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A Hybrid Sensitivity Filtering Method for Topology Optimization
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Abstract: In topology optimization, filtering
techniques have become quite popular in prac-
tice. In this paper, an accurate and efficient hybrid
sensitivity filtering approach based on the tradi-
tional and bilateral sensitivity filtering approaches
is proposed. In the present hybrid approach, the
traditional sensitivity filter is applied to a sub-
domain where numerical instabilities are likely to
occur to overcome the numerical instabilites ro-
bustly. Filtering on mesh-independent holes iden-
tified by an image-processing-based technique
is prohibited to reduce the computational cost.
The bilateral approach is employed for the cor-
responding nearest neighboring elements of the
mesh-independent holes to drive the 0-1 conver-
gence of their boundaries. As a result, the op-
timal designs can be checkerboard-free, mesh-
independent and mostly black-and-white. The
possible side effects of the traditional and bilat-
eral sensitivity filtering approaches can be alle-
viated. Existence of solutions can be ensured in
a more accurate manner. The high accuracy and
efficiency of the present approach are illustrated
with classical examples in minimum compliance
design. It is suggested that the present hybrid ap-
proach for topology optimization be highly ap-
pealing.
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1 Introduction

Topology optimization is an important design tool
for generating more efficient structures. An opti-
mal topology can be obtained by the correspond-
ing modifications of holes and connectivities in
the design domain, which is usually implemented
by redistributing material as a sizing optimiza-
tion problem in an iterative and systematic man-
ner [Bendsøe and Kikuchi (1988); Bendsøe and
Sigmund (2003); Wang and Tai (2004); Tapp,
Hansel, Mittelstedt, and Becker (2004); Wang
and Wang (2005, 2004); Wang and Zhou (2004);
Wang and Wang (2006); Zhou and Wang (2006);
Cisilino (2007); Wang, Lim, Khoo, and Wang
(2007b,d,c)]. Topology optimization is one of the
most important structural optimization methods
because of its ability in achieving largest savings
[Rozvany (2001)]. Nevertheless, it is also one of
the most challenging tasks in structural design.

The finite element (FE) based continuum topol-
ogy optimization as a generalized shape opti-
mization problem has experienced tremendous
progress since the seminal work of Bendse and
Kikuchi [Bendsøe and Kikuchi (1988)] in 1988,
as reviewed in detail in [Rozvany (2001)]. Re-
cently, one of the homogenization-based meth-
ods, the power-law model or the SIMP (Sim-
ple Isotropic Material with Penalization) method
[Bendsøe (1989); Rozvany and Zhou (1991);
Rozvany, Zhou, and Birker (1992)], has been
generally accepted in the field of topology opti-
mization because of its computational efficiency
and conceptual simplicity [Rozvany (2001)]. In
the SIMP method, the material properties are
expressed in terms of the material density us-
ing a simple “power-law” interpolation as an ex-
plicit means to suppress intermediate values of
the bulk density. As shown by Bendse and Sig-
mund [Bendsøe and Sigmund (1999)], the power-
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law interpolation is physically permissible as long
as some simple conditions on the power are sat-
isfied. However, like most of the other topol-
ogy optimization methods, the SIMP method does
not directly resolve the problem of non-existence
of solutions [Bendsøe and Sigmund (2003)] and
thus numerical instabilites, such as the checker-
board instability and mesh-dependency [Bend-
søe (1995); Zhou, Shyy, and Thomas (2001);
Bendsøe and Sigmund (2003); Wang, Tai, and
Quek (2006); Wang and Wang (2005)], may oc-
cur. Various approaches have been proposed to
overcome these numerical instabilities, includ-
ing adding slope constraints [Petersson and Sig-
mund (1998); Zhou, Shyy, and Thomas (2001)]
or move limit constraints [Cardoso and Fonseca
(2003)] or perimeter controls [Petersson (1999)],
using higher order or non-conforming finite ele-
ments [Jang, Jeong, Kim, Sheen, Park, and Kim
(2003)], and employing filters [Sigmund (1997);
Sigmund and Petersson (1998); Bendsøe and Sig-
mund (1999); Sigmund (2001a); Rozvany (2001);
Bendsøe and Sigmund (2003); Wang and Wang
(2005)]. Among all these approaches, a filtering
technique is the most widely used and has become
most popular due to its computational efficiency
and ease of implementation [Bendsøe and Sig-
mund (2003); Sigmund (2007)]. As a numerical
method to ensure regularity or existence of solu-
tions to an ill-posed engineering problem, filter-
ing techniques have been quite successful in var-
ious domains of engineering applications [Bour-
din (2001); Wang and Wang (2005); Wang, Lim,
Khoo, and Wang (2007a)].

In the existing filtering techniques for topology
optimization, density filtering and sensitivity fil-
tering are the two basic approaches. The density
filtering approach was introduced by Bruns and
Tortorelli [Bruns and Tortorelli (2001)] and ana-
lyzed in detail by Bourdin [Bourdin (2001)]. It
was shown that filtering the density can lead to
checkerboard-free and mesh-independent designs
[Bruns and Tortorelli (2001); Bourdin (2001)].
Nevertheless, this approach may be physically
less meaningful [Bendsøe and Sigmund (2003)]
due to the introduction of a density measure to
replace the bulk density in the original SIMP

method. The density filtering approach may
also cause a design interpretation problem such
as whether the density measure should be used
in the volume constraint [Bruns and Tortorelli
(2001); Bourdin (2001); Bendsøe and Sigmund
(2003); Sigmund (2007)] due to the difference
between the bulk density and density measure.
The sensitivity filtering approach was first intro-
duced by Sigmund [Sigmund (1994)] and has be-
come much more popular both in academia and in
commercial programs [Sigmund (2001a); Bend-
søe and Sigmund (2003); Sigmund (2007)]. This
filtering approach has been used exclusively in
a recent monograph for topology optimization
[Bendsøe and Sigmund (2003)]. The main idea
of the filtering approach is to use the filtered
sensitivities rather than the actual sensitivities to
update designs. The filtering sensitivities are
made dependent on the sensitivities and densities
of the corresponding neighboring elements [Sig-
mund (1994)], but it can be significantly different
from the usual symmetric sensitivity filtering ap-
proaches [Sigmund (2007)]. Apparently, this is a
heuristic and simple but mathematically less rig-
orous and potentially risky approach since a fil-
tered sensitivity may not represent a descent di-
rection. However, as stated in [Sigmund (2001a);
Bendsøe and Sigmund (2003); Sigmund (2007)],
numerous applications have proven the approach
to be very robust and reliable using most of the
popular optimization tools.

Recently, several researchers have attempted to
modify this sensitivity filtering approach to over-
come its incapability of producing black-and-
white (0-1) designs. Grey regions containing in-
termediate densities along the solid-void bound-
ary of the final designs can be quite apparent us-
ing either the sensitivity or the density filtering
approaches [Sigmund (2001a); Bourdin (2001)].
This widely observed phenomenon may cause dif-
ficulties in boundary identification and design re-
alization in a post-processing step which is neces-
sary for shape recovery from the optimization so-
lution [Bendsøe and Sigmund (2003); Wang and
Wang (2005); Sigmund (2007)]. Furthermore,
the topology optimization problem may be inap-
propriately resolved when the original objective
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is to generate distinct solids and voids. To ob-
tain black-and-white designs, a modification for
the original sensitivity filtering approach [Sig-
mund (1994)] was suggested by Borrval [Bor-
rval (2001)]. The density weighting in the de-
nominator is moved inside the summation. Bet-
ter black-and-white solutions can be obtained, but
the checkerboard-free and mesh independence ef-
fects of the original sensitivity filtering approach
may be destroyed [Sigmund (2007)]. To en-
sure symmetric behaviour for multi-phase design
problems, a sensitivity filtering approach without
density filtering was proposed by Sigmund [Sig-
mund (2001b)]. Due to the elimination of the
density weighting, this approach may be unsta-
ble and the most desirable filtering effects of the
original sensitivity filtering approach may be lost
[Sigmund (2007)]. By further dropping the den-
sity and distance weightings in the original sensi-
tivity filtering approach, a simplest mean sensitiv-
ity filtering approach can be developed [Sigmund
(2007)]. Although this approach works well in
many cases, it is still unstable and may not gener-
ate checkerboard-free and mesh-independent de-
signs. By combining the linear edge smooth-
ing filtering in the spatial domain with the edge
preserving smoothing range filtering in the den-
sity domain, a bilateral sensitivity filtering ap-
proach was proposed by Wang and Wang [Wang
and Wang (2005)]. Numerical instabilities can
be overcome due to the domain filtering compo-
nent, while black-and-white designs can be driven
due to the range filtering component. However, it
would be difficult to choose appropriate filter pa-
rameters and resorting to the well-known continu-
ation method [Bendsøe and Sigmund (2003)] may
require thousands of iterations, making the ap-
proach computationally too expansive. In general,
a filtering approach should be simple and easy to
implement with fast convergence and low CPU
time. Furthermore, the bilateral sensitivity filter-
ing approach may not be robust enough to over-
come the numerical instabilities. Due to the exis-
tence of these less successful modifications, the
original sensitivity filtering approach [Sigmund
(1994)] is referred to as the traditional sensitivity
filtering approach in the present study. The tra-
ditional sensitivity filtering approach has the ad-

vantage of overcoming the numerical instabilities
robustly to generate checkerboard-free and mesh-
independent designs while the modified ones have
the advantage of driving the 0-1 convergence to
generate black-and-white designs in practice. It is
evident that none of the existing sensitivity filter-
ing approaches can be robust and efficient enough
to generate checkerboard-free, mesh-independent
and black-and-white designs. A sensitivity fil-
tering approach that can incorporate the advan-
tages of the traditional and the modified sensitiv-
ity filtering approaches and avoid their drawbacks
would be most desirable in topology optimization,
but such an approach has not been developed yet.

The objective of the present study is to propose
an accurate and efficient hybrid sensitivity fil-
tering approach based on the existing traditional
and bilateral sensitivity filtering approaches. In
the present approach, the traditional approach
is applied only to a sub-domain where the nu-
merical instabilities are likely to occur, while
the bilateral approach is employed for the corre-
sponding nearest neighboring elements of mesh-
independent holes and there is no filtering for
mesh-independent holes. The advantages of both
the traditional and the bilateral sensitivity filter-
ing approaches can be inherited while their re-
spective drawbacks can be virtually avoided. The
present approach is implemented in the frame-
work of minimum compliance design and its high
accuracy and efficiency are illustrated with classi-
cal examples.

2 The SIMP Method

The topology optimization problem as a gener-
alized shape optimization problem of finding the
optimal material distribution [Rozvany (2001)] is
considered. It is confined in a fixed design refer-
ence domain, or design domain, Ω ∈ R

d (d = 2
or 3) to allow for the applied loads and bound-
ary conditions [Bendsøe and Sigmund (2003)].
The geometric representation of a structure corre-
sponds to a black-and-white raster representation
of the geometry with pixels or voxels given by the
FE discretization and the material properties are
modeled as a function of the discrete density ρ ,
ρ ∈ {0,1}, in which 0 represents void and 1 solid
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material. Hence, the original topology optimiza-
tion problem is a distributed, discrete valued de-
sign problem (a 0-1 problem) [Bendsøe and Sig-
mund (2003)].

In the present study, to simplify the analysis pro-
cedure, we only consider the classical minimum
compliance topology optimization problem in lin-
ear elasticity subject to the applied body force fff
in Ω and the surface traction forces ttt on the trac-
tion part Γt of the smooth boundary ∂ Ω, which
can be defined as

min �(ρ,uuu)
s.t. : aρ (uuu,,,vvv) = �(ρ,vvv) ∀vvv ∈ U

ρ ∈ {0,1}∫
Ω

ρ dΩ = V � γ V0

(1)

where

�(ρ,uuu) =
∫

Ω
fff T uuudΩ+

∫
Γt

tttT uuuds (2)

aρ(uuu,,,vvv) =
∫

Ω
ρ ∂ui

∂x j
Ei jkl

∂vk

∂xl
dΩ (3)

and uuu is the displacement vector that defines the
equilibrium of the elastic body, vvv the kinemati-
cally admissible virtual displacement field, U the
set of kinematically admissible displacements, V
the allowable volume of solid material (V > 0), V0

the total volume of the fixed reference domain, γ
the volume fraction, and Ei jkl the elasticity tensor
of solid material.

In the design domain Ω, according to the SIMP
method in the power-law interpolation of material
properties [Bendsøe (1989)], the material proper-
ties are modeled as a function of element-wise
constant material density ρ , which is a continu-
ous rather than discrete design variable, raised to
some power p (p > 1) times the material proper-
ties of solid material, i.e.,

Ẽ(ρ) = ρ p E (4)

where E is the Young’s modulus of a given solid
material and Ẽ(ρ) the effective Young’s modulus.
The standard SIMP version of the discrete mini-
mum compliance design problem in Eq. (1) can

be expressed as follows:

min �(ρ ,uuu)
s.t. : aρ (uuu,,,vvv) = �(ρ ,vvv), ∀vvv ∈ U

0 < ρmin � ρ � ρmax∫
Ω

ρ dΩ � γ V0

(5)

where

�(ρ ,uuu) =
∫

Ω
fff T uuudΩ+

∫
Γt

tttT uuuds (6)

aρ(uuu,,,vvv) =
∫

Ω
ρ p ∂ui

∂x j
Ei jkl

∂vk

∂xl
dΩ (7)

in which ρmin and ρmax are the lower and upper
limits on the material density ρ , respectively. In
this standard SIMP model, the original discrete 0-
1 topology optimization problem is converted into
a continuous optimization problem with interme-
diate material densities. As shown by Bendse
and Sigmund [Bendsøe and Sigmund (1999)], the
power-law interpolation is physically permissible
as long as some simple conditions on the power
are satisfied.

3 Numerical Implementation

To solve the SIMP version of the minimum com-
pliance topology optimization problem (5) nu-
merically, the finite element method in [Sig-
mund (2001a)] is used. The design domain Ω
is discretized with four-noded bilinear rectangu-
lar plane stress elements. The FE discretized de-
sign domain Ω can be taken as a digital image and
each element a pixel or voxel whose color is rep-
resented by its element-wise constant density ρe

(in a gray scale, white is void and black is solid
material). The discrete form of Eq. (5) can be
written as

min J(ρρρ) = UT KU =
N

∑
e=1

(ρe)p uT
e Keue

s.t. :
N

∑
e=1

(ρe)p Keue = F

N

∑
e=1

ρeve � V

0 < ρmin � ρe � ρmax e = 1, . . .,N

(8)
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where ρρρ is the design variable vector, J(ρρρ) the
objective function (compliance), U the global dis-
placement vector, K the global stiffness vector, ue

and Ke are the element displacement vector and
stiffness matrix (solid element), respectively, ρe

the unfiltered element density, N the total number
of elements used to discretize the reference do-
main Ω, ve the element volume, and F the global
force vector.

The sensitivity of the objective function J(ρρρ) can
be expressed [Sigmund (2001a); Bourdin (2001);
Bendsøe and Sigmund (2003)] as

∂J
∂ρi

= −UT ∂K
∂ρi

U = −p(ρi)p−1 uT
i Kiui (9)

in which the external loads are assumed to be
design-independent.

The discretized topology optimization problem
described in Eq. (8) can be solved by many ap-
proaches such as Optimality Criteria (OC) meth-
ods, Sequential Linear Programming (SLP) meth-
ods, Sequential Quadratic Programming (SQP),
or the Method of Moving Asymptotes (MMA).
In the present study, the OC method proposed
by Bendse [Bendsøe (1995); Sigmund (2001a);
Bendsøe and Sigmund (2003)] is adopted due to
its efficiency. As a result, the heuristic updating
scheme [Bendsøe (1995)] for the design variable
ρρρ can be formulated as follows:

ρnew
e =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

max(ρmin, ρe −m) if ρe(Be)η

� max(ρmin,ρe −m)

min(ρmax,ρe +m) if ρe(Be)η

� max(ρmax, ρe +m)
ρe(Be)η else

(10)

where ρnew
e is the updated element density, m a

move limit, η a numerical damping coefficient,
and Be can be obtained from the optimality condi-
tion [Bendsøe (1995); Sigmund (2001a)], which
can be written as

Be = −
∂J
∂ρe

λ ve
(11)

It should be noted that the descent direction τe for
the present constrained optimization problem can
be given as

τe =
∂J
∂ρe

+λ ve (12)

Nevertheless, with this implementation, signifi-
cant numerical instabilites, such as checkerboard
patterns and mesh-dependent designs, may occur
since the SIMP method itself does not directly
regularize the well-recognized ill-posed topol-
ogy optimization problem [Bendsøe and Sigmund
(2003)]. The checkerboard instability is mainly
due to the inaccuracy of the low-order finite ele-
ments and using high-order elements may over-
come this problem, as shown in [Jang, Jeong,
Kim, Sheen, Park, and Kim (2003)], but the com-
putational cost may become much more expan-
sive. Furthermore, in the SIMP method, the prob-
lem of non-existence of optimal solutions is not
directly resolved [Bendsøe and Sigmund (2003)]
since the naturally posed topology optimization
problem is ill-posed and the set of feasible de-
signs is not closed [Bendsøe and Sigmund (2003);
Stolpe and Svanberg (2003)]. In order to en-
sure existence of solutions and mesh-independent
designs, one must introduce priori restrictions
on the admissible design configurations such as
a perimeter constraint, a gradient constraint or
with filtering techniques, either globally or lo-
cally [Sigmund (2001a); Bendsøe and Sigmund
(2003)]. In the present study, a filtering technique
is preferred to overcome these numerical instabil-
ities due to its economy and ease of implementa-
tion.

4 Traditional Sensitivity Filtering Approach

The sensitivity filtering approaches [Sigmund
(1994); Borrval (2001); Sigmund (2001b); Wang
and Wang (2005); Sigmund (2007)] use the fil-

tered sensitivity ∂̂J
∂ρe

rather than the unfiltered sen-

sitivity ∂J
∂ρe

to update designs in the heuristic den-
sity updating scheme (10) of the OC method
[Bendsøe (1995)] in hopes of eliminating the sig-
nificant numerical instabilities. In the traditional
sensitivity filtering approach introduced by Sig-
mund [Sigmund (1994)], the filtered sensitivity
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can be written as

∂̂J
∂ρe

=
1

ρeve ∑N
i=1 Hi

N

∑
i=1

Hiρivi
∂J
∂ρi

(13)

in which the linear hat kernel function Hi can be
formulated as

Hi = rmin−dist(e, i), {i ∈ N | dist(e, i) � rmin}
(14)

where rmin is the filter radius. A theoretically
more rigorous expression for the filtered sensitiv-
ity, which can be consistent with the continuous
filter definition, can be given as

∂̂J
∂ρe

=
ve

ρe ∑N
i=1 Hivi

N

∑
i=1

Hiρi
∂J
∂ρi

(15)

Such a sensitivity filtering approach is appar-
ently heuristic [Bendsøe and Sigmund (2003)].
The topology optimization problem is not well-
posed in a rigorous mathematical sense and thus
existence of solutions cannot be theoretically
proven [Sigmund (2001a)], but numerous appli-
cations have shown that the filtering approach
produces results very similar to those obtained
by other alternative methods and may even gen-
erate checkerboard-free and mesh-independent
designs in practice with little extra CPU time
and implementation effort [Bendsøe and Sigmund
(2003)]. Furthermore, the results can be stable
under mesh-refinement with a minimum length-
scale which is controlled by the filter radius rmin.
Unfortunately, the theoretical basis behind the
success of this approach was little understood or
interpreted [Bendsøe and Sigmund (2003); Sig-
mund (2007)].

According to Eq. (9), the terms to be filtered in the
numerator in Eq. (13) can be written as follows:

Ji = ρivi
∂J
∂ρi

= −pvi(ρi)puT
i Kiui = −pUi (16)

where Ui is the element strain energy given by

Ui = vi(ρi)puT
i Kiui (17)

Hence, the filtered sensitivity ∂̂J
∂ρe

in Eq. (13) can
be rewritten as

∂̂J
∂ρe

=
−p

ρeve ∑N
i=1 Hi

N

∑
i=1

HiUi (18)

Therefore, it is the spatial distribution of the el-
ement strain energy that is filtered in the tradi-
tional sensitivity filtering approach. The tradi-
tional sensitivity filter shown in Eq. (13) or (18)
is actually a non-standard and unsymmetric sen-
sitivity filter and can be quite different from the
symmetric sensitivity filters in the literature [Bor-
rval (2001); Sigmund (2001b); Wang and Wang
(2005); Sigmund (2007)]. As a result, the tradi-
tional sensitivity filtering approach can be robust
enough to delay the tendency of overly fast 0-
1 convergence to produce checkerboard-free and
mesh-independent designs.

Patches of checkerboard patterns are often seen in
final designs using the SIMP topology optimiza-
tion method together with a low-order displace-
ment based finite element method, as aforemen-
tioned. Within a checkerboard pattern, the mate-
rial density assigned to contiguous finite elements
varies in a periodic fashion similar to a checker-
board consisting of alternating solid and void el-
ements [Bendsøe and Sigmund (2003)]. It has
been well understood that the checkerboard insta-
bility is due to the inaccuracy of low-order quadri-
lateral finite elements in estimating the stiffness
of a checkerboard pattern [Bendsøe and Sigmund
(2003)]. As aforementioned, a filtering technique
would be more competitive in terms of the com-
putational cost than using higher-order finite el-
ements or non-conforming finite elements [Jang,
Jeong, Kim, Sheen, Park, and Kim (2003)] to
eliminate the checkerboard patterns. Further-
more, it is well-known that the SIMP method
topology optimization problem is ill-posed in
its general continuum setting [Bendsøe (1995);
Bendsøe and Sigmund (2003)] and thus existence
of solutions cannot be guaranteed. Theoretically,
the introduction of more holes without chang-
ing the structural volume may increase the ef-
ficiency of a given structure [Bendsøe and Sig-
mund (2003)] and thus the final optimum may
even include infinitesimal holes [Michell (1904);
Eschenauer and Olhoff (2001)]. In computational
implementations, this effect is demonstrated by
mesh-dependent designs, in which the size of the
minimum holes is dependent of the mesh size.
This dependency is also regarded as a numerical
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instability since a large number of smaller holes
may be generated when a finer finite element
mesh is adopted. As aforementioned, a filtering
technique can also be employed to produce mesh-
independent designs to eliminate this numerical
instability [Bendsøe and Sigmund (2003)].

To produce a checkerboard pattern, the local den-
sities in a filter window defined by the filter ra-
dius must be significantly different and similar to
a checkerboard pattern. This difference may be
further enlarged in the element strain energy dis-
tribution due to the power-law model of the SIMP
method [Bendsøe (1989)]. The filtered strain en-
ergy can be written as

Ûe = ∑Ns
i=1 HiUi

∑Ns
i=1 Hi

(19)

where Ns is the total number of elements in the
filter window. As a result, the element strain
energy distribution is smoothed. The elements
with low density will be given a higher strain en-
ergy while those with high density will be given
a lower strain energy. According to Eq. (18), the

filtered sensitivity ∂̂J
∂ρe

can be re-written as

∂̂J
∂ρe

= − pÛe

ρeve
(20)

Hence, the filtered sensitivity of a low-density ele-
ment will become higher and the filtered sensitiv-
ity of a high-density element will become lower.
The tendency of 0-1 convergence of these ele-
ments will be delayed, according to the density
updating scheme (10) of the OC method [Bendsøe
(1995)]. The occurrence of checkerboard patterns
can thus be prevented. Especially, if a checker-
board pattern has been generated, according to
Eq. (20), the filtered sensitivity of a void ele-
ment would become sufficiently large such that
the decent direction as shown in Eq. (12) will
be changed. The void elements will thus be-
come non-void, according to the density updating
scheme (10) of the OC method [Bendsøe (1995)].
Hence, the traditional sensitivity filter is robust
enough to eliminate the checkerboard patterns.
Similarly, it can be obtained that the traditional
sensitivity filter is also robust enough to elim-
inated the mesh-dependent small holes (smaller

than the size defined by the filter radius) to pro-
duce mesh-independent designs. It should be
noted that the density ρe in the denominator of
the traditional sensitivity filter (13) plays a crucial
role in overcoming these numerical instabilities.

Other sensitivity filtering approaches [Borrval
(2001); Sigmund (2001b); Wang and Wang
(2005); Sigmund (2007)] may fail to generate
checkerboard-free and mesh-independent designs
due to their inefficiency to delay the tendency of
0-1 convergence or to change the decent direction.
For example, the modified sensitivity filter sug-
gested by Borrvall [Borrval (2001)] as

∂̂J
∂ρe

=
1

∑N
i=1 Hiρivi

N

∑
i=1

Hiρivi
∂J
∂ρi

(21)

cannot guarantee that the filtered sensitivity of a
void element in a checkerboard pattern be suffi-
ciently large due to the fact that the filtered sen-
sitivity is only a weighted average of sensitivities
of neighboring elements. Since the decent direc-
tion of this void element may not be changed,
the checkerboard pattern cannot be eliminated.
Hence, the modified sensitivity filter is neither ro-
bust nor sufficient to overcome the checkerboard
instability, though it has the advantage of generat-
ing designs with better 0-1 convergence [Sigmund
(2007)].

Nevertheless, the side effects of this traditional
sensitivity filtering approach may be quite unde-
sirable in the SIMP topology optimization, though
its merits in producing checkerboard-free and
mesh-independent designs are prominent. The
most evident side effect is the blurry boundaries
of the mesh-independent holes since the sensi-
tivity filter Eq. (13) blurs not only the mesh-
independent relatively small holes but also the
mesh-independent relatively large holes. This fil-
tering effect on mesh-independent holes is quite
undesirable in general since the 0-1 conver-
gence driven by the power-law penalization of the
SIMP method on intermediate densities [Bendsøe
(1995); Bendsøe and Sigmund (1999, 2003)] is
seriously hampered and to obtain black-and-white
designs would become impossible. Furthermore,
the material in the blurry transition regions would
be quite ineffectively used and sub-optimal solu-
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tions may thus be generated. Since the element
strain energy is naturally discontinuous at the
boundary of a mesh-independent hole, employing
a filter to smooth out this reasonable discontinu-
ity would become physically meaningless. The
minimum length-scale constraint [Bendsøe and
Sigmund (2003); Sigmund (2007)] on structural
members imposed by the traditional sensitivity fil-
ter may also be undesirable. Since the actual man-
ufacturing constraint may be with high precision,
this rough minimum length-scale due to the blurry
boundary may be not desirable. More impor-
tantly, incorporating a minimum length-scale con-
straint on structural members into topology opti-
mization is unnecessary and risky since topology
optimization as a conceptual design tool should
only concentrate on the size-irrelevant geometry
while the minimum member size constraint can be
more effectively and appropriately handled by siz-
ing optimization [Bendsøe and Sigmund (2003)].
This minimum length-scale constraint may even
be destructive to topology optimization since the
underlying topology may be changed due to the
possible elimination of relatively small structural
members.

5 Bilateral Sensitivity Filtering Approach

In the bilateral sensitivity filtering approach pro-
posed by Wang and Wang [Wang and Wang
(2005)], the filtered sensitivity can be written as

∂̂J
∂ρe

= k−1(e)
N

∑
i=1

DiSivi
∂J
∂ρi

(22)

where

k(e) =
N

∑
i=1

DiSivi (23)

Di = e−
1
2 (dist(e,i))2/σd

2
(24)

Si = e−
1
2 Δi

2/σr
2

(25)

Δi =
∂J
∂ρi

− ∂J
∂ρe

(26)

in which σd and σr are the geometric spread
and photometric spread [Tomasi and Manduchi
(1998)], respectively. It can be seen that the bi-
lateral filter combines a domain filter component

Di in the spatial domain with a range filter com-
ponent Si in the sensitivity domain. As a result,
the filtered sensitivity is an average of similar and
nearby sensitivity values.

The bilateral sensitivity filter shown in Eq. (22)
is a nonlinear edge preserving smoothing filter
[Tomasi and Manduchi (1998)], which may re-
sult in a significant advantage over other types
of filters [Sigmund (1994); Bruns and Tortorelli
(2001); Borrval (2001); Sigmund (2001b)] in gen-
erating black-and-white designs due to its range
filter component. In bilateral filtering, the crisp
edges or boundaries can be preserved during
smoothing [Tomasi and Manduchi (1998); Du-
rand and Dorsey (2002); Elad (2002); Jiang,
Baker, Wu, Bajaj, and Chiua (2003); Fleishman,
Drori, and Cohen (2003); Zhou, Hu, and He
(2004)]. Since the range filter component Si

only affects similar sensitivity values, the weights
for the neighboring pixels are almost zero if the
center pixel is at the edge and averaging across
edges while smoothing an image is thus prevented
[Wang and Wang (2005)].

In the bilateral sensitivity filter, a larger geomet-
ric spread σd or photometric spread σr may cause
more severe smoothing [Tomasi and Manduchi
(1998); Wang and Wang (2005)]. The bilateral
filtering may be similar to the normal low pass
filter for a too large photometric spread σr. Fur-
thermore, no filtering will be introduced for a too
small σr or σd. When σr is infinite, the bilat-
eral filter is reduced to a normal low pass fil-
ter [Jiang, Baker, Wu, Bajaj, and Chiua (2003)].
Therefore, appropriate choice of these two fil-
ter parameters for the bilateral sensitivity filter
is required to overcome the numerical instabil-
ities while preserving the boundaries of mesh-
independent holes to favor the 0-1 convergence.
The well-known continuation method [Peters-
son and Sigmund (1998); Bendsøe and Sigmund
(2003)] can be used to reduce the dependence on
the filter parameters to achieve checkerboard-free,
mesh-independent and black-and-white designs.
However, the computational cost would be ex-
pansive in terms of the number of iterations and
CPU time. Furthermore, there is no guarantee that
checkerboard-free, mesh-independent and black-
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and-white designs be finally and fully generated.
The bilateral sensitivity filtering approach cannot
be robust enough to eliminate a given checker-
board pattern due to the fact that the filtered sensi-
tivity of a void element would not be sufficiently
large to change the decent direction, as afore-
mentioned. Therefore, further improvements over
the bilateral sensitivity filtering approach for the
SIMP method topology optimization are needed.

6 Present Hybrid Sensitivity Filtering Ap-
proach

In the present approach, the traditional sensitivity
filtering approach is combined with the bilateral
sensitivity filtering approach such that their re-
spective merits can be inherited while their draw-
backs can be avoided. The basic idea is that the
traditional sensitivity filter is confined in a sub-
domain where numerical instabilities are likely to
occur while the bilateral sensitivity filter is em-
ployed for the corresponding nearest neighboring
elements of mesh-independent holes and no fil-
tering is introduced for mesh-independent holes
during the iterations of the optimization proce-
dure. The theoretical basis is that the numerical
instabilities demonstrated as checkerboard pat-
terns and mesh-dependent holes are only a lo-
cal phenomenon so that the priori restrictions on
the admissible design configurations such as a
perimeter, gradient, or filtering constraint can be
introduced either globally or locally [Sigmund
(2001a); Bendsøe and Sigmund (2003)], as afore-
mentioned. Apparently, if the numerical instabil-
ities were not a local phenomenon, the traditional
sensitivity filtering approach would not have be-
come so successful since the global change of
the decent directions imposed by the traditional
sensitivity filter to overcome the numerical in-
stabilites would have made the objective func-
tion increase and the topology optimization prob-
lem would have been inappropriately resolved in
general. It should be noted that it is impossible
to cause the numerical instabilities inside mesh-
independent holes after updating the densities us-
ing the heuristic density updating scheme [Bend-
søe (1995)] as shown in Eq. (10).

The filtered sensitivity ∂̂J
∂ρe

of the present hybrid

sensitivity filtering approach can be written as
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where

Ω f ∪Ωb ∪Ωn = Ω (28)

Ω f ∩Ωn = /0, Ω f ∩Ωb = /0, Ωb∩Ωn = /0 (29)

The traditional sensitivity filter (13) is only ap-
plied to the sub-domain Ωt in which the tra-
ditional sensitivity filtering is desirable to over-
come the numerical instabilities robustly, the bi-
lateral sensitivity filter is limited to the sub-
domain Ωb defined by the nearest neighboring
elements of mesh-independent holes where 0-1
convergence is most desirable, and no filtering
is introduced to the sub-domain Ωn defined by
the mesh-independent holes in which sensitivity
filtering is undesirable and unnecessary to save
the computational cost. In this study, Ωn and
Ωb are to be explicitly defined using an image-
processing-based technique and Ωt can be subse-
quently obtained from Eqs. (28) and (29).

In order to define the non-filtering sub-domain Ωn

and the bilateral sensitivity filtering sub-domain
Ωb explicitly, some image-processing techniques
have to be introduced to identify holes in the
design domain Ω. In image processing for a
2D problem, either a 4-neighborhood connectiv-
ity, where only vertical and horizontal directions
can be followed, or a 8-neighborhood connectiv-
ity, where horizontal, vertical and diagonal di-
rections are allowed, can be used [Jahne (1997);
Wang, Lim, Khoo, and Wang (2007b)], as shown
in Fig. 1. To determine the structural connec-
tivity more effectively, the 4-neighborhood con-
nectivity measure as shown in Fig. 1(a) is em-
ployed in the present study since the undesirable
patches of checkerboard patterns will not be con-
sidered as appropriately connected due to its edge
connection requirement [Wang and Tai (2005b);
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Wang, Tai, and Wang (2006)]. Moreover, the
connected components labeling approach [Jahne
(1997); Chang, Chen, and Lu (2004)] in image
processing is also used for the present hole identi-
fication. The connected components labeling ap-
proach scans an image and groups its pixels into
components based on pixel connectivity. Once all
groups have been determined, each pixel is la-
beled with a unique (integer) number according
to the component it was assigned to. With this la-
beling, the number of connected regions and their
relative areas can be readily obtained with a sim-
ple inspection of the labeled image’s histogram
[Wang and Tai (2005b); Wang and Wang (2005)].
The connected components labeling approach can
work on binary or gray-level images and different
measures of connectivity. In the present analy-
sis, a design is to be further taken as a binary im-
age for hole identification. The connected com-
ponents labeling approach based on the binary
image and 4-neighborhood connectivity measure
can then be used to identify mesh-independent
holes of a design to define the sub-domains Ωn

and Ωb.

To carry out hole identification to obtain mesh-
independent holes of a design, a hole definition
must be first given. In the present study, a hole of
a 2D FE-discretized design is defined as a group
of connected void elements whose densities are
exactly ρmin using the 4-neighborhood connectiv-
ity measure. Based on this hole definition, a de-
sign usually taken as a gray-level image [Bend-
søe and Sigmund (2003)] can be converted into a
work binary image for the connected components
labeling approach. Figure 2 displays the conver-
sion process. The binary image in Fig. 2(b) is
converted from the gray-level image in Fig. 2(a)
by assuming that

ρe =
{

0, if ρe = ρmin

1, if ρmin < ρe � ρmax
(30)

and the work image shown in Fig. 2(c) is ob-
tained by performing a NOT (inverter) Boolean
logic operation on the binary image in Fig. 2(b).
It should be noted that the connected void ele-
ments depicted in black at the boundary of the
design domain Ω in Fig. 2(c) are also considered

as holes for the sake of simplicity. Based on this
work binary image, the connected components la-
beling approach can be used to obtain the number
of holes and their sizes to further identify mesh-
independent and so-called nascent holes. In this
study, a nascent hole indicates a hole whose size
is smaller than the size defined by the filter radius
rmin but the nearest neighboring elements are with
intermediate densities, implying that the hole is at
the nascent stage to become a distinct hole. The
identification of nascent holes with blurry bound-
aries is necessary to drive 0-1 convergence at the
boundaries of these holes such that the minimum
length-scale constraint controlled by the filter ra-
dius can be accurately imposed. This constraint
on the minimum hole size is crucial to achieve
well-posedness of the optimization problem and
ensure existence of solutions [Bendsøe and Sig-
mund (2003)]. The traditional sensitivity filter-
ing approach cannot guarantee that the minimum
hole size constraint be satisfied rigorously due to
the blurry boundaries of all of the holes. If the
nearest neighboring elements are solid, the hole
should be regarded as a mesh-dependent hole and
the traditional sensitivity filter should be applied
to smooth out the hole and overcome the numeri-
cal instability .

The sub-domains Ωn and Ωb can be readily
defined after identifying the mesh-independent
and nascent holes for a design during the op-
timization process. Figure 3 shows the defini-
tions of the bilateral sensitivity filtering and non-
filtering regions for the mesh-independent and
nascent holes. An identified mesh-independent or
nascent hole is defined as a non-filtering region
in black color while its nearest neighboring ele-
ments a bilateral sensitivity filtering region in grey
color. The non-filtering sub-domain Ωn can be ex-
pressed as

Ωn =
Nh⋃
i=1

Ai (31)

where Nh is the total number of the mesh-
independent and nascent holes, and Ai the non-
filtering region of the i-th hole. Since filtering is
disabled in Ωn, the destructive minimum length-
scale constraint on the sizes of structural mem-
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Figure 1: Connectivity measures for a 2D problem.

bers between the mesh-independent holes is also
disabled and thus the present approach can avoid
the risk of converging to a sub-optimal solution
due to the possible elimination of structural mem-
bers imposed by the minimum member size con-
straint. Similarly, the bilateral sensitivity filtering
sub-domain Ωb can be expressed as

Ωb =
Nh⋃
i=1

Bi (32)

where Bi is the bilateral sensitivity filtering re-
gion of the i-th mesh-independent or nascent hole.
According to the present definitions, we have

Ai ∩Bi = /0, Ωn∩Ωb = /0 (33)

and thus the traditional sensitivity filtering sub-
domain Ωt can be readily obtained, according to
Eqs. (28) and (29).

In the bilateral sensitivity filtering sub-domain
Ωb, checkerboard-patterns and mesh-dependent
holes are unlikely to occur due to the present def-
inition of each bilateral sensitivity filtering region
round a hole. Since the bilateral filter has a range
filter component to preserve the significant dif-
ferences inside the filter window, the tendency

of 0-1 convergence driven by the power-law pe-
nalization on intermediate densities in the SIMP
method [Bendsøe (1989); Rozvany (2001); Bend-
søe and Sigmund (2003)] can also be preserved.
Hence, distinct boundaries of mesh-independent
holes can be produced in the final designs in gen-
eral. In the traditional sensitivity filtering sub-
domain Ωt , patches of checkerboard-patterns and
mesh-dependent holes can be suppressed robustly
due to the traditional sensitivity filter. How-
ever, 0-1 convergence cannot be guaranteed due
to the apparent delay on the tendency of 0-1
convergence imposed by the traditional sensitiv-
ity filter, as aforementioned. The transition re-
gions with intermediate densities, which can be
taken as an indication of blurred mesh-dependent
holes, may appear in the final designs, depend-
ing on the filter radius and mesh size. Therefore,
the final designs maybe mostly black-and-white,
rather than complete black-and-white. Since the
sizes of the blurred mesh-dependent holes are
smaller than the size defined by the filter ra-
dius, the existence of these transition regions can
be reasonable and should not affect the optimal
topologies, which may be represented by the dis-
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(a) Gray-level image

(b) Binary image conversion

(c) Work image conversion

Figure 2: Image conversion of a design for hole
identification.

tinct mesh-independent holes. Furthermore, the
present mostly black-and-white designs may not
pose difficulties in boundary identification and
design realization in practice due to the distinct
boundaries of mesh-independent holes. Hence,
complete black-and-white designs may be unnec-
essary in topology optimization. Nevertheless, if
complete black-and-white designs are of the ma-
jor concern, a relatively large filter radius should
be used to prevent the occurrence of the transi-
tion regions, or the well-recognized continuation
method [Bendsøe and Sigmund (2003)] should be
employed to gradually remove those transition re-
gions in the traditional sensitivity filtering sub-
domain Ωt . The former is computationally ef-
ficient, but the objective function value may be
worse since the optimal topology may become

(a) A mesh-independent hole

(b) Filtering (grey) and non-filtering (black) regions
for the mesh-independent hole

(c) A nascent hole

(d) Filtering (grey) and non-filtering (black) regions
for the nascent hole

Figure 3: Definition of the bilateral sensitivity fil-
tering and non-filtering regions.

simpler. The latter may not cause further topolog-
ical changes, but it is computationally expansive
and 0-1 convergence cannot be guaranteed.

As a whole, the present hybrid sensitivity filter-
ing approach combines the traditional sensitivity
filter to overcome the numerical instabilities with
the bilateral sensitivity filter to favor the occur-
rence of distinct boundaries of mesh-independent
holes. As a result, the numerical instabilities can
be effectively and robustly suppressed and dis-
tinct boundaries of mesh-independent holes can
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be achieved. Existence of solutions can be en-
sured more accurately and the side effects of both
the traditional and the bilateral sensitivity filters
can be avoided or alleviated. The present ap-
proach can achieve not only checkerboard-free
and mesh-independent but also mostly black-and-
white designs. Furthermore, as illustrated in the
present numerical examples, the present approach
is computationally at least as efficient as the
traditional sensitivity approach since the present
image-processing-based hole identification tech-
nique is simple to implement and filtering is pro-
hibited in the non-filtering sub-domain Ωn, which
is usually large in topology optimization [Roz-
vany (2001)]. Therefore, the present approach
can be both accurate and efficient for the SIMP
method topology optimization.

7 Examples and Discussion

Classical examples are used to demonstrate both
the accuracy and efficiency of the present hybrid
sensitivity filtering approach for topology opti-
mization. Unless otherwise stated, all the units are
consistent and the following parameters are as-
sumed as: ρmin = 0.001, ρmax = 1, Young’s mod-
ulus E = 1, Poisson’s ratio ν = 0.3, power p = 3,
move limit m = 0.2, damping coefficient η = 0.5,
geometric spread σd = rmin/2, and photometric
spread σr = 0.1. The present algorithm is based
on an initial design in which each element has
the same density as the volume fraction and ter-
minated when the relative difference between two
successive objective function values is less than
10−6 or a prescribed maximum number of itera-
tions has been reached. The FE analysis is based
on the bilinear rectangular elements in [Sigmund
(2001a)] and all the comparisons on the objective
function values are based on the final results when
the iteration is terminated. All the CPU time is
based on a desktop computer under the MATLAB
environment with two Intel Pentium IV proces-
sors of 3.0 GHz clock speed.

7.1 A Two-bar Problem

The classical two-bar topology optimization prob-
lem for which the optimal solution has been ob-
tained analytically [Michell (1904)] is used for the

verification of the present approach and demon-
stration of its efficiency. The clamped deep beam
with a fixed 10×24 rectangular design domain as
shown in Fig. 4 is adopted as a minimum com-
pliance design problem, which has been studied
by many other researchers such as Xie and Steven
[Xie and Steven (1993)], Bulman et al. [Bulman,
Sienz, and Hinton (2001)], Wang and Tai [Wang
and Tai (2005a)], and Wang and Wang [Wang
and Wang (2005)]. The beam is fully clamped
along the left-hand edge and a load P is applied
at the centre of the right-hand edge. The design
domain is discretized with a regular FE mesh.
The basic parameters are assumed to be: thick-
ness t = 1.0, load P = 1 and the volume frac-
tion γ = 0.20 [Bulman, Sienz, and Hinton (2001)].
The analytical solution for this problem is known
to be a two-bar structure with an internal angle
of 90◦ [Xie and Steven (1993); Bulman, Sienz,
and Hinton (2001)]. For the purpose of compari-
son, the solution provided by the homogenization-
based method (CATO-mc) [Bulman, Sienz, and
Hinton (2001)] is also depicted in Fig. 4. It can
be seen that the solution is similar to a two-bar
structure with an internal angle of 90◦, but the
homogenization-based method may produce a fi-
nal design with grey elements at the boundary and
is thus less desirable.

Figure 5 shows the optimal topologies for the two-
bar problem using the traditional sensitivity filter-
ing approach with a filter radius of rmin = 0.48 and
four different meshes. It can be seen that the tra-
ditional approach can achieve checkerboard-free
and mesh-independent designs similar to the ana-
lytical two-bar solution, but cannot produce dis-
tinct black-and-white designs due to the blurry
boundary. Figure 6 shows the optimal topologies
using the bilateral sensitivity filtering approach.
It can be seen that the bilateral approach may
achieve black-and-white designs, but may pre-
serve the numerical instability shown as mesh-
dependent holes at the fixed end of the designs.

Figure 7 shows the the optimal topologies using
the present hybrid sensitivity filtering approach.
The optimal topologies achieved by the present
approach are also similar to the analytical solu-
tion and can also be checkerboard-free and mesh-
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Figure 4: A two-bar topology topology optimization problem.

independent as the traditional approach. More
importantly, as shown in Fig. 7, black-and-white
designs can be obtained. Hence, the present ap-
proach is an excellent combination of the tra-
ditional and the bilateral sensitivity filtering ap-
proaches. The distinct boundaries are zigzag due
to the element-wise constant density assumption
and thus the boundary-based shape optimization
[Bendsøe and Sigmund (2003)] may be needed to
obtain a smooth shape. It can also be seen that the
zigzag boundaries become much smoother when
finer finite element meshes are used, however, the
computational cost may become much more ex-
pansive.

A further comparison on the accuracy and effi-
ciency is listed in Table 1. It can be seen that
the traditional sensitivity filtering approach may
only achieve an infeasible and sub-optimal solu-
tion in terms of the 0-1 convergence measured
by the average density ρ∗ of all the non-void el-
ements [Wang and Wang (2005)] and the final
minimum compliance Jmin, while the bilateral ap-
proach may achieve a feasible but sub-optimal so-
lution. The present approach can achieve a feasi-
ble and optimal solution due to its combination
of the first two approaches. It can also be seen
that the present approach can be as efficient as,
or more efficient than, the traditional approach.
The bilateral approach is the most inefficient one

due to its computational complexities as shown in
Eq. (22). Table 1 also shows that the CPU time
is not dominated by the sensitivity filtering since
the fraction of CPU time on filtering is little, es-
pecially when a fine mesh is used. Hence, us-
ing filtering approaches to overcome the numer-
ical instabilities are economical in general. Fig-
ure 8 shows the convergence history of the objec-
tive function using the present approach. It can be
seen the convergence is quite stable for the four
different meshes. Since the numerical instabilities
are only a local phenomenon, the decent direc-
tions can only be changed locally by the present
hybrid sensitivity filter, the decrease of the objec-
tive function can thus be unaffected.

7.2 Short Cantilever Beam

A short cantilever beam minimum compliance de-
sign problem defined in a fixed L ×H rectangu-
lar design domain as illustrated in Fig. 9 is con-
sidered. The basic parameters are assumed to
be L = 2, H = 1, thickness t = 1.0, load P = 1
and a volume fraction of 0.5. Figure 10 displays
the optimal topologies using the traditional sen-
sitivity filtering approach with a filter radius of
rmin = 0.06 and four different meshes. Again, it
illustrates that the traditional approach produces
checkerboard-free and mesh-independent designs
with relatively poor 0-1 convergence at the bound-
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(a) Mesh 25×60 (b) Mesh 40×96 (c) Mesh 50×120 (d) Mesh 60×144

Figure 5: Optimal topologies for the two-bar problem using the traditional sensitivity filtering method.

(a) Mesh 25×60 (b) Mesh 40×96 (c) Mesh 50×120 (d) Mesh 60×144

Figure 6: Optimal topologies for the two-bar problem using the bilateral sensitivity filtering method.

(a) Mesh 25×60 (b) Mesh 40×96 (c) Mesh 50×120 (d) Mesh 60×144

Figure 7: Optimal topologies for the two-bar problem using the present hybrid sensitivity filtering approach.
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Table 1: Solutions to the two-bar problem using different sensitivity filtering approaches.
(t it: average CPU time per iteration; tfil: average CPU time on filtering per iteration; t frac = tfil/t it )

Mesh Approach Jmin ρ∗ Iterations t it tfil tfrac

25×60 Traditional 10.347 0.695 56 0.976 0.075 0.0772
Bilateral 10.092 0.996 21 0.952 0.112 0.1180
Hybrid 9.390 0.964 94 0.894 0.078 0.0872

40×96 Traditional 10.473 0.668 100 3.817 0.190 0.0497
Bilateral 10.338 0.999 100 3.946 0.260 0.0658
Hybrid 9.541 0.993 83 3.906 0.196 0.0501

50×120 Traditional 10.678 0.647 100 8.481 0.341 0.0403
Bilateral 10.430 0.993 28 8.178 0.561 0.0686
Hybrid 9.678 0.999 48 8.147 0.313 0.0384

60×144 Traditional 10.763 0.664 100 15.287 0.501 0.0328
Bilateral 10.664 0.994 100 17.889 0.797 0.0446
Hybrid 9.778 0.998 35 15.341 0.456 0.0297

aries. Figure 11 shows the optimal topologies
using the bilateral sensitivity filtering approach.
Again, it shows that the bilateral approach (using
the given photometric spread σr = 0.1) produces
black-and-white designs, but preserves the signif-
icant numerical instabilities.

Figure 12 shows the optimal topologies gener-
ated by the present hybrid sensitivity filtering
approach. The ability of present approach in
achieving checkerboard-free, mesh-independent
and black-and-white designs is again demon-
strated. Table 2 displays a comparison on the effi-
ciency and accuracy between different sensitivity
filtering approaches. Again, it can be seen that
the present approach can be more accurate and
efficient than the traditional or bilateral approach
and the sensitivity filtering itself is computation-
ally efficient due to the little extra CPU time.

7.3 2D Bridge

A 2D bridge minimum compliance design prob-
lem defined in a fixed L× H rectangular design
domain as illustrated in Fig. 13 is investigated.
The basic parameters are assumed to be: L = 2,
H = 1.2, thickness t = 1.0, load P = 1 and a vol-
ume fraction of 0.4. Figure 14 displays the opti-
mal topologies generated by the traditional sen-
sitivity filtering approach with a filter radius of
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Figure 8: Convergence history of the compliance
for the two-bar problem using the present ap-
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Figure 9: A short cantilever beam problem.
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(a) Mesh 40×20 (b) Mesh 60×30

(c) Mesh 80×40 (d) Mesh 100×50

Figure 10: Optimal topologies for the short cantilever problem using the traditional sensitivity filtering
method.

(a) Mesh 40×20 (b) Mesh 60×30

(c) Mesh 80×40 (d) Mesh 100×50

Figure 11: Optimal topologies for the short cantilever problem using the bilateral sensitivity filtering method.
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(a) Mesh 40×20 (b) Mesh 60×30

(c) Mesh 80×40 (d) Mesh 100×50

Figure 12: Optimal topologies for the short cantilever problem using the present hybrid sensitivity filtering
method.

Table 2: Solutions to the short cantilever problem using different sensitivity filtering approaches.

Mesh Approach Jmin ρ∗ Iterations t it tfil tfrac

40×20 Traditional 67.022 0.692 47 0.444 0.042 0.0952
Bilateral 67.803 0.994 35 0.433 0.065 0.1496
Hybrid 63.142 0.975 100 0.415 0.045 0.1086

60×30 Traditional 67.565 0.701 83 1.058 0.090 0.0848
Bilateral 71.127 0.960 100 1.075 0.135 0.1260
Hybrid 62.801 0.992 89 1.031 0.093 0.0906

80×40 Traditional 67.596 0.689 100 2.451 0.183 0.0748
Bilateral 71.065 0.982 100 2.570 0.327 0.1271
Hybrid 62.809 0.999 100 2.409 0.177 0.0733

100×50 Traditional 67.489 0.698 100 5.093 0.327 0.0642
Bilateral 72.470 0.962 100 5.176 0.512 0.0989
Hybrid 62.555 1.000 57 5.023 0.319 0.0634



A Hybrid Sensitivity Filtering Method for Topology Optimization 39

rmin = 0.01 and four different meshes. Again,
it demonstrates that the traditional approach pro-
duces checkerboard-free and mesh-independent
designs with poor 0-1 convergence at the shape
boundaries. Figure 15 shows the optimal topolo-
gies generated by the present hybrid sensitivity
filtering approach. The present approach can
produce not only checkerboard-free and mesh-
independent but also 0-1 convergent designs. The
distinct ability of the present approach is again
demonstrated. Table 3 displays the a comparison
on the accuracy and efficiency between the tradi-
tional and the present hybrid sensitivity filtering
approaches. Again, it shows that the present ap-
proach would be more accurate and efficient than
the traditional approach and the sensitivity filter-
ing is economical to overcome the numerical in-
stabilities.

P

L

H

Figure 13: A 2D bridge topology optimization
problem.

7.4 MBB Beam

The minimum compliance design problem of a
MBB beam is used to further illustrate the accu-
racy and efficiency of the present hybrid sensitiv-
ity filtering approach. The MBB beam as shown
in Fig. 16 is loaded with a concentrated vertical
force of P at the centre of the top edge and is sup-
ported on rollers at the bottom-right corner and on
fixed supports at the bottom-left corner. The ba-
sic parameters are assumed to be: L = 3, H = 1,
thickness t = 1.0, load P = 1 and a volume frac-
tion of 0.5.

Figure 17 shows the optimal designs for this
problem produced by the traditional sensitivity
filtering approach with a relatively large filter
window size of rmin = 0.1. It can be seen
that checkerboard-free and mesh-independent de-
signs are achieved, but the final designs can be
quite blurry at the boundaries.Figure 18 shows
the optimal designs generated by the present ap-
proach. The ability of the present approach in
achieving checkerboard-free, mesh-independent
and practical black-and-white designs is demon-
strated again. The accuracy and efficiency of the
present approach is further shown in Table 4. It
can be seen that the present approach may be
more accurate and efficient than the traditional ap-
proach. Evidently, the present approach for topol-
ogy optimization can be highly competitive due to
its high accuracy and efficiency.

Figure 19 shows the checkerboard-free and mesh-
independent designs generated by the traditional
sensitivity filtering approach with a smaller filter
window size of rmin = 0.0533. Due to the reduc-
tion in the filter radius as well as the smoothing ef-
fect, the optimal topologies become more compli-
cated and the transition regions with intermediate
densities occur inside the material domain in the
final designs. The existence of these transition re-
gions may hamper the identification of holes and
cause difficulties in boundary identification and
design realization in a post-processing step which
is necessary for shape recovery from the opti-
mization solution [Bendsøe and Sigmund (2003);
Wang and Wang (2005); Sigmund (2007)]. In
the SIMP method topology optimization using
the traditional sensitivity filtering approach [Sig-
mund (2001a); Bendsøe and Sigmund (2003)],
further hole identification was actually left to the
users since there is no rigorous definition of a
hole, one of the most important concepts in topol-
ogy optimization. The present image-processing-
based hole identification technique, as shown in
Fig. 2, is thus applied to obtain the distinctly de-
fined holes. Figure 20 shows the optimal topolo-
gies identified by the present hole identification
technique, in which the identified holes are high-
lighted with black color. It can be seen the that
the optimal topologies are also checkerboard-free
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(a) Mesh 60×36 (b) Mesh 80×48

(c) Mesh 100×60 (d) Mesh 120×72

Figure 14: Optimal topologies for the 2D bridge problem using the traditional sensitivity filtering approach.

Table 3: Solutions to the 2D bridge problem using different sensitivity filtering approaches.

Mesh Approach Jmin ρ∗ Iterations t it tfil tfrac

60×36 Traditional 14.603 0.702 58 1.346 0.111 0.0821
Hybrid 13.921 0.967 100 1.371 0.113 0.0826

80×48 Traditional 15.178 0.685 100 3.206 0.193 0.0600
Hybrid 14.339 0.990 100 3.210 0.193 0.0600

100×60 Traditional 15.354 0.717 100 6.809 0.347 0.0510
Hybrid 14.782 0.993 66 6.700 0.331 0.0495

120×72 Traditional 15.756 0.685 100 12.774 0.491 0.0384
Hybrid 15.001 0.999 66 12.970 0.470 0.0363
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(a) Mesh 60×36 (b) Mesh 80×48

(c) Mesh 100×60 (d) Mesh 120×72

Figure 15: Optimal topologies for the 2D bridge problem using the present hybrid sensitivity filtering ap-
proach.
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Figure 16: A MBB beam topology optimization problem.
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(a) Mesh 180×30 (b) Mesh 240×40

(c) Mesh 300×50 (d) Mesh 360×60

Figure 17: Optimal topologies for the MBB beam problem using the traditional sensitivity filtering approach
(rmin = 0.1).

(a) Mesh 180×30 (b) Mesh 240×40

(c) Mesh 300×50 (d) Mesh 360×60

Figure 18: Optimal topologies for the MBB beam problem using the present hybrid sensitivity filtering
approach (rmin = 0.1).

Table 4: Solutions to the MBB beam problem using different sensitivity filtering approaches (rmin = 0.1).

Mesh Approach Jmin ρ∗ Iterations t it tfil t frac

180×30 Traditional 105.687 0.662 100 4.974 0.345 0.0693
Hybrid 96.362 0.999 100 5.430 0.357 0.0658

240×40 Traditional 106.399 0.650 100 13.170 0.709 0.0538
Hybrid 96.605 1.000 73 14.627 0.702 0.0480

300×50 Traditional 106.837 0.648 90 30.071 1.352 0.0450
Hybrid 96.433 1.000 74 32.779 1.246 0.0380

360×60 Traditional 107.051 0.649 100 58.722 2.355 0.0401
Hybrid 96.657 1.000 89 64.637 2.079 0.0322
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and mesh-independent (except the one in which
the coarsest mesh 180×30 is used), however, ex-
istence of solutions may not be ensured rigorously
since the minimum hole size is not exactly con-
trolled by the minimum length-scale defined by
the filter radius rmin = 0.0533 due to the interme-
diate densities at the blurry boundaries.

Figure 21 shows the optimal designs produced by
the present hybrid sensitivity filtering approach
with the filter radius rmin = 0.0533. The cor-
responding optimal topologies identified by the
present hole identification technique are shown
in Fig. 22. It can be seen that the final designs
can be checkerboard-free, mesh-independent and
mostly black-and-white, but transition regions
with intermediate densities may exist and thus the
present image-processing-based hole identifica-
tion technique may be needed to obtain the mesh-
independent holes, as shown in Fig. 22. Existence
of solutions can be ensured more rigorously since
the minimum hole size can be more accurately
estimated due to the distinct boundaries of mesh-
independent holes. Complete black-and-white de-
signs cannot be achieved due to the use of the tra-
ditional sensitivity filter to smooth out the mesh-
dependent holes. Figure 21 also shows the effect
of mesh-refinement on the transition regions. It
can be seen that finer meshes may lead to lower
densities inside some transition regions. Since the
distribution of element strain energy in a transi-
tion region controlled by the filter radius may be-
come much smoother due to mesh-refinement, the
filtered sensitivity of a low density element may
be less amplified by the traditional sensitivity fil-
ter (13) and thus the tendency of 0-1 convergence
will be less delayed. Nevertheless, it should be
noted that creating new mesh-independent holes
due to mesh-refinement cannot be guaranteed in
general.

Comparing Fig. 21 with 19 as well as Fig. 22 with
20, it can be seen that the final topologies pro-
duced by the traditional approach may be quite
different from those generated by the present ap-
proach. The minimum length-scale constraint on
the structural member size may be strong enough
to eliminate some small-size structural members
to ruin the structural topology. Moreover, the un-

necessary smoothing on mesh-independent holes
may make the material distribution less effective
and thus creation of new mesh-independent holes
becomes easier. As a result, as shown in Figs. 19
and 20, the side effects of the traditional sensi-
tivity filtering approach may lead to undesirable
topological changes. Therefore, the present ap-
proach for topology optimization can be more ac-
curate since the side effects can be well alleviated
and the risk of converging to a sub-optimal solu-
tion can be avoided. Furthermore, a comparison
on the accuracy and efficiency between these two
approaches is listed in Table 5. It can be seen that
the present approach may be more accurate and
efficient in achieving black-and-white designs and
both approaches may require relatively little CPU
time in the SIMP method topology optimization.

Figure 23 shows the checkerboard-free and mesh-
independent designs generated by the traditional
sensitivity filtering approach with a smaller filter
window size of rmin = 0.04. Again, due to the
further reduction in the filter radius, the optimal
topologies become much more complicated. The
blurry designs in Fig. 23 may cause difficulty in
boundary identification and design realization in a
post-processing step. Figure 24 shows the optimal
topologies identified by the present hole identifi-
cation technique. The identified optimal topolo-
gies can also be mesh-independent, but the mini-
mum hole size constraint may be inaccurately sat-
isfied. Figure 25 displays the checkerboard-free
and mostly black-and-white designs produced by
the present constrained sensitivity filtering ap-
proach. It can be seen that mesh-independent
designs can be obtained provided the finite ele-
ment meshes are fine enough. The correspond-
ing optimal topologies identified by the present
hole identification technique are shown in Fig.
26. The minimum hole size constraint can be
more accurately satisfied and existence of solu-
tions can be more rigorously ensured. Again, it
shows that mesh-independent topologies can be
achieved only if the finite element meshes are fine
enough. In this sense, the computational cost may
become higher, but the minimum hole size con-
straint controlled by the filter radius can be more
accurately satisfied and thus existence of solu-
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(a) Mesh 180×30 (b) Mesh 240×40

(c) Mesh 300×50 (d) Mesh 360×60

Figure 19: Optimal designs for the MBB beam problem using the traditional sensitivity filtering approach
(rmin = 0.0533).

(a) Mesh 180×30 (b) Mesh 240×40

(c) Mesh 300×50 (d) Mesh 360×60

Figure 20: Optimal topologies using the traditional sensitivity filtering approach (rmin = 0.0533) identified
by the present hole identification technique.

(a) Mesh 180×30 (b) Mesh 240×40

(c) Mesh 300×50 (d) Mesh 360×60

Figure 21: Optimal designs for the MBB beam problem using the present hybrid sensitivity filtering ap-
proach (rmin = 0.0533).
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(a) Mesh 180×30 (b) Mesh 240×40

(c) Mesh 300×50 (d) Mesh 360×60

Figure 22: Optimal topologies using the present hybrid sensitivity filtering approach (rmin = 0.0533) identi-
fied by the present hole identification technique.

(a) Mesh 180×30 (b) Mesh 240×40

(c) Mesh 300×50 (d) Mesh 360×60

Figure 23: Optimal designs for the MBB beam problem using the traditional sensitivity filtering approach
(rmin = 0.04).

(a) Mesh 180×30 (b) Mesh 240×40

(c) Mesh 300×50 (d) Mesh 360×60

Figure 24: Optimal topologies for the MBB beam problem using the traditional sensitivity filtering approach
(rmin = 0.04) identified by the present hole identification technique.
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(a) Mesh 180×30 (b) Mesh 240×40

(c) Mesh 300×50 (d) Mesh 360×60

Figure 25: Optimal topologies for the MBB beam problem using the present hybrid sensitivity filtering
approach (rmin = 0.04).

(a) Mesh 180×30 (b) Mesh 240×40

(c) Mesh 300×50 (d) Mesh 360×60

Figure 26: Optimal topologies for the MBB beam problem using the present hybrid sensitivity filtering
approach (rmin = 0.04) identified by the present hole identification technique.

Table 5: Solutions to the MBB beam problem using different sensitivity filtering approaches (rmin = 0.0533).

Mesh Approach Jmin ρ∗ Iterations t it tfil t frac

180×30 Traditional 100.244 0.717 100 4.973 0.269 0.0540
Hybrid 95.174 0.973 100 5.336 0.289 0.0541

240×40 Traditional 100.207 0.730 100 13.846 0.536 0.0387
Hybrid 95.613 0.969 50 14.563 0.562 0.0386

300×50 Traditional 101.048 0.720 100 30.652 0.845 0.0276
Hybrid 95.532 0.990 94 32.488 0.841 0.0259

360×60 Traditional 101.145 0.721 100 61.203 1.431 0.0234
Hybrid 95.824 0.988 95 64.483 1.366 0.0212
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Table 6: Solutions to the MBB beam problem using different sensitivity filtering approaches (rmin = 0.04).

Mesh Approach Jmin ρ∗ Iterations t it tfil tfrac

180×30 Traditional 97.304 0.725 54 5.554 0.272 0.0490
Hybrid 94.061 0.949 62 5.228 0.295 0.0564

240×40 Traditional 97.847 0.718 100 13.911 0.460 0.0331
Hybrid 94.701 0.985 100 14.408 0.497 0.0345

300×50 Traditional 97.414 0.743 100 30.568 0.828 0.0271
Hybrid 94.965 0.989 60 32.020 0.858 0.0268

360×60 Traditional 98.117 0.719 100 60.989 1.203 0.0197
Hybrid 95.152 0.997 66 64.049 1.236 0.0193

tions may be more rigorously ensured. Compar-
ing Fig. 26 with Fig. 24, it can be seen that the
optimal topologies generated by the present and
traditional approaches can be nearly identical. A
further comparison on the accuracy and efficiency
between these two approaches is listed in Table 6.
It can be seen that the present approach may be
more accurate than the traditional approach with
similar or far less total CPU time to reach the con-
vergence. Again, the high accuracy and efficiency
of the present approach are demonstrated.

8 Conclusions

In this study, an accurate and efficient hybrid sen-
sitivity filtering approach based on the traditional
and the bilateral sensitivity filtering approaches is
proposed for topology optimization. In producing
checkerboard-free, mesh-independent and black-
and-white designs, the traditional and the bilateral
sensitivity filtering approaches have their respec-
tive advantages and drawbacks. The traditional
approach can overcome the numerical instabili-
ties robustly, but the structural boundary may be
permanently blurred. The bilateral approach can
drive the 0-1 convergence globally, but the numer-
ical instabilities may be not fully eliminated. The
present hybrid approach combines the traditional
approach to overcome the numerical instabilities
with the bilateral approach to favor the occurrence
of distinct boundaries of mesh-independent holes.
The traditional sensitivity filter is only applied
to a sub-domain where the numerical instabilities
are likely to occur, the bilateral sensitivity filter

is employed for the corresponding nearest neigh-
boring elements of mesh-independent holes and
no filtering is introduced for mesh-independent
holes. As a result, the numerical instabilities can
be robustly suppressed and distinct boundaries of
mesh-independent holes can be achieved. Exis-
tence of solutions can be ensured more accurately
and the side effects of both the traditional and the
bilateral sensitivity filters can be avoided or alle-
viated. The present approach can achieve not only
checkerboard-free and mesh-independent but also
mostly black-and-white designs. Furthermore,
the present approach is computationally efficient
because filtering is prohibited in the usually large
non-filtering sub-domain. Therefore, the present
approach can be both accurate and efficient for
the SIMP method topology optimization. The
high accuracy and efficiency of the present ap-
proach are illustrated with classical examples in
minimum compliance design. It is suggested that
the present approach for topology optimization be
highly appealing.
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