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A Hybrid Multi-Region BEM / LBIE-RBF Velocity-Vorticity Scheme for the
Two-Dimensional Navier-Stokes Equations

E.J. Sellountos1 and A. Sequeira 1

Abstract: In this work a hybrid velocity-
vorticity scheme for the solution of the 2D Navier-
Stokes equations is presented. The multi-region
Local Boundary Integral Equation (LBIE) com-
bined with Radial Basis Functions (RBF) inter-
polation is used for the solution of the kinemat-
ics and the multi-region BEM for the solution of
the transport kinetics. The final system of equa-
tions is in band form for both methods. The issue
of RBF discontinuities is resolved by construct-
ing the RBF matrix locally in every region. The
kinematics integral equation is used in three dif-
ferent forms, for coupling the velocity field on
the boundary, on interior points and on points be-
longing to interfaces. The convective velocity is
decomposed into a constant and a variable part,
and the constant part is a term of the parabolic-
diffusion fundamental solution resulting on a very
effective upwind technique for the transport kinet-
ics. The complete absence of the derivatives and
the same nodal discretization for both equations
give a very strong coupling between the kinemat-
ics and the kinetics.

Keyword: Local Boundary Integral Equa-
tion (LBIE), Boundary Elements Method (BEM)
Navier-Stokes, Radial Basis Functions (RBF),
RBF discontinuity, velocity-vorticity.

1 Introduction

The Navier-Stokes equations are often solved us-
ing the velocity-vorticity formulation. The pres-
sure gradient is eliminated from the governing
equations leading to the numerical separation of
the kinematics and kinetics aspects of the fluid
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flow [Skerget and Rek (1995), Liu (2001), Zhu
(2005) and Nicolás and Bermúdez (2007)]. The
pressure can be post-processed after obtaining the
solution for velocity and vorticity.
The BEM is a well established numerical tech-
nique for solving the Navier-Stokes equations us-
ing the velocity-vorticity formulation [Skerget,
Hribersek, and Zunic (2003) and Hribersek and
Skerget (2005)]. The accurate integral equations
of the kinematics related to the mass conserva-
tion, the complete absence of the derivatives in
the computation and the usage of the convective
parabolic-diffusion fundamental solution results
in a very accurate, robust and stable tool in CFD.
The most interesting issue in the conservation in-
tegral equation is the absence of the velocity flux
and the strong coupling it provides between veloc-
ity and vorticity [Zunic, Hribersek, Skerget, and
Ravnik (2007)].
On the other hand, several mesh-reduction
techniques have been developed in the litera-
ture known mainly as "meshless" methods and
they are used for the solution of the Navier-
Stokes equations, see e.g. [Lin and Atluri
(2001)], [Onate, Idelsohn, Zienkiewicz, and Tay-
lor (1998)], [Wu, Tsay, and Young (2005)],
[Tsai, Young, and Cheng (2002)] [Cheng and Liu
(2002)] and [Shu, Ding, and Yeo (2005)]. The
LBIE is based on the BEM integral equations
and is considered as the free-mesh BEM formu-
lation (see e.g. [Sellountos and Polyzos (2003)]).
Since LBIE is closely related to BEM, their cou-
pling is straightforward ([Sellountos and Poly-
zos (2005)]). In the present work however the
LBIE is combined with BEM for the solution
of the Navier-Stokes equations. Recently in the
work [Sellountos and Sequeira (2007)] the LBIE
was used for the solution of incompresible fluid
flows by adopting the velocity-vorticity formu-
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lation. The conservation equations as they are
presented in [Hribersek and Skerget (2005)], are
solved locally by the LBIE combining three dif-
ferent forms of the kinematics, the tangential and
the normal form for boundary points and the regu-
lar form for the interior points. The interpolation
of the unknown field is accomplished by associ-
ating every nodal point with an RBF matrix. In
this way the computation of integrals is very fast
and the matrices associated to the final system of
equations are banded with narrow bandwidth re-
sulting in a fast iteration process. Although both
of them are essential for CFD methods, the notori-
ous issue of "equally spaced points" still remains
and the reason of that is the discontinuitity and the
incompatibility of the RBF interpolation [Liu, Gu,
and Dai (2004)] when the nodal points are non-
uniformly distributed. In the present work this is-
sue is circumvented by the multi-region approach.
Every region is associated with an RBF matrix,
which is inverted only once leading again to a
fast computation of integrals. Since RBF satisfy
the delta property, the imposition of the bound-
ary conditions is simple and straightforward. The
lid-driven cavity is a typical example where non-
uniformly distributed points must be used.
Moreover further development have been made
in the coupling of the kinematics integral equa-
tions. The regular form of the kinematics and the
continuity conditions are applied on the interfa-
cial nodal points. This ensures the continuity of
the velocity in the entire domain, and results band
form of kinematics systems of equations.
On the other hand the multi-region BEM
[Hribersek and Skerget (1998)] is adopted for the
solution of the transport kinetics equation, ex-
ploiting the effective upwind scheme provided by
the convective parabolic-diffusion integral equa-
tion. In the present work discontinuous boundary
elements and special discontinuous RBF cells are
used.
The paper is organized as follows: in section 2
the integral equations for the velocity and vortic-
ity field are presented for both the LBIE kinemat-
ics and the BEM transport kinetics. In section 3
the RBF interpolation used in the present multi-
region scheme is presented. In section 4 some
technical details about the scheme are addressed

and the discretized form of the integral equations
are given. Finally in section 5 three representative
examples are solved.

2 Integral equations

The set of governing equations that describe the
flow of an incompressible fluid includes the con-
servation of mass and the conservation of momen-
tum [Zienkiewicz and Taylor (2000)].

∇ ·u = 0 (1)

∂u
∂ t

+u ·∇u = − 1
ρ

∇P+ν∇2u. (2)

In the above equations, u is the velocity vec-
tor, P is the pressure, ρ the density and ν is
the diffusion coefficient or viscosity. It is well
known [Hribersek and Skerget (2005)] that nu-
merical methods based on the weak formulations
of Eq. 1 and Eq. 2 have numerical instabilities re-
lated to the presence of the pressure gradient term.
This term can be circumvented by adopting the
velocity-vorticity formulation, which is obtained
by applying the curl operator in both Eq. 1 and
Eq. 2, i.e.

∇2u+∇×ω = 0 (3)

∂ω
∂ t

+u ·∇ω −ω ·∇u−ν∇2ω = 0 (4)

where ω is the vorticity vector which is defined as

ω = ∇×u. (5)

In two-dimensional fluid flows, the vorticity has
only one component perpedicular to the plane of
the flow (ω ·∇u = 0) and therefore the Eq. 3 and
Eq. 4 can be written in the following simplified
form

∂ 2ui

∂x j∂x j
+ei j

∂ω
∂x j

= 0 (6)

∂ω
∂ t

+u j
∂ω
∂x j

−ν ∂ 2ω
∂x2

j

= 0. (7)

The coupled Eq. 6 and Eq. 7, known as velocity-
vorticity formulation [Guj and Stella (1993)] of
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the Navier-Stokes equations Eq. 1 and Eq. 2, rep-
resent the kinematic and the kinetic dynamics of
an incompressible Newtonian fluid. The corre-
sponding initial boundary value problem must be
complemented with the initial conditions

ui (x,0) = u(0)
i

ωi (x,0) = ω(0)
i

for x ∈ Γ (8)

and one of the following boundary conditions

ui (x, t) = ui

ωi (x, t) = ω i
for x ∈ Γ. (9)

2.1 Local integral equations for flow kinemat-
ics
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Figure 1: Local support domains r, boundary seg-
ments Γs, local circular surfaces Ls and local vol-
umes Ωs.

For a 2D domain Ω bounded by a smooth bound-
ary Γ, the flow of an incompressible Newtonian
fluid (Fig. 1) described by Eq. 6-Eq. 7 with the
initial and boundary conditions Eq. 8-Eq. 9 form a
well posed boundary value problem which admits
the following boundary-domain integral represen-
tation [Skerget, Hribersek, and Zunic (2003)]:

c(y)u(y)+
∫

Γ
(∇u∗ ·n)udΓ =∫

Γ
(∇u∗ ×n)×udΓ+ (10)∫

Ω
(ω ×∇u∗) dΩ.

Here c is a jump coefficient being equal to 1 for
interior points and equal to 0.5 for points belong-
ing to the smooth boundary Γ and u∗ is the fun-
damental solution of the Laplace operator having
the following form

u∗ =
1

2π
Log

(
1
r

)
(11)

with r = |y−x| representing the distance between
the reference point y and the source point x and
n denoting the outward unit vector normal to the
boundary. It is obvious that the fundamental solu-
tion given by Eq. 11 becomes singular only when
the field point y coincides with the source point
x. Thus, considering a local circular sub-domain
Ωs with boundary Ls centered at point y and ap-
plying the Green’s integral identity in the domain
lying between the global and local boundaries Γ
and Ls, respectively, it is easy to see that Eq. 10
can be replaced by the following local boundary-
volume integral equation

c(y)u(y)+
∫

Γs∪Ls

(∇u∗ ·n)udΓ =∫
Γs∪Ls

(∇u∗ ×n)×udΓ+ (12)∫
Ωs

(ω ×∇u∗) dΩ

where Γs is part of the global boundary inter-
sected with the local sub-domain Ωs, as illustrated
in Fig. 1. In addition with Eq. 12 two equiv-
alent integral equations for boundary points are
considered. The first one is the tangential form
([Hribersek and Skerget (2005)] and [Alujevic,
Kuhn, and Skerget (1991)])

c(y)n(y)×u(y)+n(y)×
∫

Γs∪Ls

(∇u∗ ·n)udΓ =

n(y)×
∫

Γs∪Ls

(∇u∗×n)×udΓ+

n(y)×
∫

Ωs

(ω ×∇u∗) dΓ

(13)
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and the second one is the following normal form

c(y)n(y) ·u+n(y) ·
∫

Γs∪Ls

(∇u∗ ·n)udΓ =

n(y) ·
∫

Γs∪Ls

(∇u∗ ×n)×udΓ+

n(y) ·
∫

Ωs

(ω ×∇u∗) dΓ. (14)

In the present work the set of Eq. 12 Eq. 13 Eq. 14
will be coupled and solved by the LBIE.

2.2 Boundary domain integral equations for
flow kinetics

Since the first time derivative of the vorticity ap-
pears in Eq. 7, it is very convenient to employ the
finite differences scheme

∂ω
∂ t

=
ω −ωt−1

Δt
(15)

where ωt−1 is the vorticity field at the previous
time step and Δt is the considered time step. The
convective velocity is decomposed into a constant
and a variable part

u = u+ ũ (16)

In view of Eq. 15 and Eq. 16, Eq. 7 takes the fol-
lowing form

∂ 2ω
∂x2

j

− 1
ν

uj
∂ω
∂x j

− 1
ν

ω
Δt

+
(
−1

ν
ũ j

∂ω
∂x j

+
1
ν

ωt−1

Δt

)

= 0 (17)

or

∂ 2ω
∂x2

j

− 1
ν

u j
∂ω
∂x j

− 1
ν

ω
Δt

+b = 0 (18)

where b represents the body forces

b = −1
ν

ũ j
∂ω
∂x j

+
1
ν

ωt−1

Δt
. (19)

Exploiting the diffusion-convection fundamental
solution (see [Hribersek and Skerget (2005)] and
[Bokota and Iskierka (1995)])

p∗ =
1

2π
K0 (μr)exp

(
u · r
2ν

)
(20)

where

μ =

√( |u|
2ν

)2

+β

β =
1

νΔt
(21)

with r = y−x, and applying the Green’s second
identity for the scalars p∗ and ω , one obtains the
following integral equation:

c(y)ω (y)+
∫

Γ

∂ p∗

∂n
ω dΓ =∫

Γ
p∗

(
∂ω
∂n

− 1
ν

unω
)

dΓ+

1
ν

∫
Ω

∂ p∗

∂x j
ũ jω dΩ+

1
νΔt

∫
Ω

p∗ωt−1 dΩ (22)

where un = u · n. In the present hybrid scheme
the transport boundary-domain integral equation
Eq. 22 will be solved by the BEM.

3 Radial Basis Functions Interpolation

In this section an interpolation scheme based on
the RBFs is proposed and illustrated [Li, Hon,
and Chen (2002), Wang and Liu (2002a)]. The
RBFs are used for the interpolation of the veloc-
ity in the kinematics as well as for the interpola-
tion of the vorticity on special discontinuous cell
elements in the kinetics. As it is already known
the RBFs satisfy the delta property and hence the
imposition of the boundary conditions is straight-
forward. Moreover the inverse matrix depends
only on the relative placement of the nearby nodal
points [Atluri and Shen (2002)] and thus it is com-
puted only once. Both characteristics are very im-
portant since they accelerate the computation of
the boundary and volume integrals. For the kine-
matics a closed domain, as that shown in Fig. 2
(a), is divided into a number of regions and ev-
ery region is further discretized into N boundary
and interior nodal points. Each nodal point y j is
placed in the center of a circular domain with ra-
dius r j which is called support domain of y j. The
interface nodal points are involved in the interpo-
lation, independently for every region. For the ki-
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Figure 2: (a) Independent interpolation of the ve-
locity field in two regions at integration points x
and (b) special discontinuous RBF cell element.

netics cell elements Fig. 2 (b) the same consid-
eration is being made where N nodal points in a
proper arrangement form a discontinuous quadra-
ture cell element. At any point x, the interpola-
tion of an unknown field is accomplished by the
following relation [Wang and Liu (2002b)]

u(x) =
N

∑
i=1

Biai +
m

∑
l=1

Plbl =

BT (yk,x)a(yk)+PT (x)b(yk) . (23)

where N is the total number of the nodal points be-
longing to the kinematics region or the total num-
ber of points belonging to the kinetics cell and m
is the degree of the polynomial basis used for the
interpolation. For linear basis, m is equal to 3,
while for quadratic basis, m is equal to 6. B(yk,x)
is the RBF vector with dimension N ×1 that links
every nodal point yk k = 1, ..,N with the point x.
a(yk) and b(yk) are unknown vectors with dimen-

sions N × 1 and m× 1, respectively, that depend
on the relative location of the nodal points yk. Fi-
nally, P(x) stands for a monomial basis vector
with dimension m× 1. More precisely, the vec-
tor B(yk,x) has the form

B(yk,x) =

⎡
⎢⎢⎣

W (y1,x)
W (y2,x)

...

W (yk,x)

⎤
⎥⎥⎦

N×1

, k = 1, ..,N

(24)

where W represents a prescribed radial function.
For linear basis, the polynomial vector P has the
following form

PT (x) =
[

1 x y
]

1×m
(25)

while, for quadratic basis is written as

PT (x) =
[

1 x y x2 xy y2
]

1×m . (26)

The determination of the unknown vectors a(yk)
and b(yk) is accomplished by constructing a set
of equations that relate each other the nodal points
yk used for the interpolation

u(ye) =
N

∑
k=1

Bk (yk,ye)ak (yk)+

m

∑
l=1

Pl (ye)bl (ye) (27)

where ye,e = 1, ...,N are also the interpolation
nodal points. In addition to the previous rela-
tion the following equation is taken into account
[Wang and Liu (2002a)]

N

∑
k=1

Pl (yk)ak (yk) = 0, l = 1, ..,m (28)

and the following system of equations is formed[
B0 P0

P0
T 0

]
(N+m)×(N+m)

[
a
b

]
N+m

=
[

u
0

]
N+m

(29)

or

A(yk)
[

a
b

]
=

[
u
0

]
. (30)
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The matrix A(yk) is symmetric and consists of the
submatrices B0 (yk,ye) and P0 (ye) that depend on
the nodal points yk, ye and have the following
form

B0 (yk,ye) =

⎡
⎢⎢⎣

BT (yk,y1)
BT (yk,y2)

...
BT (yk,yN)

⎤
⎥⎥⎦

N×N

(31)

or

B0 =⎡
⎢⎢⎣

W(y1,y1) W(y2,y1) ... W(yN ,y1)
W(y1,y2) W(y2,y2) ... W(yN ,y2)

... ... ... ...
W(y1,yN) W(y2,yN) ... W(yN ,yN)

⎤
⎥⎥⎦

N×N

(32)

and

P0 (yk) =

⎡
⎢⎢⎣

PT (y1)
PT (y2)

...

PT (yN)

⎤
⎥⎥⎦

N×m

. (33)

Finally Eq. 23 is written in the form

u(x) =
[

BT (yk,x) PT (x)
]

A−1 (yk)
[

u(yk)
0

]
=Φ (x,yk)u(yk) (34)

with

φ k (x) =
N

∑
i=1

Bi (yi,x)A−1
i,k (yk)+

m

∑
l=1

Pl (x)A−1
n+l,k (yk) (35)

representing the interpolation functions adopted
in the present work. The derivatives of the inter-
polation functions can be derived by differentiat-
ing Eq. 35 with respect to the spatial coordinates

x,y

∂φ k (x)
∂x1

=
N

∑
i=1

∂Bi (yi,x)
∂x1

A−1
i,k (yk)+

m

∑
l=1

∂Pl (x)
∂x1

A−1
N+l,k (yk)

∂φ k (x)
∂x2

=
N

∑
i=1

∂Bi (yi,x)
∂x2

A−1
i,k (yk)+

m

∑
l=1

∂Pl (x)
∂x2

A−1
N+l,k (yk) . (36)

Multiquadric radial functions are employed in the
present paper, i.e.

W (y,x) =
(
r2 +R2)0.5

(37)

where r = |y−x| is the distance between the two
points and R is a nodal parameter, the optimal
value of which is determined to be equal to (see
[Hardy (1990)])

R(yk) = 0.815
1
N

N

∑
i=1

di (38)

where di is the distance between the i-th nodal
point yi and its closest nodal point. The partial
derivatives of the weight function are given by

∂W (y,x)
∂xi

= −ri
(
r2 +R2)−0.5

(39)

where ri is the i-th component of the vector r =
y−x.

4 Discretization and numerical implementa-
tion

4.1 Discretization of the domain

The double discretization of the entire domain
into a number of regions as shown in Fig. 3 is
essential for the following reasons. In the case
of the LBIE/RBF approach used for the kinemat-
ics, the maintenance of the locality is important.
However the issue of incompatibility [Liu, Gu,
and Dai (2004)] and discontinuity of the RBF in-
terpolation is a major problem for non-uniform
distributed nodal points when the RBFs are used
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(a)

(b)

Figure 3: Double discretization for (a) LBIE kine-
matics and (b) BEM kinetics.

locally. This problem is circumvented by associ-
ating every region to an RBF matrix as it is ex-
plained in section 3. Extensive numerical testing
showed that one region should contain the mini-
mum possible number of nodal points, but for the
sake of generality it can contain any number of
points. If the region contains too many points, the
inversion of the RBF matrix in Eq. 30 is compu-
tationally expensive and the evaluation of the in-
terpolation functions in Eq. 35 eventually will be
slower, bringing more computational cost in the
evaluation of the integrals. In Fig. 3 (a) the RBF
interpolation is guaranteed to be continuous in all
the four regions.
For the kinetics the discretization of the domain
into a number of regions as shown in Fig. 3 (b) is
important due to the following reasons. First the
integral equation Eq. 22 produces fully populated
matrices and the solution is very time consum-
ing. With the multi-region technique [Hribersek
and Skerget (2005)] the system of equations has a
sparse structure and after an apropriate position-
ing it takes band form. The solution is obtained

faster and this leads to a significantly faster iter-
ation process. Moreover every region is associ-
ated with a constant part of the convective velocity
Eq. 16. As more of the convective term could be
expressed through the constant part of the veloc-
ity the better the transport equation would behave.
For the kinetics, discontinuous elements are used
when it is necessary, i.e. in corner points. The
RBF cell elements have the form of Fig. 4 and
they can have a variable number of nodal points.
The arrangement of the nodal points is such that

Figure 4: Continuous and various types of dis-
continuous RBF cells bounded by discontinuous
boundary elements.

every kinetics nodal point matches with one kine-
matics nodal point. Discontinuous boundary el-
ements have the same shape as the walls of the
discontinuous RBF cells and so every discontin-
uous boundary node matches with the discontin-
uous RBF cell node as shown in Fig. 3. Under
this consideration the system of equations is bal-
anced with the same number of equations and un-
knowns.

4.2 Kinematics integral equation

In the present formulation the kinematics sys-
tem of equations consists of unknown veloci-
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ties defined on boundary, interior and interfacial
points and unknown vorticities defined only on
the boundary points where the velocity is pre-
scribed. The primary goal of the kinematics sys-
tem of equations is to solve the velocity field. In
the case where both components of the velocity
are known the vorticity is calculated and it is used
as a boundary condition to the transport equa-
tion. For the boundary points the tangential Eq. 13
or the normal Eq. 14 form should be employed.
When both components of the velocity are known
the tangent Eq. 13 form is used. When only one
component is known, the normal Eq. 14 form is
used. For interior points or for interfacial points
where both components of the velocity are un-
known the Eq. 12 is used. The discretized form
of the integral Eq. 13 for a boundary collocation
node y with respect to the region’s interpolation
nodal points yk has the following form

c(y)n(y)×u(y)+

n(y)×
∫

Γsu

∂u∗

∂n

⎡
⎣ ux

uy

0

⎤
⎦ dΓ+

n(y)×
∫

Γs

∂u∗

∂n
Φ (yk) dΓ

⎡
⎣ ux

uy

0

⎤
⎦

(yk)

+

n(y)×
∫

Ls

∂u∗

∂n
Φ (yk) dΓ

⎡
⎣ ux

uy

0

⎤
⎦

(yk)

=

n(y)×
∫

Γsu

∂u∗

∂ t

⎡
⎣ uy

−ux

0

⎤
⎦ dΓ+

n(y)×
∫

Γs

∂u∗

∂ t
Φ (yk) dΓ

⎡
⎣ uy

−ux

0

⎤
⎦

(yk)

+

n(y)×
∫

Ωs

⎡
⎣ −∂u∗

∂y
∂u∗
∂x
0

⎤
⎦Φ (yk) dΩ [ω ](yk) .

(40)

Note that the integral envolving the gradient ∂u∗
∂t

along the circular arc is always zero, since the
vector r = y−x representing the distance between
the source and the reference point is always per-
pendicular to the tangential vector t. ux and uy

are the cartesian components of the velocity field,
defined either on the nodal point y or on the in-
terpolating nodal points yk. The previous vector
equation produces the following scalar equation

c(y)nx (y)uy (y) −c(y) ny (y)ux (y) +

nx (y)H
uy

Γs
−ny (y)Hux

Γs
+

nx (y)Hk
Γs

uy (yk)−ny (y)Hk
Γs

ux (yk)+

nx (y)Hk
Ls

uy (yk) −ny (y)Hk
Ls

ux (yk) =

−nx (y)T ux
Γs

−ny (y)T
uy

Γs
−

nx (y)T k
Γs

ux (yk) −ny (y)T k
Γs

uy (yk) +[
nx (y)Dk

x +ny (y)Dk
y

]
ω (yk) . (41)

By applying the above equation for every bound-
ary nodal point, where the vorticity is unknown,
and imposing the boundary conditions accord-
ingly, the tangential equation that corresponds to
the nodal point y is derived. When one compo-
nent of the velocity is unknown, the following dis-
cretized form of Eq. 14 is used for the boundary
nodal point y

c(y)n(y) ·u(y)+

n(y) ·
∫

Γsu

∂u∗

∂n

[
ux

uy

]
dΓ+

n(y) ·
∫

Γs

∂u∗

∂n
Φ (yk) dΓ

[
ux

uy

]
(yk)

+

n(y) ·
∫

Ls

∂u∗

∂n
Φ (yk) dΓ

[
ux

uy

]
(yk)

=

n(y) ·
∫

Γsu

∂u∗

∂ t

[
uy

−ux

]
dΓ+

n(y) ·
∫

Γs

∂u∗

∂ t
Φ (yk) dΓ

[
uy

−ux

]
(yk)

+

n(y) ·
∫

Ωs

[
−∂u∗

∂y
∂u∗
∂x

]
Φ (yk) dΩ [ω ](yk) . (42)
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which gives the following scalar equation

c(y)nx (y)ux (y)+c(y)ny (y)uy (y)+

nx (y)Hux
Γs

+ny (y)Huy
Γs

+

nx (y)Hk
Γs

ux (yk)+ny (y)Hk
Γs

uy (yk)+

nx (y)Hk
Ls

ux (yk)+ny (y)Hk
Ls

uy (yk) =

nx (y)T uy
Γs

−ny (y)T ux
Γs

+

nx (y)T k
Γs

uy (yk)−ny (y)T k
Γs

ux (yk)+[
−nx (y)Dk

y +ny (y)Dk
x

]
ω (yk) (43)

This equation should be rearranged according to
the boundary conditions. In case where both com-
ponents of the velocity are unknowns the Eq. 12
is used. This equation is applied on interior and
interfacial nodes[

ux (y)
uy (y)

]
+

∫
Γsu

∂u∗

∂n

[
ux

uy

]
dΓ+

∫
Γs

∂u∗

∂n
Φ (yk) dΓ

[
ux

uy

]
(yk)

+

∫
Ls

∂u∗

∂n
Φ (yk) dΓ

[
ux

uy

]
(yk)

=

∫
Γsu

∂u∗

∂ t

[
uy

−ux

]
dΓ+

∫
Γs

∂u∗

∂ t
Φ (yk) dΓ

[
uy

−ux

]
(yk)

+

∫
Ωs

[
−∂u∗

∂y
∂u∗
∂x

]
Φ (yk) dΩ [ω ](yk)

(44)

and can be written in the vector form

[
ux (y)
uy (y)

]
+

[
Hux

Γs

Huy
Γs

]
+Hk

Γs

[
ux

uy

]
(yk)

+

Hk
Ls

[
ux

uy

]
(yk)

=

[
T uy

Γs

−T ux
Γs

]
+T k

Γs

[
uy

−ux

]
(yk)

+

[ −Dk
y

Dk
x

]
[ω ](yk) . (45)

This equation needs also to be rearranged accord-
ing to the boundary conditions. In the above equa-
tion the vorticity is treated always as a body force.
By combining Eq. 41, Eq. 43 and Eq. 45 the final

system of equations Ax = b is derived, which is
in band form and is solved for the velocities and
boundary vorticities. The involved boundary and
volume integrals employed in the discretization of
the kinematics integral equations are the follow-
ing

Hux
Γs

=
∫

Γux
s

∂u∗

∂n
ux dΓ (46)

H
uy
Γs

=
∫

Γuy
s

∂u∗

∂n
uy dΓ (47)

Hk
Γs

=
∫

Γs

∂u∗

∂n
Φ (yk) dΓ (48)

Hk
Ls

=
∫

Ls

∂u∗

∂n
Φ (yk) dΓ (49)

T ux
Γs

=
∫

Γux
s

∂u∗

∂ t
ux dΓ (50)

T
uy

Γs
=

∫
Γuy

s

∂u∗

∂ t
uy dΓ (51)

T k
Γs

=
∫

Γs

∂u∗

∂ t
Φ (yk) dΓ (52)

and

Dk
j =

∫
Ωs

∂u∗

∂x j
Φ (yk) dΩ. (53)

From Eq. 41 and Eq. 43 we deduce that the de-
gree of freedom is equal to one, while the degrees
of freedom of Eq. 45 are two. The following con-
tinuity condition should be applied on the interfa-
cial nodal points, belonging to regions 1 and 2

u|1 = u|2 (54)

4.3 Kinetics integral equation

Every region is discretized into a number of
boundary elements Nb and RBF cells Nc as shown
in Fig. 3 (b). By employing the boundary interpo-
lation functions for the boundary elements and the
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RBFs interpolations for cells the discretized form
of the kinetics Eq. 22 is

cω (y)+
Nb

∑
e=1

∫
Γe

∂ p∗

∂n
Nk

e dΓe [ω ]ke =

Nb

∑
e=1

∫
Γe

p∗Nk
e dΓe

[
∂ω
∂n

]k

e
−

1
ν

Nb

∑
e=1

∫
Γe

p∗Nk
e dΓe [un]

k
e [ω ]ke +

1
ν

Nc

∑
c=1

∫
Ωc

∂ p∗

∂x j
Nk

c dΩc [ũ j]
k
c [ω ]kc +

1
νΔt

Nc

∑
c=1

∫
Ωc

p∗Nk
c dΩc [ωt−1]

k
c (55)

and in matrix form

cω+[Q] [ω ] = [P]
[

∂ω
∂n

]
− 1

ν
[P] [un] [ω ]

+
1
ν

[D j] [u j] [ω ]+
1

νΔt
[R] [ω ]t−1 (56)

where

[Q] =
Nb

∑
e=1

∫
Γe

∂ p∗

∂n
Ne dΓe (57)

[P] =
Nb

∑
e=1

∫
Γe

p∗Ne dΓe (58)

[D j] =
Nc

∑
c=1

∫
Ωc

∂ p∗

∂x j
Nc dΩc (59)

[R] =
Nc

∑
c=1

∫
Ωc

p∗Nc dΩc. (60)

In the interface the following continuity condi-
tions should be applied

ω1 = ω2

ν1
∂ω
∂n

∣∣∣∣
1
= −ν2

∂ω
∂n

∣∣∣∣
2
. (61)

By applying Eq. 56 to all nodal points and apply-
ing the continuity conditions Eq. 61 on the inter-

face nodal points the following system of equa-
tions is obtained[

K1 K12 0 −P1 −P12 0
0 K21 K2 0 ν1

ν2
P21 −P2

]
·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω1

ω12

ω2
∂ω
∂n

∣∣∣
1

∂ω
∂n

∣∣∣
12

∂ω
∂n

∣∣∣
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= b (62)

where P are the boundary integrals in Eq. 58. The
index 12 denotes all interfacial boundary quanti-
ties on the first region and the index 21 denotes
all interfacial boundary quantities on the second
region. Finally in Eq. 62 the [K] matrix is the fol-
lowing summation of integrals

[K] = [C]+ [Q]+
1
ν

[P] [un]− 1
ν

[D j] [u j] (63)

and b is the vector containing the internal prod-
ucts of the integrals and the boundary conditions

b =

{
−Qkωk +Pk ∂ω

∂n

k

− 1
ν

Pkuk
nωk

+
1
ν

Dk
ju

k
jωk +

1
νΔt

Rkωk
t−1

}
(64)

With the multi-region technique the kinetics sys-
tem of equations A · x = b is in band form and
special solvers can accelerate significantly the so-
lution process.

4.4 Solution algorithm

As it was already mentioned, two systems of
equations must be solved in every iteration step.
One system is related to the LBIE kinematics and
the other to the BEM kinetics. With the optimal
positioning of the coefficients, the systems can be
stored in band form [Cuthill and McKee (1969)].
The time domain solution approach is the follow-
ing.

• Discretize the domain into a number of re-
gions and discretize every region into a num-
ber of points for the LBIE kinematics and
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into a number of boundary and cell elements
for the kinetics (Fig. 3).

• Evaluate the inverse local RBF matrix
(Eq. 30) for every kinematics region and for
every kinetics cell.

• Evaluate the integrals Eq. 48, Eq. 49 Eq. 52
and Eq. 53 for the kinematics.

• Start the time domain loop.

• Initialize the vorticity field.

• Start the iteration loop.

– Evaluate the integrals Eq. 46, Eq. 47
Eq. 50 and Eq. 51 for the kinematics.

– Form the kinematics system of equa-
tions Eq. 41, Eq. 43 and Eq. 45 and
solve it for velocities and boundary
vorticities.

– Compute the constant part of the veloc-
ity u in Eq. 16.

– Compute kinetics integrals Eq. 57,
Eq. 58 Eq. 59 and Eq. 60 when it is nec-
essary.

– Solve the transport equation Eq. 62
for vorticities and boundary vorticity
fluxes.

– Check convergence of the vorticity
field and quit the iteration loop if it is
achieved.

– Relax vorticities and proceed to the
next iteration step.

• End of iteration loop.

• End of time domain loop.

In the examples, the initial value for every time
step is the vorticity field of the previous time step,
and for the very first time step is equal to zero.
The relaxation of the vorticity field is based on
the following formula

ω i+1 = λ ω i +(1−λ )ω i−1 (65)

where 0 < λ ≤ 1 is the relaxation parameter and i
denotes the iteration step.

The convergence norm of the problem is com-
puted by the following formula

e =
∑Nt

j=1

(
ω i

j −ω i−1
j

)2

∑Nt
j=1

(
ω i

j

)2 (66)

where the index i denotes the iteration step and
j denotes the nodal point and Nt denotes the total
number of the kinetics nodal points. Each time the
kinematics system is solved the constant part of
the velocity Eq. 16 is computed for every region
with the following formula

ur =
∑Nr

i=1 ui

Nr
(67)

where Nr is the total number of nodes and ur is
the constant part of the decomposed velocity as-
sociated with the region r. The kinetics integrals
for all regions are calculated at the first iteration
of the initial time step. At the first iteration of
the subsequent time steps the constant part of the
velocity is calculated with Eq. 67 and if the per-
turbation exceeds a critical tolerance the kinetic
integrals Eq. 57, Eq. 58, Eq. 59 and Eq. 60 are
recomputed with the new mean constant velocity
value. In the examples the tolerance for the ki-
netics recomputation is set to 0.01, the relaxation
parameter λ is equal to 0.1 and the convergence
tolerance is 10−6.

5 Examples

5.1 Lid driven cavity

The first problem concerns the well known lid
driven cavity flow, widely used as a benchmark
for incompressible flow codes. The fluid is con-
tained in a squared unit cavity where the top wall
moves with a constant velocity ux = 1 causing
flow rotation (Fig. 5). The problem is solved with
the proposed hybrid LBIE/BEM scheme for three
different Reynolds numbers, Re = 400, Re = 1000
and Re = 3200. By taking into account the defini-
tion of the Reynolds number Re = uxL/ν the vis-
cosity coefficient ν is equal to 0.0025, 0.001 and
0.0003125 for the three test cases, respectively.
The time step is 0.1 sec and the total number of
steps are 500 for all cases. Mesh I (Fig. 6) is
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L = 1

L = 1

ux

Figure 5: Lid driven cavity L × L.

used for Re = 400, while for Re = 1000 and Re
= 3200 meshes II (Fig. 13) and III (Fig. 20) are
adopted, respectively. In mesh I the cavity is dis-
cretized into 25x25 domains with ratio 1.15. The
ratio is defined as the length of one element di-
vided by the length of the previous one. In mesh
II the cavity is discretized into 27x27 domains
with ratio 1.1 and in mesh III the cavity is dis-
cretized into 41x41 domains with ratio 1.08. The
radius of the nodal support domain is equal to
0.51 times the maximum side of the region where
the node belongs. The variation of the horizontal
component along a vertical line through the cen-
ter of the cavity is depicted in Fig. 7, Fig. 14 and
Fig. 21 for the three cases. Similarly the varia-
tion of the vertical component along a horizontal
line through the center of the cavity is depicted in
Fig. 8, Fig. 15 and Fig. 22. The vorticity on the
moving wall boundary is shown in Fig. 9, Fig. 16
and Fig. 23. Moreover the distribution of the vor-
ticity in the cavity is shown in the plots Fig. 10,
Fig. 11, Fig. 17, Fig. 18 and Fig. 24, Fig. 25. Fi-
nally the postprocessed stream function is shown
in Fig. 12, Fig. 19 and Fig. 26 for the three test
cases. The results can be compared with the nu-
merical results obtained by [Ghia, Ghia, and Shin
(1982)].

Figure 6: Mesh I of the cavity used for Re =400

Figure 7: Profile of the velocity component ux

along a vertical line through the center of the cav-
ity (Re = 400).
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Figure 8: Profile of the velocity component uy

along an horizontal line through the center of the
cavity (Re = 400).

Figure 9: Vorticity at the moving wall of the cav-
ity (Re = 400).

Figure 10: Vorticity distribution for the lid-driven
cavity flow (Re=400)

Figure 11: 3-D vorticity distribution for the lid-
driven cavity flow (Re=400)
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Figure 12: Streamlines for the lid-driven cavity
flow (Re = 400)

Figure 13: Mesh II of the cavity used for Re =
1000

Figure 14: Profile of the velocity component ux

along a vertical line through the center of the cav-
ity (Re = 1000).

Figure 15: Profile of the velocity component uy

along an horizontal line through the center of the
cavity (Re = 1000).
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Figure 16: Vorticity at the moving wall of the cav-
ity (Re = 1000).

Figure 17: Vorticity distribution for the lid-driven
cavity flow (Re=1000)

Figure 18: 3-D vorticity distribution for the lid-
driven cavity flow (Re=1000)

Figure 19: Streamlines for the lid-driven cavity
flow (Re = 1000)



142 Copyright c© 2008 Tech Science Press CMES, vol.23, no.2, pp.127-147, 2008

Figure 20: Mesh III of the cavity used for Re =
3200

Figure 21: Profile of the velocity component ux

along a vertical line through the center of the cav-
ity (Re = 3200).

5.2 L-shape cavity

The second example concerns the L shaped cav-
ity as it is described in [Hribersek and Skerget
(2005)]. The length and the height of the domain
is equal to L = 1 (Fig. 27), the diffusion coeffi-
cient is equal to ν = 0.001 and the top wall is

Figure 22: Profile of the velocity component uy

along an horizontal line through the center of the
cavity (Re = 3200).

Figure 23: Vorticity at the moving wall of the cav-
ity (Re = 3200).

moving with velocity ux = 1, resulting the Rey-
londs number 1000. The domain is discretized
into 1200 domains with ratio 1.1 as shown in
Fig. 28. The considered time step is 0.1 and the
problem is studied for 500 time steps. In Fig. 29
is depicted the variation of the ux component on
the vertical line through the position x = 0.75.
In Fig. 30 is shown the variation of the uy along
an horizontal line through the horizontal position
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Figure 24: Vorticity distribution for the lid-driven
cavity flow (Re=3200)

Figure 25: 3-D vorticity distribution for the lid-
driven cavity flow (Re=3200)

y = 0.75. Finally on Fig. 31 the vorticity isolines
are plotted.

Figure 26: Streamlines for the lid-driven cavity
flow (Re = 3200)
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L

L
2

L
2

Figure 27: L-cavity problem description.

Figure 28: Discretization of the L-cavity.

5.3 Backward facing step

The third example concerns the backward facing
step channel as shown in Fig. 32. The problem
is solved for Reynolds number 200. The height
of the channel is H = 1, the length of the step is
Ls = 1 and the length of the channel is L = 9. The

Figure 29: Profile of the velocity component ux

along a vertical line through the x=0.75 of the L-
cavity.

Figure 30: Profile of the velocity component uy

along an horizontal line through the y=0.75 of the
L-cavity.

Reynolds number is defined as Re = uH
ν , where

u is the average velocity at the inflow boundary.
The ux component of the velocity on the left side
of the channel has the following form

u(y) =

{
1−

(
y−0.75

0.25

)2
y > 0.5

0 y ≤ 0.5
(68)
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Figure 31: Vorticity distribution in the L-cavity.

while uy = 0. At the step, the top and the low wall
of the channel both velocity components have
zero values ux = 0 and uy = 0 while at the out-
let uy = 0 and the ux is unknown. For the kinetics
the outflow boundary is prescribed with vanish-
ing boundary vorticity flux (∂ω

∂n = 0). The chan-
nel is discretized into 760 regions as it is shown
in Fig. 33. The density of the discretization is
80 regions in x direction and 10 regions in y di-
rection. The nodal support domain is selected to
be 0.51 of the maximum region’s side where the
node belongs. The considered time step is equal
to 0.5 sec and the problem is studied for 250 time
steps. The outflow percentage is equal to 98.8%,
showing that the incompresibility criterion is suf-
ficiently satisfied. The circulation length is com-
puted to be 2.68 and it is compared with the value
2.656 of [Zhang (2005)]. In Fig. 34 the ux pro-
file of the velocity is depicted in various positions
in the channel. The distribution of the vorticity is
shown in Fig. 35 and finally in Fig. 36 represents
the streamlines in the recirculation area.

6 Conclusions

In the present work a hybrid multi-region
velocity-vorticity computational scheme for the

LLs

H
H
2

u(y)

xy

Figure 32: Backward facing step geometry

Figure 33: Backward facing step discretization

Figure 34: Profiles of the velocity ux component
in various positions of the channel.

Figure 35: Vorticity distribution

Figure 36: Streamlines in the recirculation area

solution of the 2D Navier-Stokes equations is pre-
sented. The domain is divided into a number of
regions and every region is associated with a lo-
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cal RBF matrix for the kinematics equations. The
RBF interpolation of the velocity field is guaran-
teed to be continuous in the entire region. Numer-
ical examples show that the presence of the inter-
faces improve stability and accuracy and ensures
the continuity of the velocity field in the whole
domain. For the solution of the transport kinet-
ics a parabolic-diffusion boundary-domain inte-
gral equation is involved and solved by the BEM.
Special discontinuous RBF cells are used for the
interpolation of the vorticity. The decomposition
of the convective velocity into a constant and a
variable part results on a very stable and accurate
upwind scheme for the vorticity transport equa-
tion.
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