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Line Search Partitioned Approach for Fluid-structure Interaction Analysis
of Flapping Wing
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Abstract: Flight dynamics of flapping insects is
still an open area of research, though it is well
known that they can provide superior flight abili-
ties such as hovering motion. The numerical anal-
ysis of flapping wing requires fluid-structure in-
teraction (FSI) analysis to evaluate the effect of
deformable wing on flight ability. Such FSI anal-
ysis is quite challenging because not only the tight
coupling approach to predict flight ability accu-
rately, but also the robust mesh control to trace the
large motion of the wing with elastic deformation
are required. A new iterative partitioned coupling
algorithm for the FSI problems is proposed in this
paper. In the proposed approach, non-linearity of
the FSI problems is mainly treated on the interface
using the line search method, which minimizes
non-equilibrated displacements on the interface in
each fixed point iteration. This approach is intro-
duced to improve the robustness and efficiency of
computation. A two-dimensional FSI analysis of
a flapping wing shows that elastic deformation of
the wing results in passive feathering motion and
generates lift force effectively.

Keyword: Fluid-structure interaction, parti-
tioned method, line search approach, flapping
wing.

1 Introduction

Numerical simulation of fluid-structure interac-
tion (FSI) problems arises in many bioengineer-
ing fields including blood flow [Yang, Tang, Yuan,
Hatsukami, Zheng and Woodard (2007)], crawl
swimming [Gardano and Dabnichki (2006)], and
bio mimetic robots subjected to fluid flows, such
as micro air vehicles (MAV) [Schenato, Wu
and Sastry (2004)]. For FSI problems with
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strong interaction between solid and fluid por-
tions, monolithic approaches [Zhang and Hisada
(2001)] [Ishihara and Yoshimura (2005)] are usu-
ally adopted as a solution procedure because of its
robustness. On the other hand, partitioned cou-
pling schemes, in which solid and fluid analyses
are separately conducted, are preferable in terms
of their computation efficiency because each
physical phenomenon can adopt its most efficient
solution procedures, for instance, Balancing Do-
main Decomposition method [Mandel (1993)] for
solid analysis and GMRES for fluid analysis [Tez-
duyar (2006)]. Furthermore, partitioned methods
can utilize existing parallel analysis codes such
as ADVENTURE systems [Yoshimura, Shioya,
Noguchi and Miyamura (2002)] and large scale
analyses are available without further implemen-
tation efforts. However, the partitioned methods
were regarded as being not so robust [Causin,
Gerbeau and Nobile (2005)] and accurate [Bathe,
Zhang and Ji (1999)] compared to the monolithic
approaches in case that the solution is carried out
without convergence in each time step.

Recently, tightly coupled partitioned methods
have been developed using a block Gauss-
Seidel approach [Wall, Genkinger and Ramm
(2007)] and a block Newton approach [Matthies
and Steindorf (2003)][Fernandez and Moubachir
(2005)]. Conventional serial staggered schemes
solve solid and fluid problems only once in each
time step, while the tightly coupled partitioned
methods solve those problems iteratively within
a fixed time step until satisfying the continuity of
interface velocities and tractions. These tightly
coupled methods offer the possibility to achieve
the same results as the monolithic methods in a
robust manner.

A new iterative partitioned coupling algorithm for
FSI problems is proposed in this paper. In the
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proposed approach, non-linearity of FSI problems
is mainly treated on the interface between solid
and fluid portions using the line search method,
which minimizes the non-equilibrated displace-
ments on the interface in each fixed point itera-
tion to improve the robustness and efficiency of
computation. Performance of the proposed ap-
proach is investigated on the flapping motion of
MAV, which are inch-size flying robots and have
drawn a great deal of attentions for the applica-
tion of environmental monitoring and life-saving
activities. Flapping MAV attracts more attentions
than that with fixed wing, because small scale
flapping wings could offer superior flight abil-
ities to fixed wings [Mueller (2001)] owing to
their unsteady aerodynamics properties. The FSI
analysis of the flapping motion of MAV is quite
challenging because it requires not only the tight
coupling approach to predict flight ability accu-
rately, but also the robust mesh control to trace
the large motion of the wing with elastic deforma-
tion. Two-dimensional analysis of flapping wing
is conducted in this paper to know the perfor-
mance of the proposed method and the feasibility
of large scale three-dimensional analysis of flap-
ping wing.

The fundamental equations for the FSI problems
are given in the following section. In the third
section, the line search partitioned approach is
described. Some numerical examples are given
in the forth section. The concluding remarks are
given in the final section.

2 Fundamental equations for fluid-structure
interaction problems

2.1 Equations for computational solid dynam-
ics

For a structural part, the total Lagrangian descrip-
tion is employed. The equilibrium equation for
structural motion and deformation in the domain
of structural analysis, Ωs is described as follows;

ρ s ∂ 2ds

∂ t2 −∇ ·Ss = ρ sb in Ωs (1)

where, ρ s, Ss, ds, b denote the mass density,
the second Piola-Kirchhoff stress tensor, the dis-
placement vector of structure and the body force

vector, respectively. The superscript s stands
for the structural component. The second Piola-
Kirchhoff stress tensor can be converted to the
Cauchy stress tensor σ s by using material de-
formation gradient. Boundary conditions are de-
scribed on Dirichlet boundary, Γs

D and Neumann
boundary, Γs

N as follows;

ds = dgiven on Γs
D (2)

ns ·Ss = hgiven on Γs
N (3)

where ns, hgiven represent the outward normal vec-
tor and the given force vector, respectively.

Quadrilateral finite element with selective re-
duced integration is adopted for spatial decompo-
sition. Although large deformation of the struc-
ture requires the treatment of geometrical non-
linearity, strains are considered to be infinitesi-
mally small in this research, and hence only linear
elastic material is considered.

2.2 Equations for computational fluid dynam-
ics

The incompressible, isothermal, isotropic New-
tonian flow governing laminar flow is consid-
ered. To follow the structural motion, the Navier
Stokes equations with ALE(Arbitrary Lagrangian
Eulerian) description is applied for computational
fluid dynamics. The primitive variables are veloc-
ity u f and kinematic pressure p f .

ρ f ∂u f

∂ t
+ρ f (u f − û f ) ·∇u f −∇ ·p f = f in Ω f

(4)

∇ ·u f = 0 in Ω f (5)

The superscript f stands for the fluid component
and ρ f , û f denote the mass density and the ve-
locity vector of the mesh deformation, respec-
tively. The whole set of equations is defined on a
bounded domain Ω f with boundary Γ, which can
be split into its complementary subsets denoted as
Dirichlet boundary, Γ f

D and Neumann boundary,
Γ f

N . The Dirichlet boundary is also decomposed
into two subsets denoted as fluid-structure inter-
face, ΓInter f ace

D and only fluid Dirichlet boundary,
Γ f

D.

u f = û f on ΓInter f ace
D (6)
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u f = ugiven on Γ f
D (7)

n f ·σ f = hgiven on Γ f
N (8)

where n f , σ f , hgiven represent the outward nor-
mal vector, stress tensor and given force vector,
respectively.

Two kinds of stabilization methods, the stream-
line upwind/Petrov Galerkin method (SUPG) and
the pressure stabilized/Petrov Galerkin method
(PSPG) are applied [Tezduyar and Osawa (2000)].
The linear triangular finite element for both pres-
sure and velocity (P1-P1) is adopted for spatial
discretization of the analysis domain

2.3 Interaction conditions on fluid-structure
interface

The interaction conditions on the fluid-structure
interface are described as follow;

σ f ·n f +σ s ·ns = 0 on ΓInter f ace
D (9)

u f = us =
∂ds

∂ t
on ΓInter f ace

D (10)

Equation (9) is for equilibrium on the interface,
while equation (10) is for geometrical compati-
bility on the interface. In the iterative partitioned
method, the fluid analysis and the solid one are
performed iteratively in each fixed time step un-
til they satisfy the above interaction conditions.
Such iterative step is referred to as fixed point it-
eration.

The consistent spatial discretization on the inter-
face can not be expected in the usual problems,
and hence special techniques to connect incon-
sistent meshes are required [Ahren, Beckert and
Wendland (2006)]. In this paper, the consistency
of the meshes on the interface is assumed to sim-
plify the problems.

2.4 Time integration scheme

For partitioned FSI analyses, the time integration
scheme for computational solid dynamics and
fluid one can be treated and implemented inde-
pendently. However, consistent implicit time inte-
gration schemes are required for accurate as well
as robust analyses[Rugonyi and Bathe (2001)].
In this paper, Newmark’s β method is applied

in computational solid dynamics, while the back-
ward Euler method is applied for computational
fluid dynamics because of its well-tested popular-
ity.

2.5 Mesh control

A robust mesh control is implemented to well de-
scribe the large deformation of fluid domain en-
forced by the flapping motion of the wing. Many
smoothing schemes have been proposed to pre-
vent the deterioration of mesh quality as the total
displacement of the structure increases [Rugonyi
and Bathe (2001)][Degand and Farhat (2002)].
A pseudo elastic smoothing scheme with Jaco-
bian based stiffening [Stein, Tezduyar and Benny
(2004)] and a re-connecting procedure with the
constrained Delaunay method [Gerorge, Hecht
and Saltel (1991)] are adopted as mesh control
procedures because of its simple implementation.
In the pseudo elastic smoothing, the mesh defor-
mation of fluid domain is virtually governed by
the linear elastic equations, and the stiffness of
each element is controlled with Jacobian based
stiffening approach to avoid distorted tiny ele-
ments in the vicinity of the structure. The Jaco-
bian based stiffening is a method to stiff each el-
ement according to its area, i.e. the Jacobian in
triangular element. Young’s modulus of each ele-
ment can be defined as follows;

Ee = Eo(Je)χ (11)

where Ee, E0, Je,χ are Young’s modulus of el-
ement e, the global Young’s modulus, Jacobian
of element e and stiffness parameter, respectively.
When χ is unity, the element becomes stiff in pro-
portion to its area.

As boundary conditions for pseudo elastic fluid
domain, forced displacements are given onto the
fluid-structure interface, and fixed nodes are given
onto the outer boundaries. Even with this smooth-
ing procedure, the distortion of the mesh is in-
evitable for the analysis of flapping wing, and
hence the re-connecting procedure is introduced
as well. The remeshing procedure can be cat-
egorized into two processes. The one is a re-
noding process, [Nishioka, Kobayashi and Fuji-
moto (2007)] in which nodes are newly gener-



54 Copyright c© 2008 Tech Science Press CMES, vol.24, no.1, pp.51-60, 2008

ated in the analysis domain appropriately accord-
ing to the current geometry. The other is a re-
connecting process, where given nodes are con-
nected again according to the given node distribu-
tion with an automatic mesh generation procedure
such as the constrained Delaunay method. In the
present study, only the re-connecting process is
adopted as a basic remeshing procedure. The re-
connecting process is only applied when the dis-
tortion of the element is sufficiently large in terms
of inverse element height aspect ratio given as fol-
lows;

2√
3

max(edge)
min(height)

> εDistortion (12)

where max(edge) denotes the length of edge
which has the maximum length among three
edges of the triangular element, and min(height)
is the minimum height of the triangle which is de-
fined as the height when the edge with the max-
imum length is regarded as the base of triangle.
This criterion is scaled so that the regular triangle
can have the value of unity.

3 Iterative partitioned approach

3.1 Partitioned Approach

The deformation of structure is required as an in-
put data for mesh smoothing scheme and velocity
vector of the mesh is obtained for further fluid dy-
namics analysis. This smoothing procedure can
be represented by the function M.

û f = M(ds) (13)

For fluid analysis, the required input data is the
velocity of the mesh, while the output data for
next solid analysis is fluid force on the interface.
This procedure can be represented by the function
F.

f f = F(û f ) (14)

Finally, the fluid force can be taken into account
in the solid analysis to obtain the structural dis-
placement and the function S can represent this
procedure.

ds = S(f f ) (15)

Because the partitioned approach performs the
above procedures sequentially, it is difficult to
satisfy the geometrical compatibility condition
and equilibrium condition on the interface of FSI
problem. Since the serial staggered method solves
these equations only once typically with structural
predictor to have approximation of structural dis-
placement for equation (13), all the obtained re-
sults have no guarantee of accuracy. In iterative
partitioned approaches, equations (13), (14) and
(15) are solved iteratively until it can guarantee
the accuracy of the analysis with defined criterion.
At nth fixed point iteration, equations (13), (14)
and (15) are written as follows;

û f
n = M(ds

n) (16)

f f
n = F(û f

n) (17)

ds
n+1 = S(f f

n) (18)

As given in the following criterion, the conver-
gence of the fixed point iteration is judged with
sufficiently small value, ε in terms of normalized
Euclid norm of non-equilibrated force;

∣∣∣f f
n+1 − f f

n

∣∣∣
∣
∣∣f f

n+1

∣
∣∣

≺ ε (19)

This simple iterative approach is so-called block
Gauss Seidel method. It is known that the con-
vergence rate of this approach is quite slow and
unstable in case that the mass density of fluid is
similar to that of solid [Causin, Gerbeau and No-
bile (2005)]. To overcome such an unstable con-
vergence problem, the relaxed Block Gauss Sei-
del method, where under-relaxation of the struc-
tural response is introduced so that an added mass
effect is virtually taken into account. Even in
the relaxed method, the convergence rate is not
so well improved. The inexact or exact Newton
method is also introduced [Matthies and Stein-
dorf (2003)][Fernandez and Moubachir (2005)]
to overcome the slow convergence rate of the
partitioned methods, though they require major
changes in the analysis codes because of neces-
sity of the Jacobian matrix.
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3.2 Line Search Approach

The line search approach is introduced in this pa-
per to accelerate the convergence of fixed point
iteration. Non-equilibrated displacements at nth
and n + 1th fixed point iterations are defined as
follows;

rs
n = ds

n+1 −ds
n (20)

rs
n+1 = ds

n+2−ds
n+1 (21)

Direct application of the non-equilibrated dis-
placements could cause excessive deformation in
FSI problems because so-called added mass ef-
fect is not taken into account in the computational
solid dynamics analysis. Hence, in the relaxed
block Gauss-Seidel method, relaxed displacement
is applied, when the displacements of structure
are updated, for the improvement of stability in
fixed point iterations. The relaxed displacements
can be given as follows;

ds
n+2

relaxed = ds
n+1 +λ rs

n+1 (22)

where λ is the constant parameter given by a user.
The parameter, λ , should be small enough for sta-
bility, however too small λ spoils its convergence
rate.

In the line search partitioned approach, λ is com-
puted inside codes automatically. The linear in-
terpolation of the non-equilibrated displacements
between nth and n+1th fixed point iterations can
be described as follow;

rs
interpolated = (1−α)rs

n +αrs
n+1 (23)

A schematic view of the line search approach
in one-dimensional example is shown in Fig.1.
The minimization of linearly interpolated non-
equilibrated displacements can be given by the pa-
rameter, α , in the following;

α = argmin
(∣∣(1−α)rs

n +αrs
n+1

∣∣) (24)

Finally the optimal displacements of the structure,
which minimizes non-equilibrated displacements,
can be described as follows;

ds
Optimal = (1−α)ds

n +αds
n+1

+β
{
(1−α)rs

n +αrs
n+1)

}
(25)

where β (0 < β ≤ 1.0) must be given by the user
yet. β has a small effect on the convergence, com-
pared to α . β is introduced to avoid the situation
such that the optimal parameter is searched only
on one line as shown in Fig.2.

The non-linear loop in each fluid analysis and that
of solid analysis can be treated in the loop of fixed
point iteration because the line search method is
one of traditional non-linear analysis schemes.
The original fluid-structure interaction analysis
procedure with the line search partitioned ap-
proach is described in Fig.3. The non-linear prob-
lem in each fluid problem and that of solid prob-
lem are treated independently inside each analy-
sis code. Since there is an iteration loop over the
fluid-structure interaction, the non-linearity for
fluid and solid problems could be treated in this
loop of fixed point iteration as shown in Fig.4. In
this paper, the original analysis scheme shown in
Fig.3 is referred to as two loops approach, while
alternative approach shown in Fig.4 is referred to
as one loop approach.

(a) non-equilibrated displacement at nth fixed point 

iteration 

(b) non-equilibrated displacement at n+1th fixed point 

iteration 

(c) interpolated displacement with parameter α

Figure 1: Schematic view of one dimensional line
search method
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(a) interpolated displacements with only α

(b) interpolated displacements with α and β
Figure 2: Schematic view of two dimensional line
search method

Computational Fluid Dynamics

Computational Solid Dynamics

Computing “Optimized” Structural Displacement

Structural Predictor

Fixed Point Iteration

Converged?

Yes

No

Next time step

t=n+1

Internal Non-Linear Iteration

Internal Non-Linear Iteration

Figure 3: Two loops partitioned approach

4 Numerical examples

4.1 Vortex-induced oscillations of flexible
structure in the wake of a bluff body

The first numerical example is introduced to show
the performance of the present approach. This
example was employed by many researchers to
demonstrate the stability of their monolithic and
partitioned methods. The vortices induced by

Computational Fluid Dynamics

Computational Solid Dynamics

Computing “Optimized” Structural Displacement

Structural Predictor

Fixed Point Iteration

Converged?

Yes

No

Next time step

t=n+1

Figure 4: One loop partitioned approach

flows around rigid bluff body cause structural os-
cillations of the plate, which fixed at the down-
stream end of the bluff body. The geometry of the
analysis domain and its boundary conditions are
given in Fig.5. The material properties of the fluid
and the structure are the same as those employed
in Wall’s research [Wall and Ramm (1998)].
Young’s modulus, Poisson’s ratio and mass den-
sity of the structure are 2.5×105g/mm · s2, 0.35,
1.0×10−4g/mm3, respectively. The viscosity and
mass density of the fluid are, 1.82×10−5g/mm · s,
1.18× 10−6g/mm3, respectively. The inflow ve-
locity is U=513mm/s, which results in Re =333.
The geometrical configurations are D=10mm and
h=0.6mm. The number of triangular finite ele-
ments and that of nodes in the fluid analysis do-
main are 41,050 and 20,935, respectively, while
the number of quadrilateral finite elements and
that of nodes in the solid analysis domain are
1,200, and 1,407, respectively. The structure has
six elements in the thickness direction. The time
step size is 5.0×10−4s. For the purpose of com-
parison, the block Gauss-Seidel approach and re-
laxed block Gauss-Seidel approach with dynam-
ics computation of relaxation parameter by us-
ing Aitken method [Wall, Genkinger and Ramm
(2007)] are conducted. Aitken method is one



Line Search Partitioned Approach 57

of the most efficient dynamics computation ap-
proaches of relaxation parameter α .

The time history of vertical displacement on the
tip of elastic plate is given in Fig.6. Some typi-
cal flow patterns around the elastic plate are given
in Fig.7. The amplitude of the quasi stationary
oscillation is approximately in between 11mm to
12.5mm, and the average frequency of this os-
cillation is approximately 3.2Hz. These numeri-
cal results agree well with other researchers’ re-
sults. The transient oscillation before reaching
quasi stationary motion, i.e. from 0.0sec. to
2.0sec., quite resembles the result in [Dettmer and
Peric (2006)]. The numbers of fixed point itera-
tions and computation times until 10,000th time
step on Pentium 4 3.0GHz for all analysis cases
are summarized in table 1. All the combinations
of approaches give the same numerical results.
It is clearly shown in the table that the one loop
line search approach reduces 33% of computation
time compared to the two loops approach with the
relaxed block Gauss-Seidel method and as effi-
cient as the Aitken method. In this example, mesh
distortion was not so significant and thus the re-
connecting procedure was not invoked throughout
the analysis.

Figure 5: Geometry and boundary conditions

4.2 Flapping Motion of a Flexible Wing

Flapping motion of flexible wing was analyzed
as a simplified two-dimensional problem. The
length of wing chord is 5.0mm and the thickness
is 0.08mm. The motion of wing consists of flap-
ping and feathering motion as shown in Fig.8.
The fluid properties are the same as those of the
previous example. Flapping motion prescribed
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Figure 6: Time history of vertical displacement
on the tip of the flexible plate

Figure 7: Vorticity Distributions around flexible
plate

at the leading edge of the wing ranges from –
2.5mm to +2.5mm and that of feathering angle
ranges from –45 degrees to +45 degrees. 200Hz
is set for the flapping and feathering frequencies.
Young’s modulus, Poisson’s ratio, and mass den-
sity of the structure are1.0× 108g/mm2 · s, 0.2,
5.0× 10−5g/mm3, respectively. The number of
triangular finite elements and that of nodes in fluid
analysis domain are 48,044 and 24,316, while the
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Table 1: Numbers of fixed point iterations and computation times

Loop Under-relaxation Averaged number of Computation time
Treatment scheme fixed point iterations (hours)

Two loops
Block Gauss-Seidel 12.1 117

Aitken 6.21 73.5
present 6.03 72.2

One loop
Block Gauss-Seidel 13.3 64.2

Aitken 6.44 39.9
present 6.33 39.1

number of quadrilateral finite elements and that of
nodes in the solid analysis domain are 1,000, and
1,255. The time step size is 1.0×10−6 sec .

A leading edge vortex, which produces unsteady
lift flight force for flapping motion [Dickinson,
Lehmann and Sane (1999)] was observed. The
deformations of the wing and pressure distribu-
tions in prescribed flapping and feathering motion
are shown in Fig.9. To investigate the effect of
elastic deformation of the wing, only flapping mo-
tion is prescribed at the leading edge of the wing
as a boundary condition in the solid analysis. The
elastic deformations of the wing and pressure dis-
tributions around the flexible wing are shown in
Fig.10. The comparison between Figs.9 and 10
clearly shows that even without prescribed feath-
ering motion, the elastic deformation of the flex-
ible wing can produce passive feathering motion,
though the angle of feathering is not so enough
compared with that of prescribed feathering mo-
tion. Owing to such passive feathering motion,
lift forces are generated as shown in Fig.11. It
should be noted here that the flapping motion of
rigid wing, which is symmetric in the vertical di-
rection, produces no lift force. Further research
must be conducted to compare the efficiency of
fish and insect motion in terms of material prop-
erties and the definition of flapping motion.

Time histories of the mesh distortion defined
in equation (12) with or without re-connecting
scheme are shown in Fig.12. The flapping mo-
tion of the wing inevitably produces large de-
formation of the fluid domain. Only employing
the smoothing procedure results in break down of
computation, while the combined utilization of re-
connecting and smoothing procedures works well.

The re-connecting criterion εDistortion is 10.8 in
this computation.

Figure 8: Schematic view of wing motion

Figure 9: Elastic deformation of the wing with
feathering motion (up stroke, right to left)

Figure 10: Time histories of lift force

5 Concluding remarks

To improve accuracy and stability of partitioned
fluid structure interaction analysis procedures, a
line search partitioned coupling approach was
newly proposed in this paper. The line search
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Figure 12: Time histories of mesh distortion

method obtains the optimal relaxation parameter,
which minimizes the non-equilibrated displace-
ments. In addition, one loop iterative partitioned
approach and robust mesh control schemes with
smoothing and re-connecting were implemented.
Using these methods, the computation cost of an-
alyzing flexible structure in the wake of a bluff
body was 33% reduced and the flapping motion
of flexible wing was analyzed successfully. It is

clearly shown from the FSI analyses that the elas-
tic deformation of the flapping wing can produce
passive feathering motion and generate lift force
effectively.
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