects
shown in Figure 2 ( Note surface representation
error will not disappear but stabilizes at the value
of 50%, which is the inherent surface error term
of the digital representation for spheres). There
is, however, a penalty for using smaller scale as
the computing time involved for packing the par-
ticle will increase roughly with (1/s)3. In practice,
a compromise is usually needed between the ac-
curacy requirement and the time scale desired or
the computing resource available.

(a) Sphere (D = 50 mm) (b) Digital sphere (s=1) (c) Digital sphere (s=0.5)

Figure 1: Sphere of diameter 50 mm and its two
digital representations
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Figure 2: Digital representation errors for spheres

2.1 Monte Carlo packing

In this mode, all particles are subjected to ran-
dom translations and rotations during the settling
process. The translation direction and rotation
parameters are generated using the Monte Carlo
method. Uniform distributions are in general
used in the MC sampling process, implying equal
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chance of selection for different translation direc-
tions and different rotation parameters. The up-
ward movement is, however, only accepted with a
so-called rebounding probability (< 1.0) to ensure
particles the general trend of settling downward.
The use of rebounding probability effectively in-
crease the chance for particles to move out of local
stabilization (e.g., particles inter-locking locally)
towards global stabilization, similar to the role
played by the annealing probability used in sim-
ulated annealing and the acceptance probability
used in the Markov-Chain Monte Carlo (MCMC)
process. The use of random rotations helps parti-
cles to explore all possible packing space and in
general no restriction is imposed on the generated
parameters. A more detailed account of the Monte
Carlo digital packing algorithm can be found in
Jia and Williams (2001).

Monte Carlo digital packing is purely stochas-
tic, no physical interactions between particles are
considered. Movement of a particle is simply dis-
carded if it causes overlaps with other particles or
the container. This lack of physical law guidance
makes the Monte Carlo packing difficult, though
statistically possible, to converge to a very dense
packing structure. As a result, the packing struc-
ture achieved after certain number of iterations
is only one possible stable structure between the
random loose and dense structures.

2.2 DEM packing

DEM digital packing, on the other hand, imposes
the physical interactions between particles in the
form of DEM on top of digital packing algorithm.
Particle translations and rotations are no longer
random but governed by the contact and gravita-
tional forces acted on the particles during the set-
tling process. In this case, small amount of over-
lap between particles is allowed to simulate de-
formations when particles come into contact with
each other and these deformations are then used to
calculate contact forces between particles. There
is a fundamental difference between digital DEM
used here and the conventional DEM. In conven-
tional DEM, deformations are considered at the
particle level while in digital DEM they are at
voxel level. Contact forces acting on a particle

are derived by summing up the individual con-
tact force components acting on the surface vox-
els of the particles (note the summing here is not
a simple arithmetic summing process, number of
contacts between particles should also be consid-
ered). Such a treatment in digital DEM in fact
simplifies a great deal the force calculations as the
directions of forces acting at the voxel level are al-
ways orthogonal and coincide with the lattice grid
system.

There is no shortage of publications about con-
ventional DEM algorithm [Cundall and Strack
(1979); Munjiza (2004); Jing and Stephansson
(2004)]. The basic spring dash-pot model is used
in digital DEM but at the voxel level. A 2D ex-
ample is shown in Figure 3, illustrating models
needed for a protruding surface pixel. For each
out-facing face of the pixel, the normal and tan-
gential forces are calculated as:

Fn,t = (−kn,tδn,t −ηn,t vn,t)nn,t (1)

Where kn,t , δn,t , ηn,t and vn,t are the stiffness,
overlap, dumping coefficient and relative veloc-
ity component in normal (nn) and tangential (nt)
directions respectively.

Normal

Tangential

Particle

Face 1

Face 2 

Face 3

Figure 3: Contact force models in digital DEM

To sum up, the following steps will be needed to
establish the kinematics and movements of a par-
ticle at a particular time step:

• Loop over all the surface voxels of the parti-
cle, find the contacted voxels from other par-
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ticles and evaluate the contact forces based
on the overlap values (see above).

• Calculate the translation forces for the parti-
cle by summing up the surface voxel contact
forces in the three major directions in the lat-
tice grid system.

• Calculate the total torque acting on the par-
ticle against the centre of gravity of the par-
ticle and around the three major axes of the
lattice grid system by summing up the torque
created by contact forces of individual sur-
face voxels.

• Establish the new translational and rotational
movements for the particle (accelerations
and speeds) based on Newtonian laws.

• Update the locations and orientations of the
particles according to the new translational
and rotational speeds calculated at this time
step.

2.3 NMR data set

The bed of cylinders consisted of porous alu-
mina particles with a diameter of 5.40 ± 0.05 mm
and a length of 3.80 ± 0.20 mm packed into
a 70 cm long nylon column with a diameter of
43.3 ± 0.1 mm. The column was sealed at the
ends with screw caps. The porous cylinders were
submerged in water before packing to ensure liq-
uid saturation. Great care was taken in the pack-
ing of the cylinders to prevent bridging of par-
ticles and to ensure as homogeneous a packing
structure as possible. The bed of cylinders was
packed using a UNIDENSETM tool. To avoid air
bubble entrapment within the packing, the col-
umn was filled with water progressively as par-
ticles were loaded such that the top of the bed
was always submerged by at least 10 cm. The
UNIDENSETM tool was first inserted into the col-
umn. Then the packing particles were poured con-
tinuously into the column. When the column was
filled the packing was consolidated by tapping on
the external column wall. As the column was
tapped the height of the bed decreased as the void
space was reduced; fresh particles were added to
the top of the bed as required. The tapping ceased

after no further compaction was possible. At the
end the bed was fully submerged in water.

2.4 MRI

The column packed with cylinders was placed
vertically inside the magnet bore. 1H MRI data
were acquired at a frequency of 199.7 MHz on
a Bruker Spectrospin DMX 200, 4.7 T mag-
net with a birdcage coil of diameter 6.3 cm
and shielded gradient coils providing a maxi-
mum gradient strength of 13.5 G cm−1. A
high spatial resolution image of the bed was ac-
quired using a 3D-RARE pulse sequence [Hen-
nig, Nauerth and Friedburg (1986)]. A resolution
of 180μm×180μm×180μm was obtained for a
matrix of 256×256×512 voxels and a field-of-
view of 46 mm × 46 mm × 92 mm with the
higher field-of-view in the axial direction. The ax-
ial extent of the imaging coil was approximately
45 mm and the imaging region was close to the
centre of the column to avoid packing effects from
the top and bottom. A recycle time of 5s, an echo
time of 6.9ms, 4 averages and a RARE factor of
32 were used giving a total acquisition time of
11.5 h and effective echo time of 117ms. An ad-
vantage of the RARE image sequence is that it
is T2-weighted with a large effective echo time.
In this system the inter-particle water has a T2 of
∼500ms and is therefore observed in the image
but the intra-particle water, which has a very short
T2 of ∼7ms, is not seen in the image providing ex-
cellent contrast between inter- and intra-particle
water. This allows us to differentiate between the
voxels corresponding to packing elements, those
with a lower signal intensity as a result from the
short (intra-particle) T2, and those with a high
signal intensity corresponding to the void space.
For an introduction to the principles of MR tech-
niques, the reader is referred to excellent texts by
Callaghan (1991) and Kimmich (1997).

3 Packing density

The voidage and the distributions of voids di-
rectly affect the effectiveness and efficiency of the
packed column. Therefore voidage (hence pack-
ing density) is in general the most studied param-
eter to be related to the performances in packed
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column applications. It is also the parameter that
can be easily measured to a certain degree of ac-
curacy in a controlled experimental environment.

As the first comparison, we compare the packing
densities of the packing structures obtained by ex-
periment (NMR), Monte Carlo DigiPac and DEM
DigiPac simulations. For a randomly packed
structure (by experiment, Monte Carlo or DEM
method), average cross-sectional densities (cross-
sections perpendicular to column axis), i.e., the
axial densities, are expected to vary randomly
along the column axis, except at the top and bot-
tom of the column where wall effects dominate
and introduce distortions in the density profile.
Figure 4 shows the density profiles of the struc-
tures together with their statistical distributions.
For each type of packing (MC and DEM), a total
of three simulations were run.
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Figure 4: Axial packing density along the column
axis

Normal distributions are observed in all cases,
implying random packing structures in all three
cases. The mean (m) and standard deviations (σ )
of the distributions are summarized in Table 1.
The closeness of the standard deviations of the
three cases confirms the correctness of the sim-
ulation setups. The mean packing density by MC
simulation is 26% lower than that of the NMR
data, while the DEM packing achieves a mean
packing density which is only 4% lower. These
figures support the suggestions that MC digital

packing generates packing structure closer to ran-
dom loose packing and DEM digital packing gen-
erates structure closer to random dense packing.
These claims are also evident by the visual inspec-
tion of the examples of packing structures shown
in Figure 5. The “gaps” between pallets in the MC
packed structure are obviously greater than those
shown in the other two structures.

    
(a) NMR (b) MC DigiPac (c) DEM DigiPac 

Figure 5: Examples of packing structures of the
three cases

0.0

0.5

1.0

0.0 0.5 1.0

Radial density

Distance from column axis (r)

DEM

NMR

MC 

Figure 6: Comparison of radial density profiles

The digital packing structures generated by Digi-
Pac simulations can easily be used for further
analysis of the structural properties, such as local
voidage, void distributions, coordination numbers
or pallet orientations, which in general are diffi-
cult to measure by experiment. We here present,
in Figure 6, the comparison of the radial density
profiles (averaged values over the simulations) of
the structures. The voidage distribution along the
column radius is also an important property af-
fecting the performance of the packed column.
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Two observations can be made. First, the trends of
radial density profiles obtained by MC and DEM
simulations both follow qualitatively that of the
NRM data, with the DEM profile follows more
closely. They all express cyclic damping vari-
ations towards the column axis, suggesting lay-
ered pallet structures starting at the column wall,
see the shadow images of the three cases shown
Figure 7. The reduction in the density variation
closer to the column axis implies that the lay-
ered pallet structure becomes less dominant and
the structure tends towards more uniform. Sec-
ondly, there is a less erratic appearance in the vari-
ation of the MC simulation density profile, which
suggests that the structure generated by MC sim-
ulation is more uniform, implying the structure is
more loosely and uniformly packed (see also Fig-
ure 7). This point is also evident by comparing
the standard deviations listed in Table 1.

 

(a) NMR (b) MC DigiPac (c) DEM DigiPac 

Figure 7: Shadow images of the packing struc-
tures for the three cases

Table 1: Statistics of packing density for the three
cases

NMR MC digital
packing

DEM digital
packing

Mean (m) 0.657 0.484 0.634
Standard
deviation
(σ )

0.022 0.020 0.030

4 Spatial statistics

As a way to quantify the void distributions inside
the column, the spatial void correlation functions
are further investigated. We first define an indica-

tor variable, I(x) as:

I(x) =

{
1 if the site at location x is a void

0 otherwise
(2)

where x denotes a point in space. I(x) thus rep-
resents the void structures as shown in Figure 8.
This variable is used to calculate spatial correla-
tion characteristics for the void inside the column.
The two-point probability function S2(h) defined
by Torquato (2002) is used here to quantify this
correlation. S2(h) is in essence the conditional
probability of finding a void site of distance h
away from a known void site x, with asymptotic
value equal to the square of the mean porosity,
i.e., the probability of finding a void site in pure
random case. Figure 9 compares the S2(h) func-
tions for the structures generated by the packing
simulations and from the NMR data.

   

(a) NMR (b) MC (c) DEM 

Figure 8: Examples of the void structures for the
three cases
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Figure 9: S2(h) functions for the three cases

As expected, S2(h) function for DEM simulation
closely resembles that of the NMR data, suggest-
ing very similar spatial statistical characteristics
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between the two void structures. The shorter cor-
relation range (h≈18) of the void structure by MC
simulation compared with that of the DEM sim-
ulation or the NMR data (h ≈32) indicates that
the void structure by MC simulation is more ran-
domly (or uniformly) distributed.

Mean empty space [Zeidan, Jia and Williams
(2003)] is also an effective property to character-
ize void distributions inside the packed column.
The statistics have been calculated and are pre-
sented in Figure 10. The mean empty space is
calculated as the mean spacing between the solids
in a void space. It is used here as a measure of the
average ‘pore’ size.
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Figure 10: Mean empty space distributions

All mean empty space distributions are of lognor-
mal type. The DEM case follows again closely
the NMR data, while the MC case shifts slightly
towards normal distribution, implying the void
structure is spatially more uniformly distributed.
Note that the mean empty space used here is fun-
damentally different to the pore size defined in
Torquato (2002), or the first contact distance de-
fined in Stoyan, Kendall and Mecke (1995). The
later two definitions lead to the pore size distri-
bution function [Torquato, 2002] and the spher-
ical contact distribution function or first contact
distribution function [Stoyan, Kendall and Mecke
(1995)].

5 Conclusions

The following conclusions can be drawn from the
results presented in this report:

1. The digital packing algorithm (DigiPac) is a
simple but effective and efficient approach
for particle packing simulations. The sim-
plicity of the algorithm in particle represen-
tation, movements and contact and overlap
detection does not change with the complex-
ity of the shapes of the particles. This makes
it an ideal computational method for practi-
cal applications.

2. In Monte Carlo mode, the digital packing
algorithm tends to generate loose packing
structures, while the DEM mode is able to
produce dense packing structure.

3. Packing density and other spatial statistics
reveal very similar characteristics between
MC or DEM simulated structures and the
NMR imaged structure. The MC packing
structure is spatially more uniformly dis-
tributed, confirming that the MC packing is
orientated more towards random loose pack-
ing. The DEM packing structure in this case
follows very closely the NMR data set (a
dense packing structure) in the statistics pre-
sented.

Further investigation will be needed to quantify
the degrees of “closeness” to random loose or
dense packing of structures generated by digital
packing algorithm (DigiPac). It will also be use-
ful to relate the simulated structures to packed
column performances (such as effectiveness, effi-
ciency) so that the suitability of the algorithm (and
the different packing modes) for practical applica-
tions can be assessed.
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