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Improving Volume Element Methods by Meshless Radial Basis Function
Techniques

P. Orsini1, H. Power1,2 and H. Morvan1

Abstract: In this work, we present a modified
Control Volume (CV) method that uses a Radial
Basis Function (RBF) interpolation to improve
the prediction of the flux accuracy at the faces of
the CV. The method proposed differs from clas-
sical CV methods in the way that the flux at the
cell surfaces is computed. A local RBF inter-
polation of the field variable is performed at the
centres of the cell being integrated and its neigh-
bours. This interpolation is then used to recon-
struct the solution and its gradient in the integra-
tion points which support the flux computation.
In addition, it is required that such interpolation
satisfies the governing equation in a certain num-
ber of points placed around the cell centres. In
this way, the local interpolations become equiv-
alent to local boundary-value problems. To find
the solution to the local problems, we have tested
both the unsymmetric (Kansa’s method) and sym-
metric (Hermitian method) RBF approaches. The
proposed CV approach will be referred to as the
CV-RBF method and validated here in a series of
one- and three-dimensional test cases.

1 Introduction

The CV unstructured mesh approach has been
widely used in the last twenty years due to the
flexibility that the approach offers in the mod-
elling of problems which features complex ge-
ometry. However when unstructured meshes are
employed instead of structured ones, both cell
stencil selection and flux computation become
more difficult. Although significant works have
been carried out in this field, methods that aim
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to high order convergence solution with unstruc-
tured meshes are still a subject of active research.

In the literature two different approaches are
reported when unstructured control volume
schemes are considered: Cell-centred and vertex-
centred schemes. The second scheme is usually
called the Control Volume Finite Element (CV-
FEM) scheme. In the cell-centred configuration
the CVs used to integrate the governing equation
are the elements of the mesh which discretises
the problem, and pertinent information concern-
ing the system variables are stored at the cen-
tre of these elements. The main ideas behind
this scheme, widely used in computational fluid
dynamic (CFD), are reported in Versteeg, and
Malalasekera (2007); for some practical applica-
tions see also Date (2005). In the vertex-centred
scheme, system variable information is stored at
the vertices of the mesh elements, and the CVs are
constructed around these vertices. The field vari-
able within each element is defined in terms of the
element nodal values using FE shape functions
(linear or quadratic polynomial), and the corre-
sponding gradient is obtained by differentiation of
the same shape functions. Since the first publica-
tion by Baliga and Patankar (1980) the CV-FEM
has been successfully used as a numerical tool in
a wide range of application (for more details see
Rousse (2000); Liu et al. (2002); Ben Salah et al.
(2005); Grissa et al. (2007)).

Regardless of the type of scheme implemented,
the accuracy of the CV method discretisation
is strongly dependent on the flux approximation
which is adopted. This is usually computed con-
sidering two contributions; the convective flux
and the diffusive flux. Generally each of this
term requires a different method of approxima-
tion which suits its physical nature. In the vertex-
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centred schemes, the gradient at the CV faces
found in the diffusive flux is obtained by differ-
entiation of the shape functions. A different strat-
egy is reported in literature for cell-centred CV
methods. In this case the diffusive flux is usu-
ally decomposed in terms of appropriately cho-
sen orthonormal vectors Versteeg and Malalasek-
era (2007). In two-dimensional (2D) problems,
the scheme takes account of two different con-
tributions to compute the gradient vector of the
field variable at the cell faces: The normal and
tangential components. The normal component
is finally expressed in terms of two gradient pro-
jections: Along the line which joins the two cell
centres and along the cell face tangential direc-
tion. The first term is obtained by a central finite
difference (FD) formula, which is of second order
of accuracy only when the adjoining control vol-
umes are of equal length in the normal direction.
The second term, the tangential component, is
still computed with a second order central FD for-
mula which is function of the cell face end points.
As in the cell-centred scheme the values of the
function at the face end points are generally un-
known, these values are usually obtained by sim-
ple averaging over neighbouring cell centres. The
evaluation of the gradient using the approach ex-
plained above brings a computational error which
increases with skewness and the degradation of
the element aspect ratio. To avoid this discretiza-
tion error, Turner and Ferguson (1995) proposed
the use of a four-node formula, instead of a two-
node one. This approach captures both the normal
and tangential components of the gradient vec-
tor and consequently reduces the error associated
with the domain discretization. Different algo-
rithms are used to compute the convective part of
the flux, which requires the evaluation of the vari-
able function at the faces of the control volume.
Usually upwind algorithms are used for this pur-
pose in either the cell-centred and vertex-centred
schemes. A comprehensive review of the avail-
able upwind algorithms is reported in Versteeg
and Malalasekera (2007).

In the attempt of increasing the accuracy of un-
structured CV schemes, other new ideas regard-
ing the flux reconstruction have been proposed

in the last few years. Abgrall (1994) revisited
the possibility of performing the flux reconstruc-
tion in triangular meshes through the use of local
two-dimensional polynomial functions. The same
idea has been extended to three-dimensional prob-
lems in the weighted essentially non-oscillatory
(WENO) CV scheme presented by Dumbser and
Kaser (2007). Large attention has also been given
to the least squares function reconstruction tech-
nique (LSRT). This technique has been used in the
computation of flux corrective terms (see Jayan-
tha and Turner (2003), (2005)) to increase the
spatial accuracy of CV schemes, and also, in a
more direct approach, in the reconstruction of the
fluxes at the cell faces of the control volume (see
Ollivier-Gooch and Van Altena (2002)). Other re-
searchers proposed the Gauss-Green gradient re-
construction technique (GGRT), which has been
used in combination with the LSRT to compute
the gradients at the cell faces of the CV (see Tr-
uscott and Turner (2004) and Manzini and Putti
(2007)).

One possible alternative to improve the accuracy
of the evaluation of the diffusive flux is the use of
radial basis functions (RBF). In the literature, the
RBF interpolation method is considered as an op-
timal numerical technique for interpolating multi-
dimensional scattered data. Although most work
done so far on RBF relates to scattered data ap-
proximation and, in general, to interpolation the-
ory, there has recently been an increased interest
in the use of RBF as the base of meshless collo-
cation approaches for solving partial differential
equations (PDEs) (see Kansa and Hon (2000), un-
symmetric approach, and Jumarhon et al. (2000),
symmetric approach). While the global formula-
tion of these techniques become unpractical when
the number of collocation points is relative large,
typically of the order of few thousands, their local
implementation can be explored for the improve-
ment of classical numerical methods.

The idea of introducing RBF interpolation to
improve the accuracy of a classical numerical
scheme has been recently employed by Wright
and Fornberg (2006). In this work the authors
utilize a Hermitian RBF interpolation to remove
the symmetry constraint required to achieve high
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order approximation in the FD scheme. The use
of RBF interpolation to improve the Boundary
Element Method (BEM) has been implemented
amount others by Sladek et al. (2005), using a
local integral equation formulation, while May-
Duy et al. (2006) used a global formulation. On
the other hand, Nguyen-Van et al. (2007) incorpo-
rates the strain smoothing method for mesh-free
conforming nodal integration into the Finite El-
ement Method (FEM). In the context of the CV
unstructured mesh approach, Moroney and Turner
(2006) (2007), improved Liu et al. (2002) CV
approach which uses FE polynomial shape func-
tions, for 2D and 3D problems respectively. Their
approach relies on a local RBF interpolation of the
field variable, where the CV centres of the con-
sidered stencil act as trail points. In particular,
Moroney and Tuner consider the ability of their
CV-RBF scheme to achieve high accuracy on rel-
atively coarse meshes due to the high accuracy of
the RBF interpolation to evaluate derivatives (for
more details see Madych (1992) and Fornberg and
Flyer (2005) ) and thus guaranty a high order ap-
proximation of the diffusive flux.

Following Moroney and Turner (2006), (2007),
we propose in this article to use a RBF interpo-
lation to improve the accuracy of classical CV
schemes. The method introduced here is based
on a local RBF interpolation of the field variable
at the control volume cell centres, as in the case of
Moroney and Turner CV-RBF approach. Besides,
in our approach, it is also required that the lo-
cal interpolation satisfies the governing equation
at a set of auxiliary interpolation points and the
boundary conditions at the boundary points con-
tained in the local interpolation systems. To guar-
antee that the interpolation function locally sat-
isfies the governing equation and boundary con-
ditions at boundary points (where present in the
local interpolation systems), both the unsymmet-
ric and symmetric RBF meshless approaches are
used and their results compared.

In our approach, the solved local systems using
the RBF strong form formulation are combined
with the CV weak form to solve the global prob-
lem. In this way, we use the best features of the
two approaches, avoiding the ill-conditioning is-

sues of the global RBF meshless approach for
large number of trial and collocation points. Be-
sides, the use of localised RBF for reconstruc-
tion step in CV resolves the ill-conditioning issues
encountered in Abgrall (1994) and Dumbser and
Kaser (2007) for the computation of the polyno-
mial coefficients. In fact, choosing the RBF type
appropriately and limiting the number of collo-
cation points used lead to an interpolation that is
well posed in all dimensions.

Having an interpolation that satisfies locally the
physical operator provides an implicit upwind for-
mulation. Finally, the method proposed here is
more flexible than classical CV formulations be-
cause the boundary conditions are directly im-
posed in the interpolation approach, without the
need for artificial schemes (e.g. utilising dummy
cells).

2. RBF interpolation

In recent years the theory of radial basis func-
tions has undergone intensive research and en-
joyed considerable success as a technique for in-
terpolating multivariable data and functions. A
radial basis function Ψ

(∥∥x−ξ j
∥∥) depends upon

the separation distances of a subset of trial centres
{ξ j ∈ ℜn; j = 1,2, . . .,N} and a field point x. Due
to the RBF spherical symmetry around the centres
ξ j (trial points), they are called radial. The dis-
tances

∥∥x−ξ j

∥∥, j = 1,2, . . .,N, are usually taken
to be the Euclidean metric. The set of field points
where the function is evaluated in the interpola-
tion are known as test or collocation points. In
RBF interpolation it is usual to select the trial and
test points as the same set of points; however this
is not necessary in principle.

The most popular RBFs are listed in table 1 below.

The Gaussian and the inverse multiquadric, i.e.
m < 0 in the generalized multiquadric function,
are positive definite functions. The thin-plate
splines (TPS) and the multiquadric, i.e. m > 0,
are conditionally positive definite functions of or-
der m, which require the addition of a polynomial
term of order m−1 along with an homogeneous
constraint condition (see equation (3) below) in
order to obtain an invertible interpolation matrix.
The multiquadric functions with values of m = 1
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Table 1: Table of most popular Radial Basis Functions.

Radial basis functions (RBFs)
Generalized Thin Spline Generalized Multiquadric Gaussian

r2m−2 logr
(
r2 +c2

)m/2
exp(−r/c)

where m is an integer and r =
∥∥x−ξ j

∥∥.

and c =0 are often referred to as conical functions
and, with m = 3 and c = 0, as Duchon cubic.

Even though TPS have been considered optimal
in interpolating multivariate functions, they do
only converge linearly, (see Powell (1994)). On
the other hand, the multiquadratic (MQ) func-
tions converge instead exponentially as shown by
Madych and Nelson (1990). However, the MQ
functions contain a free parameter, c, often re-
ferred to as the shape parameter, when c is small
the resulting interpolating surface is pulled tightly
to the data points, forming cone-like basis func-
tions and as c increases the peak of the cone grad-
ually flattens. It is worth noticing that the set up
of this parameter is not trivial and still a matter
of intensive research (see Wright and Fornberg
(2006)).

In a typical interpolation problem, we have N
pairs of data points {(xi,U(xi))i=1,2,...,N}, which
are assumed to be samples of the unknown func-
tion U that is to be interpolated by the function u
as

u(x) =
N

∑
j=1

α jΨ
(∥∥x−ξ j

∥∥)+
NP

∑
j=1

α j+NP j
m−1(x),

x ∈ ℜn (1)

in the sense that

U (xi) =
N

∑
j=1

α jΨ
(∥∥xi −ξ j

∥∥)+ NP

∑
j=1

α j+NP j
m−1 (xi)

(2)

along with the constraint condition

N

∑
j=1

α jPk
m−1 (x j) = 0, k = 1, . . . ,NP (3)

Here α j, with j = 1, . . . ,N,N +1, . . . ,N +NP, are
real coefficients to be found from the interpola-
tion, Ψ is a radial basis function and NP the total

number of terms in the polynomial (determined
by the polynomial order and the number of spatial
dimensions). In order to retain a simple notation
we will refer to the polynomial terms which ap-
pears in the second term of the right hand side of
(2) as Pm−1.

The matrix formulation of the above interpolation
problem can be written as Aα = B with

A =
(

Ψ Pm−1

PT
m−1 0

)
, BT = (U,0) (4)

Micchelli (1986) proved that for a case when the
test points are all distinct, the matrix resulting
from the above radial basis function interpola-
tion is always non singular. Although a matrix
such as A is always invertible in theory, i.e. well
posed, numerical experiments show that the con-
dition numbers of the matrix obtained with the
use of RBF like Gaussian or multiquadric are ex-
tremely large when compared with those resulting
from the generalized thin-plate splines with low
values of m (see Schaback (1995)). Similar issue
regarding the condition number to those encoun-
tered with the use of the Gaussian or multiquadric
functions are found when using the generalized
thin-plate splines function with large values of m.

Consider a boundary value problem defined by

L[u] = f (x) on Ω (5)

B[u] = g(x) on ∂Ω (6)

where the operators L and B are linear partial dif-
ferential operators on the domain Ω and at the
contour ∂Ω respectively.

An unsymmetric RBF collocation method, as is
the case of the Kansa’s method, represents the so-
lution of the above boundary value problem by the
interpolation (1). In the collocation scheme of the
Kansa’s method, the set of N test points are dis-
tributed into a set of n boundary points, where the
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boundary condition (6) is imposed, and N −n in-
terior points, where the governing equation (5) is
required to be satisfied. The trial points are usu-
ally chosen to be the same set of test points.

The above expansion for u leads to a collocation
matrix A of the form:

A =

⎛
⎝Bx[Ψ] Bx [Pm−1]

Lx[Ψ] Lx [Pm−1]
PT

m−1 0

⎞
⎠ (7)

which is fully populated and non-symmetric.

The unsymmetric approach has been applied to a
wide range of problems with great success (see
for example Hon and Mao (1998); Fedoseyev et
al. (2002); Young et al. (2005) and Wen and
Hon (2007)). However, no existence of solution
and convergence analysis are available in the lit-
erature and it has been reported that, in some
cases, the resulting matrices were extremely ill-
conditioned and even singular for some distribu-
tion of the nodal points (see Dubal et al. (1993)).
In those cases where the obtained matrix is sin-
gular, it is possible that a small perturbation of
the functional centre locations or the value of the
shape parameter can result in a non-singular ma-
trix Brown (2005). More recently, Ling et al.
(2006) showed asymptotically the feasibility of a
generalized variant of the Kansa’s method by us-
ing separated trial and test spaces. Under this con-
dition, for a sufficiently dense set of N linearly
independent continuous trial functions and a set
of M test points, which locations are chosen to
minimise the residual, the resulting interpolation
matrix has full rank N. Then by properly choos-
ing trial centres the resulting Kansa’s collocation
matrix can be non-singular.

Fasshauer (1997) suggested an alternative ap-
proach to the unsymmetric method based on the
Hermite interpolation property of the radial ba-
sis functions, which states that the RBF not only
are able to interpolate a given function but also
its derivatives. The convergence proof for RBF
Hermite-Brikhoff interpolation was given by Wu
(1992) who also proved the convergence of this
approach when solving PDEs (see Wu (1998) and
Franke and Schaback (1998)). Another advan-
tage of the Hermite based approach is that the

matrix resulting from the scheme is symmetric,
as opposed to the completely unstructured matrix
of the same size resulting from the unsymmetric
method.

In the symmetric method, the solution u of the
above boundary value problem is defined by

u(x) =
n

∑
j=1

α jBξ Ψ
(∥∥x−ξ j

∥∥)+ N

∑
j=n+1

α jLξ Ψ
(∥∥x−ξ j

∥∥)

+
NP

∑
j=1

α j+NP j
m−1(x) (8)

with n as the number of nodes on the boundary,
∂Ω, and N − n the number of internal nodes. In
the above expression Lξ and Bξ are the differen-
tial operators used in (5) and (6) but acting on Ψ
viewed as a function of the second argument ξ .
This expansion for u leads to a symmetric collo-
cation matrix A, which is of the form

A =

⎛
⎝BxBξ [Ψ] BxLξ [Ψ] BxPm−1

LxBξ [Ψ] LxLξ [Ψ] LxPm−1

BxPT
m−1 LxPT

m−1 0

⎞
⎠ (9)

The matrix (9) is of the same type as the scat-
tered Hermite interpolation matrices and thus
non-singular provided that no two collocation
points sharing operators that are linearly depen-
dent are placed in the same location. For further
details on the application of the above RBF Her-
mitian collocation approach (see La Rocca et al.
(2005)).

From a series of simple steady state numerical
examples, Fasshauer (1997) concluded that the
Hermitian method performs slightly better than
Kansa’s method in most circumstances. More re-
cently Power and Barraco (2002) found that the
unsymmetric method faced some difficulties solv-
ing convection-diffusion problems at high Péclet
number, which do not occur when using the Her-
mitian approach.

The computational costs of both the symmetric
and unsymmetric methods are very high due to the
use of global interpolation functions in the rep-
resentation of the problem solution, resulting in
fully populated coefficient matrices. Besides, the



192 Copyright c© 2008 Tech Science Press CMES, vol.23, no.3, pp.187-207, 2008

matrices obtained tend to become progressively
more ill-conditioned as the number of trial and
test points increase. For cases where it is nec-
essary to employ a large number of points (over
a few thousands) the resulting systems are prac-
tically unsolvable with the use of standard algo-
rithms.

Several techniques have been proposed to im-
prove the conditioning of the coefficient matrix
and the solution accuracy, such as the use of
high order interpolation functions, replacement of
global solvers by block partitioning, LU decom-
position schemes, matrix preconditioners, over-
lapping and non-overlapping domain decomposi-
tion amongst others (see Kansa and Hon (2000)).
Although many attempts have been made to re-
solve these issues, solving practical engineering
applications with a global interpolation in RBF
meshless collocation methods is still considered
prohibitive. In recent years, special attention
has been given to the use of local RBF inter-
polations which are assembled to obtain the en-
tire solution (see Lee et al. (2003) and Shu et
al. (2003)).The local strategy results in well-
conditioned and banded systems improving the
behaviour of this type of meshless methods. In
Moroney and Turner (2006), (2007), a local in-
terpolation of the field variable at the cell sten-
cil, based on equation (1), is used to construct
the shape functions of the CV-FEM method. The
centres of the control volumes belonging to the
stencil are used as the corresponding trial and test
points of the interpolation.

2 CV-RBF method

For the sake of simplicity, the schematic repre-
sentations in Figs. 1 to 4 show two-dimensional
structured volume elements used to define the
collocation centres employed in the interpolation
to obtain the local shape functions at the sten-
cils. The proposed method can be directly imple-
mented in two or three dimensional spaces, using
structured and unstructured meshes, as it is inde-
pendent of cell shape and mesh type. The numer-
ical examples reported in this work were obtained
with a three dimensional in-house code.

2.1 Mathematical formulation

Consider a steady boundary-value problem which
governing equation features a convective term,
a diffusion term, a reactive term and a general
source

L(u) =
∂

∂xi
D

∂u
∂xi

− ∂Uiu
∂xi

+ku = S(x) Ω (10)

B(u) = g(x) ∂Ω (11)

x ∈ R3

where u is the unknown field variable, �U =
(U1,U2,U3) is the known convective velocity vec-
tor and D and k are the diffusion and reactive co-
efficients, respectively.

The differential equation integrated over each
control volume can then be written as:∫
V

∂
∂xi

D
∂u
∂xi

dV−
∫
V

∂Uiu
∂xi

dV+
∫
V

kudV =
∫
V

S(x)dV

(12)

Applying the divergence theorem, the following
equation is obtained∫
S

D
∂u
∂xi

nidS−
∫
S

UiunidS+kV up = SV (13)

where the bar indicates the cell average value op-
erator over a control volume, (•) = 1/V

∫
V

(•)dV

and V is the volume of the cell that is considered.
If Nsur f is the number of the control volume cell
faces, the integral over the control volume surface
can be divided into Nsur f sub-integrals

Nsur f

∑
l=1

∫
S

D
∂u
∂xi

nidS−
Nsur f

∑
l=1

∫
Sl

UiunidS+kVup = SV

(14)

We now approximate the surface integrals in the
above equation with the mid-point rule, by con-
sidering the surfaces mean value of the function u
and of its gradient to be placed at the mid point
of the cell faces. This approximation leads to the
following control volume discretisation equation:

Nsur f

∑
l=1

D
∂u
∂xi

∣∣∣∣
l
nliSl −

Nsur f

∑
l=1

Ui u|l Slnli +kV uP = SV
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(15)

where nli is the i component of the outward point-
ing normal to the lth face and Sl the area of the lth

surface. To compute the integral approximation in
Equation (15) it is necessary to evaluate the func-
tion u and its gradient at the mid point of the cell
faces. These surface values are given in terms of
the cell average values of u in the considered sten-
cil of cells.

Figure 1: Cell stencil and set of points used by the
CV-RBF scheme. Round symbols corresponds to
points where the internal (PDE) operator is im-
posed; square symbols for the Dirichlet operator
and diamond symbols for the boundary operator

In Fig. 1, we show a distribution of cells
surrounding the control volume under analysis
(neighbour cells) plus a set of local scattered data
points placed inside or nearby the neighbouring
cells. This geometrical configuration is used as
the interpolation stencil corresponding to the con-
trol volume in consideration. In a stencil close to
the boundary, additional points are included at the
intersection between the boundary and the stencil,
as shown in Fig. 1. Applying a Dirichlet condi-
tion at the cell centres the boundary operator (11)
at the boundary points and the internal operator
(10) at the auxiliary scattered points, we can de-
fine a local Hermitian interpolation formula as:

u(x) = ∑
c.centres

α jΨ
(∥∥x−ξ j

∥∥)
+ ∑

B.Operator

α jBξ Ψ
(∥∥x−ξ j

∥∥)
+ ∑

I.Operator

α jLξ Ψ
(∥∥x−ξ j

∥∥)+Pm−1(x)

(16)

By evaluating the different operators on the inter-
polation formula (16) at the corresponding col-

location points, the following algebraic system
is obtained for the unknown interpolation coeffi-
cients

Aα = b (17)

where

A =

⎛
⎜⎜⎝

[Ψ] Bξ [Ψ] Lξ [Ψ] [Pm−1]
Bx[Ψ] BxBξ [Ψ] BxLξ [Ψ] Bx [Pm−1]
Lx[Ψ] LxBξ [Ψ] LxLξ [Ψ] Lx [Pm−1][
PT

m−1

]
Bx
[
PT

m−1

]
Lx
[
PT

m−1

]
[0]

⎞
⎟⎟⎠

b =

⎡
⎢⎢⎣

[ucells]
[g(x)]
[S(x)]
[0]

⎤
⎥⎥⎦

(18)

with [ucells]
T = (uW ,uE,uS,uN ,uP), as the values

of the field variable u at the cells centres. It
is important to observe that we have introduced
another approximation in formulating the system
(17); in fact the value of the function u at the cell
centres are taken to be equal to the cell average
values.

At this stage it is not possible to determine the
coefficients of the Hermitian interpolation, since
one part of the right hand side of system (17) is
defined by the unknown field variable, i.e. the
array[ucells] made of the cell-centered average val-
ues of the function u. However, the system (17)
can be rewritten to express the interpolation coef-
ficients as a function of the unknown [ucells] val-
ues, as

α = A−1b (19)

The function u at any point, xl , inside the stencil,
is obtained by substituting the interpolation coef-
ficients given by (19) in (16), as a function of the
cells average values [ucells], i.e.

u|l =∑α j
(
Ψ
(∥∥x−ξ j

∥∥))∣∣
x=xl

+∑α j
(
Bξ Ψ

(∥∥x−ξ j

∥∥))∣∣
x=xl

+∑α j
(
Lξ Ψ

(∥∥x−ξ j

∥∥))∣∣
x=xl

+ (Pm−1 (x))|x=xl

(20)
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and the corresponding gradient by

∂u
∂xi

∣∣∣∣
l
=∑α j

(
∂

∂xi
Ψ
(∥∥x−ξ j

∥∥))∣∣∣∣
x=xl

+∑α j

(
∂

∂xi
Bξ Ψ

(∥∥x−ξ j

∥∥))∣∣∣∣
x=xl

+∑α j

(
∂

∂xi
Lξ Ψ

(∥∥x−ξ j

∥∥))∣∣∣∣
x=xl

+
(

∂
∂xi

Pm−1 (x)
)∣∣∣∣

x=xl

(21)

Equations (20) and (21) can be written in terms of
the vector multiplications

u|l = C
T
1lα and

∂u
∂xi

∣∣∣∣
l
= C

T
2ilα (22)

where

C
T
1l =

([
Ψ
∥∥x−ξ j

∥∥] ,[BxΨ
∥∥x−ξ j

∥∥] ,[
LxΨ

∥∥x−ξ j
∥∥] , [Pm−1(x)]

)∣∣∣
x=xl

and

C
T
2il =

∂C
T
1l

∂xi

∣∣∣∣∣
Finally, choosing the point xl to be located at the
mid point of a face of the integration cell and sub-
stituting equation (22) in (15), we obtain(

Nsur f

∑
l=1

DC
T
2ilnliSl −

Nsur f

∑
l=1

UinliC
T
1lSl

)
A
−1

b

+ kVPuP = SVP (23)

Equation (23) is the final CV-RBF formula which
couples the field value at the central cell of the
stencils, uP, with the values at the neighbour-
ing cells centres, (uW ,uE ,uS,uN). By assembling
equation (23) corresponding to all the stencils in
the domain a global system of equations for u
is obtained. Once the global matrix has been
inverted the cell average values of u are found.
Knowing the cell average values [ucells], consid-
ered to be at the control volume centres, the corre-
sponding values of the local interpolation coeffi-
cients α are obtained from equation (19). Finally,

the solution and its gradient can be reconstructed
anywhere inside and in the vicinity of a cell by
using equations (20) and (21), see Fig. 2.

Figure 2: Solution reconstruction points for a sin-
gle cell

The CV-RBF method developed in this work can
be considered as a high order scheme for calcu-
lating diffusive fluxes, given the high order ac-
curacy of the RBF derivative approximation (see
Madych (1992) and Fornberg and Flyer (2005)).
From the viewpoint of the flux calculation, the
proposed CV-RBF approach is certainly an im-
provement on traditional control volume methods.
Besides, the requirement of satisfying the govern-
ing equation at the local interpolation includes a
type of an analytical upwind scheme, given that
the resulting interpolation contains the required
information about the local velocity field.

In the proposed approach, the extra computational
cost to evaluate the local interpolations is of the
order N×m3, where N is the total number of sten-
cils and m is the number of points used for each
local interpolation. By keeping the number of in-
terpolation points small (about 10-20), this addi-
tional cost is not relevant in comparison with the
cost of solving the global system. A possible al-
ternative to reduce this cost is the use of a double
collocation at the cell centres in the interpolation
algorithm, i.e. requiring that the interpolation si-
multaneously satisfies the value of the field vari-
able and the governing equation at the cell centres.

It is also important to highlight the flexibility in-
troduced by the meshless nature of the proposed
method at local level. In particular this impacts
directly on the implementation of the boundary
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conditions. Typical constraints of classical con-
trol volume schemes, such as the need ghost or
dummy cells at the boundaries, are removed by
directly imposing the boundary conditions at the
solution of the local meshless interpolation prob-
lem. In addition boundary conditions can be ap-
plied everywhere inside the stencil without being
confined to cell faces, opening great opportunities
for the investigation of moving boundary prob-
lems.

2.2 Stencil configuration

In the previous section, the mathematical formu-
lation for the proposed CV-RBF method has been
derived on the basis of a number of stencils equal
to the number of cells used to discretise the phys-
ical domain. From here on, we call this approach
the one-stencil-one-cell configuration. However
this is not the only approach that can be consid-
ered in the implementation of the proposed new
CV approach.

The conservativeness of the numerical scheme is
the first condition that needs to be satisfied when
choosing the stencil configuration. In the one-
stencil-one-cell configuration, as the one sketched
in Fig. 3, this property is guaranteed by coupling
the neighbouring cells in the local problem for-
mulation. To resolve a particular control volume
or cell, the two adjacent cells must be included in
the local problem for each face; for example five
cells will be considered in Stencil 1 for the lay out
shown in Fig 3. The overlapping region formed
by cells 1 and 2 guarantees the uniqueness of the
flux value for face A when computing the interpo-
lations for stencils, 1 and 2. This is a consequence
of the uniqueness of the used Hermitian interpola-
tion at the overlapping region, which is equivalent
to the solution of a local boundary value problem.

An alternative to guarantee the conservativeness
condition is to form a stencil for each cell face
as shown in Fig. 4. We call this the one-stencil-
one-face configuration. The face flux is computed
only once for every cell face and the cell flux com-
putation takes account of the number of stencils
equal to the number of its faces. In Fig. 4 the ba-
sic cross stencil needed to calculate the fluxes at

Figure 3: One-stencil-one-cell configuration.
Round symbols corresponds to points where the
internal (PDE) operator is imposed; square sym-
bols for the Dirichlet operator and diamond sym-
bols for the boundary operator

the faces of cell 1 is split into four simpler prob-
lems. This alternative requires the interpolation in
those four regions containing the faces of cell 1,
but each of them having significant less number
of interpolation points in comparison with those
used in the one-stencil-one-cell approach.

In terms of computational cost the two configura-
tions described above perform differently. In the
one-stencil-one-cell configuration the total num-
ber of cells and stencils are the same and equal to
N. On the other hand, the one-stencil-one-face al-
ternative requires a larger number of stencils than
cells, with the number of stencils equal to β N for
N cells, where β changes with the number of di-
mensions and the type of cell. For the case of
3D problems, the resulting value of β is between
three and four. However the impact on the com-
putational cost of the increment in the number of
stencils, and consequently the number of local in-
terpolations, for the one-stencil-one-face alterna-
tive is somehow balanced by the reduction on the
stencil size, as it is evident by comparison of Fig.
4 and Fig. 3.

3 Numerical results

A convergence analysis was carried out for all
test cases reported in this section. The results
presented for each example correspond to the
obtained mesh-independent solutions. A multi-
quadrics RBF with constant shape parameter was
used in the interpolation algorithm. The value
of the shape parameter for each case was cho-
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Figure 4: One-stencil-one-face configuration. Round symbols corresponds to points where the internal
(PDE) operator is imposed; square symbols for the Dirichlet operator and diamond symbols for the boundary
operator

sen experimentally in order to minimize the abso-
lute L2 norm error of the local interpolations. In
the computational code used to solve the numer-
ical examples below, both Hermitian (Symmet-
ric) and Kansa (Unsymmetric) methods are im-
plemented to solve the local boundary-value prob-
lems. The scheme based on the Hermitian ap-
proach is refereed as the CV-HRBF and the one
using the Kansa’s method as the CV-KRBF. Solu-
tions were obtained with the CV-KRBF and CV-
HRBF schemes, as well as with the two different
stencil configurations, and their results compared.

3.1 One-dimensional convection-diffusion
problem (shock profile)

In this section the steady-state convection-
diffusion equation is considered in a channel of
dimensions [1.0×0.2×0.2]. The governing equa-
tion is given by

D
∂ 2φ
∂x2

i

− ∂Uiφ
∂xi

= 0 (24)

where D is the diffusion coefficient, Ui the com-
ponent of the convective velocity in the i direction
and φ the potential. The following boundary con-
ditions are imposed

φ = 1, x = 0, 0 < y < 0.2, 0 < z < 0.2

φ = 2, x = 1, 0 < y < 0.2, 0 < z < 0.2

and ∂φ
∂n = 0 at the remaining walls of the channel.

For a one-dimensional convective field, U1 =
const and U2 = U3 = 0, the above problem has
the following analytical solution

φ (x) = 2− 1−exp(U1 (x−1))
1−exp(−U1)

(25)

In a convection-diffusion problem the parameter
that describes the relative influence of the con-
vective and the diffusive components is the Péclet
number, Pe = U1L/D, where U1 is the longitudi-
nal velocity, L a reference length scale (the chan-
nel length in the present case) and D the diffusion
coefficient. We have solved the above problem for
values of the Péclet number equal to 50, 100, 200
and 400.

In the numerical simulation reported in Fig. 6,
a uniform mesh of 41×9×9 points was used to
obtain the solution corresponding to the case of
a Péclet number of 50, a non uniform mesh of
41×9×9 for the case of a Péclet number of 100
and on a uniform mesh of 81×5×5 points for the
cases of Péclet numbers of 200 and 400. A 2D
view of the mesh used in each of the above cases
at the plane y = 0.1 is shown in Fig. 5.

The comparison between the results obtained with
the CV-KRBF and CV-HRBF approaches, for
the four different Péclet numbers considered, is
shown in Fig. 6. For clarity in the presentation, re-
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a)

c) 

b)

Figure 5: Two-dimensional view at y = 0.1 of the three meshes used to solve the diffusive shock: a) uniform
with 9×9×41 points, b) non-uniform with 9×9×41 points, c) non uniform with 5×5×81 points

sults are only shown for x > 0.8 since the value of
the potential is almost constant for x ≤ 0.8 in the
cases considered here. As can be observed from
the results in Fig. 6, both CV-RBF approaches are
capable of reproducing the analytical solution ac-
curately for the values of the Péclet number con-
sidered. However, the CV-KRBF approach al-
ways exhibits a larger error at the shock front than
that obtained with the CV-HRBF approach. It is
important here to address that no systematic al-
gorithm was used to select the shape parameter of
the multiquadric function in order to minimize the
numerical error in the interpolations. It is possi-
ble that the solutions reported in Fig. 6 could be
improved by the use of different values of this pa-
rameter.

3.2 Axisymmetric Laplace problem

Let us consider the solution of the Laplace equa-
tion in a circular cylinder with an internal circu-
lar hollow. At the internal and external surfaces
a constant value of potential is prescribed. Under
these conditions, in cylindrical co-ordinates, the
problem is defined by the following axisymmetric
equation

1
r

d
dr

(
r

dΦ
dr

)
= 0 (26)

where r is the radial coordinate and φ is the po-
tential. By expanding the cylindrical Laplacian
operator in equation (26), we obtain the following
expression:

d2Φ
dr2 +

1
r

dΦ
dr

= 0 or
d2 Φ
d r2 +

d
d r

(
1
r

Φ
)

+
1
r2 Φ = 0

(27)

The analytical solution of this problem is given by

Φ(r) = A+B ln(r) (28)

where

A =
(

1− ln(R)
ln(R/rmin)

)
Φ(R)+

ln(R)
ln(R/rmin)

Φ(rmin)

and

B =
(

Φ(R)−Φ(rmin)
ln(R/rmin)

)

with R and rmin as the external and internal radius,
respectively.

Equation (27) can be viewed as a one-dimensional
convection-diffusion problem with a variable re-
action coefficient, 1/r2 and featuring a compress-
ible flow with a negative convective velocity,
−1/r. In this way, this equation takes the same
form of equation (10) with values of D = 1, U1 =
−1/r, U2 =U3 = 0, k = 1/r2, S = 0 and Φ = Φ(r).
As can be observed from Equation (28), the an-
alytical solution of this boundary value problem
has a singularity when r = rmin = 0. The solution
of this problem is chosen here to examine the be-
haviour of the CV-RBF numerical solution in the
limit rmin → 0.

The one-dimensional problem defined by equa-
tion (27) with boundary conditions Φ(R) = 2 and
Φ(rmin) = 1 will be solved here as a 3D problem
in a channel defined by the domain rmin ≤ x = r ≤
1, 0 ≤ y ≤ 0.2 and 0 ≤ z ≤ 0.2, with zero lateral
flux and given constant potential at the inlet and
outlet, i.e. Φ(x = 1) = 2 and Φ(x = rmin) = 1.



198 Copyright c© 2008 Tech Science Press CMES, vol.23, no.3, pp.187-207, 2008

1-a) 1-b 1-c 

2-a 2-b 2-c

3-a 3-b 3-c 

4-a 4-b 4-c 

Figure 6: Diffusive shock predictions at four different Pe values: 1) Pe = 50, 2) Pe = 100, 3) Pe = 200, 4)
Pe = 400; a), CV-KRBF; b), CV-HRBF; c), Relative percentage error. The symbols represent the analytical
solutions; the dashed black lines refer to CV-KRBF; the full black lines refer to CV-HRBF
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  (a)     (b) 

Figure 7: 2D view at y=0.1 of the two meshes used for the computation of Cylindrical Diffusion Problem:
a) mesh used for rmin = 0.01, b) mesh used for rmin = 0.003

1-a 1-b 1-c 

2-a 2-b 2-c

Figure 8: Cylindrical Diffusion Problem: 1) rmin=0.01, 2) rmin=0.003; a), CV-KRBF; b), CV-HRBF; c),
Relative percentage error. The symbols represent the analytical solutions; the dashed black lines refer to
CV-KRBF; the full black lines refer to CV-HRBF

Two different values of rmin (rmin = 0.01 and rmin

= 0.003) are considered and each of the case is
solved using a different mesh. Each mesh consists
of 5 points in the y and z directions and 81 points
in the x direction. However the mesh used for
rmin = 0.003 features a larger point density close
to the near-singularity, see Fig. 7b.

In Fig. 8 the computed solutions are compared
against the analytical solution for both cases. For
the case of rmin = 0.01, both approaches are
able to reproduce the analytical solution with a
good degree of accuracy, indicating the ability of

the CV-RBF method to handle problems with a
strongly varying velocity field and reaction coef-
ficient. However for the case of rmin = 0.003, the
CV-HRBF method is no longer able to resolve the
problem accurately, whereas the CV-KRBF stills
matching the analytical solution, see Fig. 8.2a,
8.2b. It appears that the Kansa’s scheme inter-
polation performs better than the Hermitian one
in solving this problem. However, as commented
before, it must be said at this stage that this is sim-
ply an observation valid for the numerical tests
carried out here as the shape parameter influence
has not yet been fully investigated, and a proper
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selection of this parameter could return a differ-
ent result. The role of varying the shape parame-
ter will be discussed in the next section.

3.3 One-dimensional convection-diffusion
problem with a variable velocity

In this section, a one-dimensional convection-
diffusion problem with variable velocity is con-
sidered. The test case is implemented for a 3D
channel of dimension [1.0×0.2×0.2] and the con-
vective velocity is assumed to be a linear function
of the longitudinal direction. The governing equa-
tion to be solved is equation (24) with

U1 = A+kx

U2 = U3 = 0

and A =
(

ln Φout
Φin

− k
2

)
The above velocity field corresponds to a hypo-
thetical compressible flow with a velocity field
changing direction within the domain. Here k
is a longitudinal shear stress intensity and Φin

and Φout are the prescribed inlet and outlet con-
stant values of the potential, respectively (with
assigned values of Φin= 300 and Φout= 100). In
the rest of the domain surfaces symmetry condi-
tions (zero fluxes) are imposed to retain the one-
dimensional character of the solution. For sim-
plicity, a unit value was assigned to the diffusion
coefficient D.

This problem has a simple analytical solution
given by

φ (x) = Φ0 exp

(
kx2

2
+Ax

)
(29)

In this case, two diffusive shocks are formed at
either ends of the domain, with the central region
left relatively “empty”. This effect is magnified as
the value of k increases. The solution of this prob-
lem, presents numerical difficulties as both the
large values of φ around the shocks and the very
small values around the centre of the domain must
be predicted accurately. Three different values of
k = 40, k = 80 and k= 120, are tested and the com-
puted solutions, using both CV-KRBF and CV-
HRBF, are compared against the corresponding
analytical solutions in Fig. 9. A uniform mesh

of (81×5×5) points is used for k= 40 and a uni-
form mesh of (101×5×5) points for the other two
values of k tested.

The solution is reproduced reasonably well
throughout the domain for all the k values tested,
with the CV-KRBF still performing slightly better
than CV-HRBF, see Fig. 9. It is important to point
out that the apparent high relative error obtained
at the centre of the domain is due to the dimen-
sionless form used in the definition of the relative
error (absolute value of the difference between the
numerical and analytical solutions divided by the
absolute value of the analytical solution), which
results in a division by a very small value of the
potential in the centre region of the domain.

It is worth noting that the c-parameter dependency
is very strong in this particular example and there-
fore a comparison between the two methods based
on these results alone is inopportune. Changing
the c parameter in a bounded range returns solu-
tions which look quite different in particular for
large value of k. Fig. 10 exhibits evidence of
the effect of the c parameter on the error along
a longitudinal section over the entire domain for
k =120. This makes clear that the shape factor c
is a data-dependent parameter and does not only
depend on the geometry and the physics of the
problem alone.

3.4 Three-dimensional convection-diffusion
problem with variable velocity

In this section the CV-RBF is validated in a three-
dimensional convection-diffusion problem with a
variable velocity field. The equation solved is
Equation (24) with the components of the convec-
tive velocity field given by

U1 = ax

U2 = −by

U3 = c

corresponding to a linear shear compressible flow
with a constant density and a constant mass source
term ρ (a−b). The potential function given
by the expression (30) is a general solution of
convection-diffusion equation with the above pa-
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1-a 1-b 1-c 

2-a 2-b 2-c

3-a 3-b 3-c 

Figure 9: Variable velocity with reaction term problem, at three different k values: 1) k=40, 2) k=80, 3)
k=120; a), CV-KRBF; b), CV-HRBF; c), Relative percentage error. The symbols represent the analytical
solutions; the dashed black lines refer to CV-KRBF; the full black lines refer to CV-HRBF

a) b)

Figure 10: Variable velocity with reaction term problem, CV-HRBF, k=120, influence of the c parameter on
the solution. Full line, simulation using c=0.001; Dot dashed line, simulation using c=0.01; a), full scale
plot; b) zoom on the bottom left corner of the full scale plot
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a) c)b) 

c) d) e)

Figure 11: Mesh used to solve the three-dimensional convection-diffusion problem: a) coarse mesh, three-
dimensional view; b) coarse mesh, view at x=0.96; b) coarse mesh, view at z=0.96; c) fine mesh three-
dimensional view; d) fine mesh, view at x=0.97; e) fine mesh, view at z=0.97

1-a 1-b 1-c

2-c2-b2-a

Figure 12: Solution 3D plots: 1) x=0.96 for the coarse mesh, 2) x=0.97 for the fine mesh. a) - analytical
solution; b) one-stencil-one-cell solution, c) one-stencil-one-face solution
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1-a 1-b 1-c

2-c 2-b2-a 

Figure 13: Profiles extracted close to the shock: 1) at x=0.96, z=0.96, 0≤ y ≥1 for the coarse mesh; 2) at
x=0.97, z=0.97, 0≤ y ≥ 1 for the fine mesh; a), one-stencil-one-cell configuration b), one-stencil-one-face
configuration; c), Relative percentage error. The symbols represent the analytical solutions; the dashed lines
refer to one-stencil-one-face configuration; the full lines refer to one-stencil-one-cell configuration

1-a 1-b 1-c

2-c2-b2-a

Figure 14: Solution 3D plots: 1) z=0.96 for the coarse mesh, 2) z=0.97 for the fine mesh. a) - analytical
solution; b) one-stencil-one-cell solution, c) one-stencil-one-face solution
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1-a 1-b 1-c

2-c 2-b2-a 

Figure 15: Profiles extracted close to the shock: 1) at y=0.04, z=0.96, 0≤ x ≥1 for the coarse mesh; 2) at
y=0.028, z=0.97, 0≤ x ≥1 for the fine mesh; a), one-stencil-one-cell configuration b), one-stencil-one-face
configuration; c), Relative percentage error. The symbols represent the analytical solutions; the dashed lines
refer to one-stencil-one-face configuration; the full lines refer to one-stencil-one-cell configuration

rameters

φ = Aexp

[
1

2D

(
ax2 −by2 +2cz

)]
(30)

where are A is an arbitrary constant.

The proposed CV-RBF method was used to solve
a 3D convection-diffusion problem, solution of
equation (24) with the above convective velocity
field, in a cubic domain of dimension [1×1×1]
using the potential function given in (30) to pre-
scribe Dirichlet boundary conditions on the six
cube faces, for values of A= 0.001, D = 0.1,
a = 0.5 and b = 1. The solution of this problem
shows a strong convection towards one of the do-
main corner where a smooth shock is formed.

For this three dimensional problem no remarkable
differences have been noticed between the solu-
tions obtained with the CV-KRBF and CV-HRBF
methods whereas the two stencil configurations
introduced in Section 3 lead to different outcomes
and exhibit different sensitivities to the mesh.

In this example two different meshes were tested,
a coarser mesh with 26×26×26 points, corre-
sponding to 15,625 cells, and a finer one with
36×36×36 points, corresponding to 42,875 cells.
Both computational grids presents a non-uniform
points distribution with a refinement in the region
of the expected shock, see Fig. 11. To assess
the accuracy of the method and the behaviour of
the two proposed stencil configurations, the nu-
merical results are presented in two slices close
to regions of high gradients. The first one is a
plane of constant x value, at x=0.96 for the coarse
mesh and x=0.97 for the fine mesh, and the sec-
ond one a plane of constant z value, at z=0.96 for
the coarse mesh and z=0.97 for the fine mesh. For
these two slices three-dimensional solution plots
are reported in Figs. 12 and 14 for both meshes
and both stencil configurations. The analytical so-
lution is also plotted on these planes for compari-
son purposes. Corresponding detailed profiles are
plotted in two dimensions in Figs. 13 and 15 for
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clarity, where the analytical solution is also pre-
sented for comparison purposes.

The one-stencil-one-face approach fails in the
shock region when the coarse mesh is used. It un-
dershoots the exact solution and is not able to pre-
dict the correct concave shape. This problem does
not come across in the case of the one-stencil-
one-cell configuration where the single cell sten-
cil employed is larger and guarantees a local in-
terpolation that better describes the solution in all
directions. The drawback reported for the one-
stencil-one-face configuration improves with the
use of the finer mesh but its solution still having
lower accuracy in comparison with the solution
obtained with the one-stencil-one-cell configura-
tion using the same finer mesh. It is also worth
noticing that the slices and the profiles analysed
for the finer mesh are closer to the shock front
than the sections considered for the coarse mesh.

4 Conclusion

A new numerical scheme has been formulated
with the main objective to exploit the possible ad-
vantages of coupling the meshless RBF colloca-
tion approach and the CV methods. The proposed
method can be considered meshless only at the
local level of the interpolation stencils, where a
boundary value problem is solved for every cell
to define the cell shape functions from which the
evaluation of the flux across the cell faces is ob-
tained. This circumstance increases the accuracy
of the flux computation and at the same time pro-
vides an analytical upwind scheme since the local
interpolation satisfies the PDE operator and there-
fore contains information about the physics of the
problem. Two different cell stencil configurations
have been proposed both guaranteeing the con-
servativeness of the scheme which preserves the
main advantage of the CV method. The new nu-
merical approach has been tested in series of one-
and three-dimensional convection-diffusion prob-
lems, which show the capabilities of method in
predicting phenomena characterized by high Pé-
clet numbers.
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