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A Smoothed Four-Node Piezoelectric Element for Analysis of
Two-Dimensional Smart Structures

H. Nguyen-Van,1 N. Mai-Duy 2 and T. Tran-Cong3

Abstract: This paper reports a study of linear
elastic analysis of two-dimensional piezoelectric
structures using a smoothed four-node piezoelec-
tric element. The element is built by incorpo-
rating the strain smoothing method of mesh-free
conforming nodal integration into the standard
four-node quadrilateral piezoelectric finite ele-
ment. The approximations of mechanical strains
and electric potential fields are normalized using
a constant smoothing function. This allows the
field gradients to be directly computed from shape
functions. No mapping or coordinate transforma-
tion is necessary so that the element can be used
in arbitrary shapes. Through several examples,
the simplicity, efficiency and reliability of the el-
ement are demonstrated. Numerical results and
comparative studies with other existing solutions
in the literature suggest that the present element
is robust, computationally inexpensive and easy
to implement.

Keyword: piezoelectric structures, smoothed
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mechanical problems.

1 Introduction

In recent years, there has been a fast grow-
ing interest in using piezoelectric materials in-
tegrated with structural systems to form a class
of smart/intelligent or adaptive structures. Piezo-
electric materials have a wide range of engineer-
ing applications owing to its inexpensive cost,
light weight and the ease with which these ma-
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terials can be shaped and bonded to surfaces or
embedded into structures. The material gener-
ates an electric charge under a mechanical load
or imposed deformation, which is called the di-
rect piezoelectric effect and conversely, mechan-
ical stress or strain occurs when the material is
subjected to an applied electric potential, which
is termed as the converse piezoelectric effect.
Therefore, piezoelectric materials can be used as
sensor (passive) or actuator (active) or both at dif-
ferent times to monitor and actively control vibra-
tion, noise and shape of a structural system. They
can be also used as a medium to transform elec-
trical and acoustic waves in telecommunication or
in an accelerometer.

Significant progress has been made over past
decades in analyzing such materials and struc-
tures with various approaches, including ana-
lytic methods and experimental/numerical mod-
els, by many researchers. For example, analyti-
cal methods were initially proposed for analysis
of beam with piezoelectric patches [Crawley and
Luis (1987); Im and Atluri (1989); Shen (1995)]
and later for piezoelectric flat panels and plates
[Tzou and Tiersten (1994); Bisegna and Maceri
(1996); Ray, Bhattacharya, and Samanta (1998);
Lam and Ng (1999), Han, Pan, Roy, and Yue
(2006), etc.]. However, due to the complexity
of governing equations in piezoelectricity, only a
few simple problems are solved analytically.

The first significant numerical attempt using finite
element implementation for piezoelectric phe-
nomenon was a piezoelectric vibration analysis
proposed by Allik and Hughes (1970). Since then,
the FEM has been considered as a powerful tool
for the numerical analysis and design of piezo-
electric devices and smart/adaptive structural sys-
tems. Most of the finite element models, follow-
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ing the work of Allik and Hughes (see the liter-
ature survey of Benjeddou (2000) for example),
are based on the interpolation of displacement
and electric potential as kinematic field variables
that satisfy compatibility equations. These ele-
ments are often too stiff, inaccurate and sensitive
to mesh distortion. To overcome these shortcom-
ings, hybrid and mixed finite element have been
developed, with notable contributions from Can-
narozzi and Ubertini (2001) and Sze’s group [Sze
and Pan (1999); Sze and Yao (2000); Wu, Sze,
and Huang (2001); Sze, Yang, and Yao (2004)].
Other relevant works include piezoelectric ele-
ments with drilling degrees of freedom of Long,
Loveday, and Groenwold (2006); Lim and Lau
(2005); Zemcik, Rolfes, Rose, and Teßmer (2007)
. More details and reviews on the development
of the finite element methods applied to the mod-
eling and analysis of piezoelectric material and
smart structures can be found in Mackerle (2003).
So far, many researchers are still actively involved
in the development of new special element as can
be seen from recent works of Benjeddou (2000);
Carrera and Boscolo (2007). However, in the
FEM, there often exist difficulties when mesh dis-
tortion occurs.

To tolerate mesh distortion in FEM, several re-
cent formulations using mesh-free method have
paralleled these developments to simulate piezo-
electric structures such as Radial Point Interpo-
lation Meshfree (RIPM) method [Liu, Dai, Lim,
and Gu (2003)], Point Interpolation Meshfree
(PIM) method [Liu, Dai, Lim, and Gu (2002)],
Point Collocation Meshfree (PCM) method [Ohs
and Aluru (2001)], Element Free Galerkin (EFG)
method [Liew, Lim, Tan, and He (2002)],
Meshless Local Petrov-Galerkin (MLPG) method
[Sladek, Sladek, Zhang, Garcia-Sanche, and
Wunsche (2006); Sladek, Sladek, Zhang, Solek,
and Starek (2007)], etc. Recently, Liu et al.
[Liu, Dai, and Nguyen (2007); Liu, Nguyen, Dai,
and Lam (2006)] proposed a new smoothed fi-
nite element method (SFEM) in which the strain
smoothing method (SSM), based on a mesh-free
stabilized conforming nodal integration (SCNI),
was incorporated into the existing FEM for 2D
elastic problems. Further application of SSM

for laminated composite plates was presented by
Nguyen-Van, Mai-Duy, and Tran-Cong (2007).
It is found that the FEM, integrated with SSM,
achieves more accurate results and higher conver-
gence rate as compared with the non-smoothed
FEM without increasing the computational cost.

In this study, the SSM is further extended to
the analysis of coupling between mechanical and
electrical behaviors of two-dimensional piezo-
electricity structures. The present smoothed four-
node piezoelectric element, named SPQ4, is ob-
tained by incorporating the SSM into the stan-
dard four-node quadrilateral piezoelectric ele-
ment. The approximation of mechanical and di-
electric displacements are similar to the conven-
tional finite element method while mechanical
strains and electric potential fields are normalized
using a constant smoothing function. With the
constant smoothing function, domain integrations
can be changed into boundary integrations and
hence no mapping or coordinate transformation is
required in computing the element stiffness ma-
trices. This allows the problem domain discreti-
sation to be more flexible with element shapes.
Numerical examples are presented to verify and
demonstrate the high performance of the present
element. The computed results are also compared
with those available from the literature.

The paper is outlined as follows. First, a brief
review of the variational form and finite element
formulations is introduced in section 2. The de-
scription of strain smoothing method for piezo-
electric material is derived in section 3. Several
numerical applications are investigated in section
4 to assess the performances of the proposed ele-
ment. Finally, some concluding remarks are with-
drawn in the section 5.

2 Variational form and finite element formu-
lations for 2D piezoelectric problems

In this section, the principal equations of piezo-
electricity and finite element formulations are
briefly reviewed. A two-dimensional piezoelec-
tric problem in domain Ω bounded by Γ is consid-
ered. For linear piezoelectric materials, the gov-
erning equations and boundary conditions can be
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derived as

σi j,i + f j = ρ ü j, (1)

εi j =
1
2
(ui, j +u j,i), (2)

Di,i = 0, (3)

Ei = −φ,i, (4)

together with the following boundary conditions

σi jn j = ti on Γσ , ui = ui on Γu,
(5)

φ = φ on Γφ , Dini = −q on Γq,

(6)

where σi j, εi j represent stress and strain tensor
respectively, f j is the body force density, u j is
the mechanical displacement vector, ρ is the mass
density, Di is the dielectric displacement vector,
Ei is the electric field vector and φ is the scalar
electric potential field.

The general functional L is obtained by summing
the kinetic energy, strain energy, dielectric energy
and potential energy of external fields as follows.

L =
∫

Ω

[
1
2

ρ u̇T u̇− 1
2

εεεT σσσ +
1
2

DT E+uT f
]

dΩ

+
∫

Γ

[
uT t +φ T q

]
dΓ. (7)

Then the variational form of the equations of mo-
tion can be derived using Hamilton’s principle

∫
Ω
[δεεεT σσσ +δuT ρ ü−δET D−δuT f]dΩ

−
∫

Γ
[δuT t+δφ T q]dΓ = 0. (8)

The mechanical constitutive relation for 2D
piezoelectric materials can be expressed in the e-
form as

σσσ = cEεεε −eT E,

D = eεεε +gE,
(9)

where cE is the elastic stiffness matrix for con-
stant electric field, e is the piezoelectric matrix
and g is the dielectric constant matrix for constant
mechanical strain.

Equation (9) can be rewritten in the explicit form
in the x− z plane as
⎡
⎣ σx

σz

τxz

⎤
⎦ =

⎡
⎣ c11 c13 0

c13 c33 0
0 0 c55

⎤
⎦

⎡
⎣ εx

εz

γxz

⎤
⎦

−
⎡
⎣ 0 e31

0 e33

e15 0

⎤
⎦[

Ex

Ez

]
, (10)

[
Dx

Dz

]
=

[
0 0 e15

e31 e33 0

]⎡
⎣ εx

εz

γxz

⎤
⎦

−
[

g11 0
0 g33

][
Ex

Ez

]
. (11)

If the piezoelectric stress constants are unavail-
able in Equation (10) or (11), they can be obtained
by using the following relationship

[
0 0 e15

e31 e33 0

]
=

[
0 0 d15

d31 d33 0

]⎡
⎣ c11 c13 0

c13 c33 0
0 0 c55

⎤
⎦ . (12)

in which [d] is the piezoelectric strain constant
matrix.

The finite element approximation solution for 2D
piezoelectric problems using the standard 4-node
quadrilateral element can be expressed as

u = Nuue, (13)

φφφ = Nφ φφφ e, (14)

where ue and φφφ e are the nodal displacement and
nodal electric potential vectors, Nu and Nφ are
shape function matrices. They are given by

ue =
4

∑
i=1

[ui vi], (15)

φφφ e =
4

∑
i=1

[φi], (16)

Nu =
[

Ni 0
0 Ni

]
, (17)

Nφ = [Ni], (18)
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in which Ni = 1
4 (1 + ξiξ )(1 + ηiη) is the bilinear

shape function of the four-node serendipity ele-
ment.

The corresponding approximation of the linear
strain εεε and electric field E are

εεε = ∇su = Buue, (19)

E = −∇φ = Bφ φφφ e, (20)

where

Bu =

⎡
⎣ Ni,x 0

0 Ni,z

Ni,z Ni,x

⎤
⎦ , (21)

Bφ =
[

Ni,x

Ni,z

]
. (22)

Substituting Equations (19)–(22) into Equation
(8) leads to the piezoelectric dynamic equations

[
Me

uu 0
0 0

]{
ü
φ̈φφ

}
+

[
Ke

uu Ke
uφ

Ke
uφ Ke

φφ

]{
u
φφφ

}

=
{

F
Q

}
, (23)

in which

Me
uu =

∫
Ω

ρNT
u NudΩ, (24)

Ke
uu =

∫
Ω

BT
u cEBudΩ, (25)

Ke
uφ =

∫
Ω

BT
u eT Bφ dΩ, (26)

Ke
φφ = −

∫
Ω

BT
φ gBφ dΩ, (27)

F =
∫

Ω
NT

u fdΩ+
∫

Γσ
NT

u tdΓ, (28)

Q =
∫

Γq

NT
φ qdΓ. (29)

3 Strain smoothing approach for piezoelec-
tric finite element method

The smoothed strain and smoothed electric field
at an arbitrary point xC are obtained by

ε̃εε(xC) =
∫

ΩC

εεε(x)Φ(x−xC)dΩ, (30)

Ẽ(xC) =
∫

ΩC

E(x)Φ(x−xC)dΩ, (31)

where εεε , E are respectively the mechanical strain
and electric field obtained from displacement
compatibility condition as given in Equations (19)
and (20). ΩC is the smoothing cell domain on
which the smoothing operation is performed. De-
pending on the stability analysis [Liu, Dai, and
Nguyen (2007); Liu, Nguyen, Dai, and Lam
(2006)], ΩC may be an entire element or part of
an element as shown in Figure 1. Φ is a smooth-
ing function that satisfies the following properties

Φ ≥ 0 and
∫

Ω
ΦdΩ = 1. (32)

For simplicity, Φ is chosen as a constant function

Φ(x−xC) =
{

1/AC x ∈ ΩC,
0 x /∈ ΩC.

(33)

where AC =
∫

ΩC
dΩ is the area of the smoothing

cell (subcell).

Figure 1: Subdivision of an element into smooth-
ing cells (nc) and the values of shape functions at
nodes.

Substituting Φ into Equations (30)–(31) and ap-
plying the divergence theorem, we obtain the
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smoothed strain and smoothed electric field in the
domain ΩC as follows.

ε̃εε(xC) =
1

AC

∫
ΩC

∇su(x)dΩ =
1

AC

∫
ΓC

nuu(x)dΓ,

(34)

Ẽ(xC)=− 1
AC

∫
ΩC

∇φφφ (x)dΩ=− 1
AC

∫
ΓC

nφ φφφ (x)dΓ,

(35)

where nu and nφ are outward normal matrices on
the boundary ΓC

nu =

⎡
⎣ nx 0

0 nz

nz nx

⎤
⎦ , nφ = [nx nz]T . (36)

Introducing the finite element approximation of u
and φφφ into Equations (34) and (35) one gets

ε̃εε(xC) =
nc

∑
i=1

B̃ui(xC)ue, (37)

Ẽ(xC) = −
nc

∑
i=1

B̃φ i(xC)φφφ e, (38)

in which

B̃ui(xC) =
1

AC

∫
ΓC

⎡
⎣ Ninx 0

0 Ninz

Ninz Ninx

⎤
⎦dΓ, (39)

B̃φ i(xC) =
1

AC

∫
ΓC

[
Ninx

Ninz

]
dΓ. (40)

Using one Gaussian point to evaluate Equation
(39) and (40) along each line segment of the
boundary ΓC

i of ΩC , they can be transformed as

B̃ui(xC) =
1

AC

nb

∑
b=1

⎡
⎣ Ni(xG

b )nx 0
0 Ni(xG

b )nz

Ni(xG
b )nz Ni(xG

b )nx

⎤
⎦lCb ,

(41)

B̃φ i(xC) =
1

AC

nb

∑
b=1

[
Ni(xG

b )nx

Ni(xG
b )nz

]
lCb , (42)

where xG
b and lCb are the midpoint (Gauss point)

and the length of ΓC
b , respectively; nb is the total

number of edges of each smoothing cell.

Finally, the linear equations of motion (23) can be
rewritten as follows

[
Me

uu 0
0 0

]{
ü
φ̈φφ

}
+

[
K̃e

uu K̃e
uφ

K̃e
uφ K̃e

φφ

]{
u
φφφ

}

=
{

F
Q

}
, (43)

where

K̃e
uu =

nc

∑
C=1

B̃T
uCcE B̃uCAC, (44)

K̃e
uφ =

nc

∑
C=1

B̃T
uCeT B̃φCAC, (45)

K̃e
φφ = −

nc

∑
C=1

B̃T
φCgT B̃φCAC. (46)

Equation (43) forms the basis of the smoothed
piezoelectric finite element method. In this work,
four-node quadrilateral element is employed for
domain discretization. Two smoothing cells or
subcells (nc = 2) are used to evaluate Equation
(44)–(46). Further increase of nc will lead to high
computational cost but the accuracy may not be
better because this results in stiffer system [Liu,
Nguyen, Dai, and Lam (2006)]. The obtained
four-node piezoelectric element with two smooth-
ing cells is named SPQ4 (Smoothed Piezoelectric
Quadrilateral 4-node element).

4 Numerical results

In this section, several numerical examples are
employed to test and assess the performance of
the SPQ4 element as applied to the linear static
and free vibration analysis of two-dimensional
piezoelectric structures.

4.1 Patch testing

The patch test is an essential check for conver-
gence and is used to verify whether the element
can display exactly the constitutive behaviour of
material through correct stresses, when subjected
to constant strains. In this section, a patch test is
used to verify that our proposed element, SPQ4,
has proper convergence properties. A choice
of material, mesh and boundary conditions was
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Figure 2: Geometry and mesh of the piezoelectric
patch test.

adopted from the work of Sze, Yang, and Yao
(2004), as shown in Figure 2.

The following PZT4 material in reference Sze,
Yang, and Yao (2004) is used for the patch test.
c11 = 139 × 103, c33 = 113 × 103, c13 =
74.3×103, c55 = 25.6×103(N/mm2),
e15 = 13.44× 106, e31 = −6.98× 106, e33 =
13.84×106 (pC/mm2),
g11 = 6.00 × 109, g33 = 5.47 ×
109 (pC/GVmm).
The prescribed mechanical displacements and
electric potentials are applied at the edges defined
by nodes 1, 2, 3 and 4 as follows.

ux = s11σ0x, uz = s13σ0z, φ = b31σ0z.

where σ0 = 1000 is an arbitrary stress parameter.
s11, s13 and b31 are material constants which can
be calculated by the following relation

⎡
⎣ s11 s13 g31

s13 s33 b33

b31 b33 − f33

⎤
⎦ =

⎡
⎣ c11 c13 e31

c13 c33 e33

e31 e33 −g33

⎤
⎦
−1

.

Under the boundary conditions described above,
the corresponding exact stress σσσ and electric dis-
placement D are given as

σx = σ0, σz = τxz = Dx = Dz = 0.

As expected, the obtained results using SPQ4 ele-
ments match the exact solution as shown in Table
1 and hence SPQ4 elements successfully passed
the patch test.

Table 1: Results of the patch test.

Variable
Results

SPQ4 Exact
σx 1000 1000
σz 1.9397×10−10 0
τxz 9.4022×10−11 0
Dx 9.1261×10−8 0
Dz −1.4486×10−8 0
ux5 1.9012×10−3 1.9012×10−3

uz5 −6.0626×10−5 −6.0626×10−5

φ5 −3.5557×10−7 −3.5557×10−7

ux6 3.0103×10−3 3.0103×10−3

uz6 −9.0939×10−5 −9.0939×10−5

φ6 −5.3335×10−7 −5.3335×10−7

ux7 2.8519×10−3 2.8519×10−3

uz7 −2.4251×10−4 −2.4251×10−4

φ7 −1.4223×10−6 −1.4223×10−6

ux8 2.2181×10−3 2.2181×10−3

uz8 −2.4251×10−4 −2.4251×10−4

φ8 −1.4223×10−6 −1.4223×10−6

4.2 Single-layer piezoelectric strip in shear de-
formation

This example considers the shear deformation of
a 1× 1 mm single-layer square strip (Figure 3),
polarized in the z−direction as proposed in Ohs
and Aluru (2001). The material PZT-5 was used
for this problem. Their properties and other im-
portant values are summarized in Table 2.

Table 2: Single-layer piezoelectric material prop-
erties, dimensions and other constants.

s11 16.4×10−6 (mm)2

N d31 −172×10−9 mm
V

s13 −7.22×10−6 (mm)2

N d33 −374×10−9 mm
V

s33 18.8×10−6 (mm)2

N d15 584×10−9 mm
V

s55 47.5×10−6 (mm)2

N g11 1.53105×10−8 N
V 2

σ0 −5.0 N
mm2 g33 1.505×10−8 N

V 2

σ1 20.0 N
mm2 V0 1000V

L 1.0mm h 0.5mm

The strip is subjected to a uniform compressive
stress σ0 in the z direction and an applied voltage
V0 as shown on Figure 3. The applied electric field
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P

Figure 3: Piezo-strip subjected to a uniform stress
and an applied voltage.

is perpendicular to the polarization of the mate-
rial to cause a shear strain in the strip. The overall
deformation is a superposition of the deformation
due to the shear strain and the compressive load.
The following mechanical and electrical bound-
ary conditions were applied to the sides of the
strip

φ,z(x,±h) = 0, σz(x,±h) = σ0,

τxz(L, z) = 0, τxz(x,±h) = 0,

φ (L, z) = −V0, σx(L, z) = 0,

φ (0, z) = +V0, u(0, z) = 0,

w(0,0) = 0.

The analytical solution for this problem is given
by Gaudnzi and Bathe (1995)

u = s13σ0x,

w =
d15V0x

h
+ s33σ0z,

φ = V0

(
1−2

x
L

)
.

To demonstrate the capability of the SPQ4 ele-
ments with various complex shapes, the strip is
modelled with two types of mesh in this analysis
with 10×10 regular as well as irregular elements
as shown in Figure 4.

A plot of the total deformation of the strip is pre-
sented in Figure 5. The total displacements ob-

(a) regular elements (b) irregular elements

Figure 4: Typical meshes of the single-layer
piezoelectric strip.

tained with regular and irregular mesh are com-
pared and plotted together with exact solutions
in Figure 6 and Figure 7. Note that the com-
puted displacements u are along the right side
(x = L) while the displacements w distribute along
the bottom edge (z = −h). The distribution of
the computed electric potentials along the bottom
side (z = −h) is also demonstrated in Figure 8. It
is observed that all the computed displacements
and electric potentials for both types of mesh are
in excellent agreement with the analytical solu-
tions.
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Figure 5: Total deformation of the strip in shear-
ing.
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Figure 6: Computed and exact u−displacements.
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Figure 7: Computed and exact w−displacements.

4.3 Single-layer piezoelectric strip in bending

The strip with the same material and geometry as
in the previous example is considered but with
modified boundary conditions for bending situa-
tion. In this case, the top and bottom surfaces
are poled and electroded in the same direction to
cause the strip contracting in the z−direction and
expanding along the x−direction. The strip also
bends downward due to the linear applied stress
at the right edge as shown in Figure 9.

The following mechanical and electrical bound-
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Figure 8: Computed and exact electric potential
φ .

ary conditions are applied to the edges of the strip

φ (x,±h) = ±V0, σz(x,±h) = 0,

τxz(x,±h) = 0, φ,x(L, z) = 0,

σx(L, z) = σ0 +σ1z, τxz(L, z) = 0,

φ,x(0, z) = 0, u(0, z) = 0,

w(0,0) = 0.

The analytical solution is available for this prob-

z

P

z

Figure 9: Piezo-strip subjected to a linear stress
and an applied voltage.

lem and can be found in Gaudnzi and Bathe
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(1995); Ohs and Aluru (2001) as follows

u = s11

(
σ0 − d31V0

s11h

)
+ s11

(
1− d2

31

s11g33

)
σ1xz,

w = s13

(
σ0 − d33V0

s13h

)
z+ s13

(
1− d33d31

s13g33

)
σ1

z2

2

− s11

(
1− d2

31

s11g33

)
σ1

x2

2
,

φ = V0
z
h
− d31σ1

2g33
(h2 − z2).

Two types of mesh as shown in Figure 4 are an-
alyzed again. The obtained deformation of the
strip is shown in Figure 10. Figure 11 illustrates
the computed and exact displacements u along the
right side (x = L) while the vertical displacements
w along the bottom edge (z = −h) are shown in
Figure 12. The distribution of the computed elec-
tric potentials along the right side (x = L) with
the exact solution are demonstrated in Figure 13.
Once again, both computed displacements and
electric potential match well the exact solutions
for regular mesh as well as for highly distorted
mesh.
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Figure 10: Total deformation of the strip in bend-
ing.

4.4 A parallel piezoelectric bimorph beam

The example to be discussed here is the two-layer
parallel bimorph beam. It consists of a cantilever
piezoelectric beam made of two PVDF layers
of the same thickness ht = hb = H/2 = 0.2
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Figure 11: Computed and exact
u−displacements.
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Figure 12: Computed and exact
w−displacements.

mm and a length of L = 5 mm, with same
polarization orientations as shown in Fig-
ure 14. The PVDF material properties are
summarized as follows E = 2 GPa,ν = 0.29,
e31 = 0.046 C/m2, e32 = 0.046 C/m2,g11 =
0.1062 × 10−9 F/m, g33 = 0.1062 ×
10−9 F/m.

For the parallel bimorph configuration, a zeros
voltage (V = 0) is applied to the intermediate
electrode, while the voltage V = 1 is applied to
the bottom and top faces of the beam so that the
electric field along the thickness direction across
the lower and upper layers are in opposite direc-
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Figure 13: Computed and exact electric potential
φ .

Figure 14: Two-layer parallel bimorph cantilever
beam.

tion. This will generate moments that bend the
bimorph.

In this study, the beam is assumed to be in a
plane stress state. For an applied electric field V
only, the tip deflection δ of the cantilever paral-
lel bimorph can be approximated as [ Cambridge
(1995)]

δ =
2L2V d31

H2
. (47)

With L = 5 mm and H = 0.4 mm, the approxi-
mated value of the tip deflection calculated from
Equation (47) is δ = 1.0206×10−8 (m).

The beam is analyzed using 15×2, 25×2, 35×2
and 50×2 meshes of SPQ4 elements. Table 3
presents the obtained tip deflections together with
analytic and meshless solutions such as PIM [Liu,
Dai, Lim, and Gu (2002)] and RPIM [Liu, Dai,
Lim, and Gu (2003)]. Note that the values in
parentheses corresponding to the percentage of
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Figure 15: Total deformation of the parallel bi-
morph cantilever beam.

Table 3: Tip deflections of the bimorph beam and
comparison with available literatures (×10−8 m).

Model
Mesh

15×2 25×2 35×2 50×2
SPQ4 0.814 0.937 0.978 1.003

(-1.724%)
PIM – 1.098 – 1.111

(8.856%)
RPIM – – – 1.204

(17.970%)
Analytic 1.0206

relative error compared with analytic solutions. It
can be seen that the present element, SPQ4, gives
more accurate results than those of other numer-
ical solutions cited here. A plot of the total me-
chanical deformation of the bimorph with 25×2
mesh is also given in Figure 15.

4.5 A piezoelectric Cook’s membrane

This section deals with a clamped tapered panel
with distributed in-plane tip load F = 1 similar
to the well-known Cook’s membrane. The lower
surface is subjected to a voltage V = 0. The ge-
ometry and boundary conditions of the beam are
shown in the Figure 16. The beam is made of
PZT4 material as in the section 4.1.

Since no analytic solution is available for this
problem, the present results are compared with a
finite element solution with a fine mesh. The best
known values of the displacement, the electric po-
tential, the first principal stress and the electric
flux density at node A, B, C respectively, accord-
ing to Long, Loveday, and Groenwold (2006) are
uzA = 2.109×10−4mm,φA = 1.732×10−8GV,
σ1B = 0.21613N/mm2,DC = 22.409pC/mm2.

Table 4 presents the obtained results with mesh re-



A Smoothed Four-Node Piezoelectric Element 219

Table 4: Computed results of piezoelectric membrane and relative error percentage.

Variable
SPQ4

FEM
4×4 8×8 16×16 24×24

uzA×10−4(mm) 1.880 2.042 2.091 2.100 2.109
(-10.858%) (-3.177%) (-0.853%) (-0.379%)

φA×10−8(GV) 1.270 1.579 1.680 1.703 1.732
(-26.674%) (-8.834%) (-3.002%) (-1.674%)

σ1B(N/mm2) 0.1578 0.1940 0.2074 0.2109 0.21613
(-26.978%) (-10.227%) (-4.026%) (-2.406%)

D1C(pC/mm2) 10.555 16.648 19.785 20.754 22.409
(-52.898%) (-25.708%) (-11.709%) (-7.385%)

z

x

V=0

Figure 16: Piezoelectric Cook’s membrane.

finement and relative error (values in parentheses)
when compared with the best known values using
a fine mesh of FEM [Long, Loveday, and Groen-
wold (2006)]. It can be seen that relative errors
reduce when the mesh is refined. With a mesh of
24×24 elements, the present method achieves ex-
cellent accuracy on displacement uzA (relative er-
ror= 0.379%) and reasonable predictions for φA,
σ1B as well as D1C.

4.6 Free vibration of a piezoelectric transducer

This section performs an eigenvalue analysis of a
piezoelectric transducer consisting of a piezoelec-
tric wall made of PZT4 material as in the section
4.1 with brass end caps as shown in Figure 17.
The piezoelectric material is electroded on both
the inner and outer surfaces. This problem is sim-

Piezoelectric
Ceramic PZT4

Symmetric
Plane

Electroded
Surfaces

Figure 17: Representative sketch of a transducer.

ilar to the one studied numerically by Liu, Dai,
Lim, and Gu (2003) and experimentally by Mer-
cer, Reddy, and Eve (1987).

The transducer is modeled as an axisymmetric
structures with 44 SPQ4 elements as shown in
Figure 18. The obtained results are compared
with those of Liu, Dai, Lim, and Gu (2002) using
PIM method and experimental results reported in
Mercer, Reddy, and Eve (1987) as given in Table
5. The values in parentheses correspond to the
relative error compared with experimental results.
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Table 5: Computed eigenvalues of the transducer and comparison with other solutions.

Model Mode 1 Mode 2 Mode 3 Mode 4 Mode 5
Experimental 18.6 35.4 54.2 63.3 88.8
PIM (44 cells) 19.9 42.8 59.7 66.1 88.4

(6.989%) (20.904%) (10.148%) (4.423%) (-0.450%)
SPQ4 (44 elements) 18.214 41.773 58.642 65.798 87.386

(-2.075%) (18.003%) (8.195%) (3.946%) (-1.592%)
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Figure 18: Domain discretization of a transducer.

It can be seen that the present solutions in gen-
eral indicate good agreement with experimental
results and give smaller relative error than those
of PIM results. The first four mode shapes are
also displayed in Figure 19 which are identical to
those depicted in Liu, Dai, Lim, and Gu (2003).

5 Conclusions

A simple and efficient four-node quadrilateral
piezoelectric element SPQ4 has been developed
and reported in this paper for linear analysis of
two-dimensional piezoelectric problems. Both
static and free vibration analysis are considered.
The element is obtained by incorporating cell-
wise strain smoothing method into the standard
FEM. This technique allows field gradients to
be computed directly from shape functions them-
selves (i.e. derivatives of shape functions are not
required) and hence no limitation is imposed on
the shape of elements. Domain discretization is
therefore more flexible than in the case of the
standard FEM. Moreover, these good features are
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Figure 19: Eigenmodes of the piezoelectric trans-
ducer.

acquired without increasing the number of field
nodes and computational cost. The changes to the
existing finite element code are also very small.
Several numerical examples are studied and the
obtained results are in excellent agreement with
analytical solutions. It is found that the SPQ4 ele-
ment is robust and reliable. It can yield reasonable
results even with coarse discretization.
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