
Copyright c© 2008 Tech Science Press CMES, vol.24, no.1, pp.61-80, 2008

A stabilized RBF collocation scheme for Neumann type boundary value
problems
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Abstract: The numerical solution of partial dif-
ferential equations (PDEs) with Neumann bound-
ary conditions (BCs) resulted from strong form
collocation scheme are typically much poorer in
accuracy compared to those with pure Dirichlet
BCs. In this paper, we show numerically that
the reason of the reduced accuracy is that Neu-
mann BC requires the approximation of the spa-
tial derivatives at Neumann boundaries which are
significantly less accurate than approximation of
main function. Therefore, we utilize boundary
treatment schemes that based upon increasing the
accuracy of spatial derivatives at boundaries. In-
creased accuracy of the spatial derivative approx-
imation can be achieved by h-refinement reduc-
ing the spacing between discretization points or
by increasing the multiquadric shape parameter, c.
Increasing the MQ shape parameter is very com-
putationally cost effective, but leads to increased
ill-conditioning. We have implemented an im-
proved version of the truncated singular value de-
composition (IT-SVD) originated by Volokh and
Vilnay (2000) that projects very small singular
values into the null space, producing a well con-
ditioned system of equations. To assess the pro-
posed refinement scheme, elliptic PDEs with dif-
ferent boundary conditions are analyzed. Com-
parisons that made with analytical solution reveal
superior accuracy and computational efficiency of
the IT-SVD solutions.
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1 Introduction

The drawback of mesh-based computational
methods for the simulation of problems with ex-
tremely large deformations, complex geometry, or
moving discontinuities is that frequent remesh-
ing is required. Such problems have motivated
many researchers to develop the so-called mesh-
free methods that do not depend on meshes or
grids.

Multiquadric (MQ) radial basis functions (RBFs)
are a type of node-based approximation scheme
that was devised by the geo-physical engineer,
Hardy (1971, 1990), who worked on scattered
data fitting and general multi-dimensional data in-
terpolation problems. Madych and Nelson (1988,
1990) and Buhmann and Micchelli (1990) have
shown theoretically that the MQ-RBF approxi-
mation scheme converges faster as the spatial di-
mension, discretization and MQ shape parame-
ters are refined. Numerically, Fedoseyev, Fried-
man, and Kansa (2002), Cheng, Golberg, Kansa
and Zammito (2003), Huang, Lee, and Cheng
(2007), Fornberg, and Driscoll (2002), Fornberg
and Wright (2004), and Fornberg, Wright, and
Larsson (2004), demonstrated that the solution
of elliptic PDEs using radial basis functions con-
verge exponentially. Recently, Young, Chen, and
Wong (2005) demonstrated the successful ap-
plication of the MQ method in the solution of
Maxwell’s equations in two and three dimensions.

Although MQ-RBFs enjoy superior convergence
rates, the present principal disadvantage of solv-
ing PDE systems by MQ-RBF collocation method
is that the resulting equation system can become
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quickly ill-conditioned as the number of nodes in-
creases. This ill-conditioning hinders applicabil-
ity of the RBF collocation method to large scale
engineering problems where many nodes are re-
quired for proper mathematical modeling of com-
plex physical phenomena. In order to bypass
the ill-conditioning associated with the global
RBFs, Sarler (2005) and Tolstykh and Shirobokov
(2005) developed an RBF analog of finite differ-
ences to obtain a compactly supported scheme
with convergence rates superior to polynomial
based finite differences, but less than the global
RBF scheme , verifying the Schaback (1995)
trade-off principle.

Although several authors such as: Kansa and
Hon (2000), Ingber, Chen, and Tanski (2004),
Ling and Kansa (2004), and Adibi and Es’haghi
(2007) have demonstrated that domain decompo-
sition has the advantage of breaking a very large
problem in many smaller sub problems that have
vastly improved conditioning, many researchers
are apparently hesitant in applying domain de-
composition, in spite of the fact that domain de-
composition is widely used in complex problems
in which finite difference, finite element, or finite
volume methods are employed.

Another reason that people ignore RBF meth-
ods is that the Neumann boundary conditions are
poorly behaved and may result in enormous er-
rors at or near Neumann boundaries. There-
fore an accurate and stable solution method for
boundary value problems with Neumann bound-
ary conditions is much more difficult to obtain
than that with Dirichlet boundary conditions. The
ill-conditioning nature of the equation system in
the direct RBF collocation method intensifies the
difficulty of imposing Neumann boundary condi-
tions. As a consequence, there has been interest in
trying to find a treatment technique for imposing
the Neumann boundary condition that bypasses
the ill-conditioning problem of the RBF colloca-
tion methods.

Zhang, Song, Lu, and Liu (2000) pointed out that
the poor accuracy of Neumann boundary condi-
tions is due to the poor quality of the derivative
approximations on the boundary. Based on this
fact, they proposed the Hermite type collocation

method in which both PDEs and prescribed trac-
tion boundary conditions are imposed on the nat-
ural boundary. Liu and Gu (2003) noticed that
Neumann conditions are well posed in the weak
form based numerical methods. By consider-
ing the fact that in meshfree collocation methods,
instability and computational errors are mainly
induced by the Neumann boundary conditions,
Liu and Gu (2003) proposed the meshfree weak-
strong (MWS) form in which the collocation is
used for all nodes whose local quadrature do-
mains do not intersect the Neumann boundaries,
while the local weak form is used only for nodes
on or near natural boundaries. The reason for the
better performance is due to integration of the nor-
mal partial derivatives since anti-differentiation
increases the convergence rate following the anal-
ysis of Madych (1992).

Hu, Chen, and Hu (2006) proposed the weighted
RBF collocation method for boundary value prob-
lems. They observed that the error analysis
shows there are unbalanced errors among the do-
main, Neumann boundary, and Dirichlet bound-
ary terms. These unbalanced errors are treated
by introducing proper scaling weight for the Neu-
mann and Dirichlet boundary collocation equa-
tions.

Motivated by the aforementioned work, we are in-
terested in stabilizing the RBF collocation scheme
for boundary value problem subjected to mixed
Neumann and Dirichlet boundary conditions. The
work presented herein focuses on the utilization
of boundary treatment schemes together with a
stable solver of severely ill-conditioned equation
systems to mitigate the instabilities of the RBF
collocation scheme.

2 Solving PDEs by direct RBF collocation
method

Consider L to be a differential operator that is de-
fined on d-dimensional simply connected domain,
Ω ⊆ ℜd with a piecewise smooth boundary,∂Ω.
The general form of boundary value problem is
defined in Eq (1-3).

L u=F in Ω\∂Ω (1)

u=u* on ∂Ωu (2)
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ßu=t* on ∂Ωt (3)

where ∂Ωt is the natural boundary with Neu-
mann condition and ∂Ωu is the essential bound-
ary with Dirichlet condition. In order to solve
the above problem, we need to find a function
u(X) that satisfies the governing differential oper-
ator L in the interior domain, Ω\∂Ω, the Dirich-
let boundary condition on the essential boundary,
∂Ωu, and the Neumann boundary condition on the
natural boundary, ∂Ωt . Given an unknown func-
tion u(X):ℜd → ℜ and N distinct source points
S={X j}N

j=1 ∈(Ω ∪ ∂Ω) ⊂ ℜd the unknown func-
tion, u(X), is interpolated in terms of a series of
known RBFs multiplied by an unknown set,{α},
of expansion coefficients.

u(X) =
N

∑
j=1

ϕ(X-Xj)α j=
N

∑
j=1

ϕ j(X)α j (4)

where r j=||X-X j|| is the Euclidian norm, ϕ j are
the radial basis functions, and α j are the coeffi-
cients to be determined. Most widely used global
radial basis functions are the multiquadric (MQ)
ϕ j=(r j

2+c j
2)1/2, the Gaussian ϕ j=exp(-(r j/c j)2),

and the thin plate spline (TPS) ϕ j= r j
2log(r j),

where c j is the shape parameter. An important
advantage of the MQ and Gaussian RBFs is that
these commonly used global RBFs are infinitely
differentiable. Therefore, spatial derivatives of
the function u(X) up to desired degree,n, could be
obtained as below:

∂ nu
∂Xn (X) =

N

∑
j=1

∂ nϕ j(X)

∂Xn α j (5)

The continuous boundary value problem of Eqs
(1-3) can be approximately transformed into a
system of simultaneous algebraic equations by
substituting the expressions of the unknown func-
tion u(X) and its derivatives into Eqs (1-3) and
collocating the governing equation and bound-
ary conditions on a set of m distinct collocation
points. The accuracy of the boundary value prob-
lem using collocation scheme depends upon the
accuracy of the approximating PDE and the cor-
responding BCs on the collocation points in the
domain and on the boundary, respectively. The

most arguable issue of collocation based meshfree
methods is the poor implementation of Neumann
BCs due to the poor approximation of spatial
derivatives on the boundary. In any approxima-
tion method, approximations of spatial derivatives
are less accurate because differentiation reduces
the order of the approximation. Even though
MQ-RBF enjoys spectral convergence of order,
O(λ μ ), where μ = (c/h), and 0 < λ < 1, Madych
(1992) clearly shows spatial derivatives of order,
ς , reduce their convergence rates to O(λ μ−|ς |).
There are several options available to increase the
convergence rates of spatial derivatives of MQ-
RBFs. They are:

1. Increase μ by increasing c and/or decreas-
ing h, so μ >> ς .

2. Anti-differentiation (integration) methods
of Mai-Duy and Tran-Cong (2003, 2007) increase
the order of successive derivatives to off-set the
reduction of convergence rate given by Madych’s
estimate.

3. Instead of using the usual MQ or IMQ ba-
sis function, ϕ j = (r2

j+c2
j )

(1/2) or ϕ j= (r2
j+c2

j)
(−1/2)

respectively, one should consider a higher order
MQ function such as ϕ j = (r2

j+c2
j)

β where β >
(1/2). Wertz, Kansa, and Ling(2006) showed that
for β ranging from 3/2 to 11/2, the MQ basis func-
tion becomes increasingly flatter near the point,
X j and the derivative of such higher order func-
tions appears to be better behaved.

Let Cd be a set of md collocation points in Ω, Ct

be a set of mt collocation points on ∂Ωt , and Cu

be a set of mu collocation points on ∂Ωu. Gener-
ally, the source points and the collocation points
C={X j}m

j=1= Cd ∪ Ct ∪ Cu should not necessar-
ily have shared points; but usually, the source
points and the collocation points can coincide.
By substituting the approximated solution in the
strong form (1-3) and satisfying the differential
and boundary operators at the collocation points,
the continuous boundary value problem is approx-
imately transformed to an algebraic discrete equa-
tion in the form of Aα = b. Clearly, there exists a
unique solution if and only if A is non-singular.
The non-singularity of A for certain classes of
are discussed by Micchelli (1986) and Wendland
(2005), using the fact that A is either strictly pos-
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itive definite (IMQ, Gaussians), or strictly con-
ditionally positive definite of order one for MQ
and β=1/2. The set of equations is strictly condi-
tionally positive definite that guarantees the non-
singularity of the corresponding system matrix.

For numerical verification purpose we focus on
solving the following elliptic operator that is usu-
ally known as Navier’s equilibrium equations.

μ∇2u+(λ + μ)∇(∇ ·u)+b = 0

in Ω\∂Ω ⊆ ℜd, d =1,2,or 3. (6)

u = u* on ∂Ωu, (7)

ti = ti* on ∂Ωt, (8)

where u is displacement vector,and in this con-
text, μ and λ are Lame’s constants, b is the body
force, u* is the prescribed displacement on essen-
tial boundary, ti=σ i jn j is the ith component of the
surface traction, and ti* is the ith component of
the applied surface traction on the natural bound-
ary. The solution of 2D elasticity problems is ap-
proximated by RBFs as below:

u = (ux(x,y),uy(x,y))T (9)

ux(x,y) =
n

∑
j=1

ϕ j(x,y)α j (10)

uy(x,y) =
n

∑
j=1

ϕ j(x,y)β j (11)

By substituting Eq(9) into Eqs (6-8) and consid-
ering the 2D plane stress elasticity the following
algebraic system is concluded. By substituting Eq
(9) into Eqs (6-8) and considering the 2D plane
stress elasticity the following algebraic system is
obtained. Details are omitted here and can be
found in Libre, Emdadi, Rahimian, and Shekarchi
(2006).

E
1-ν2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂2ϕ j

∂x2
1

+ 1−ν
2

∂2ϕ j

∂x2
2
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2
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2
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⎤
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b1

b2

u*1

u*2

t*1
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⎤
⎥⎥⎥⎥⎥⎥⎦

(12)

Examples of authors using RBFs to solve solid
mechanics problems are Lui and Gu (2003), Mai-
Duy, Khennane, and Tran-Cong,(2006), Wen and
Hon(2007), Ferreira, Roque, Jorge, and Kansa
(2005).

3 Boundary treatment scheme

In the collocation procedure, the differential and
boundary operators act upon the approximated so-
lution at certain collocation points. So, the accu-
racy of the solution depends upon both the num-
ber of collocation points and the accuracy of the
approximation at the collocation points. The nu-
merical solution converges to exact solution by:
(i) Increasing the number of collocation points
so that the operators are satisfied at more regions
in domain and on the boundary; (ii) Improving
the accuracy of approximation so that the opera-
tors are more tightly satisfied at these collocation
points.

In this section, we show numerically that the poor
approximation of the spatial derivatives is the
main error source in the imposition of the Neu-
mann conditions on the natural boundary. For
this purpose, we examine the accuracy of scat-
tered data interpolation especially near and on the
boundary. Consider a scattered data set in the
form of (Xi, Fi) where the values of Fi are sampled
from an arbitrary function F: Ω ⊆ ℜd → ℜ at the
source points S={X j}n

j=1 ∈(Ω ∪ ∂Ω) ⊆ ℜd . The
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goal is to find an interpolation of the function F
and its derivative up to desired degree in the form
of Eq(5) and Eq(4) such that

F(Xi) =
n

∑
j=1

ϕ j(Xi)α j (13)

The resulted linear equation system is solved us-
ing standard Gaussian elimination method to de-
termine the unknown coefficients, α j . The max-
imum norm (L∞) as defined in Eq(13) is used to
measure the solution accuracy.

L∞ = max|Fh
i −Fex

i | (14)

where Fh
i and Fex

i are the approximated and exact
value, u,at the point, Xi, respectively.

The accuracy of RBF interpolation is investi-
gated through two numerical examples. Since the
present examples are merely intended to explore
the accuracy of approximation on the boundary,
the error norm was also calculated in the domain
and on the boundary, separately.

3.1 Test problem 1

A compatible 2D displacement field and the cor-
responding stress field that are usually used for
the patch test analyses are given in Eq(15); these
are considered here to compare the accuracy of
approximating a linearly varying surface.

ux = x, uy = -y/4, (15)

σxx =1, σxy =0, σyy =0. (16)

A uniform distribution of 6×6 points in the square
domain 0≤ x, y ≤5 is used to sample the dis-
placement field. The L∞error norms that are eval-
uated on a uniform distribution of 18×18 points
are summarized in Table 1. Figure (1) shows the
error distribution in ux and σ xx obtained by MQ
RBF interpolation with c=3. This study shows
that the MQ possess excellent accuracy in approx-
imating the displacement field in the domain and
on the boundary; but the accuracy of the stress
field has deteriorated significantly on the bound-
ary. Numerical results show that the L∞ errors in

approximating the spatial derivatives of the stress
field are significantly more than those of the dis-
placement field. In addition, the accuracy of the
stress fields is relatively decreased near and on the
boundary.

3.2 Test problem 2

The displacement field of the plane stress can-
tilever beam problem subjected to an end shear
force is considered as the second example. The
displacement field and the corresponding stress
fields are given in Eqs (16-19), and the problem
is taken from Timoshenko and Goodier (1970).

ux=
−P
6EI

(y-D/2)[(6L-3x)x+(2+ν)(y2-Dy)] (17)

uy=
P

6EI
[(3ν(L-x)(y-

D
2

)2+
(4+5ν)

4
xD2+x2(3L-x) ]

(18)

σ xx=
-P
I

(L-x)(y-D/2); σ yy = 0; σ xy =
Py
2I

(y-D)

(19)

where I=D3/12 is the moment of inertia , E is the
Young’s modulus, ν is the Poisson ratio, P is the
applied force, and D and L are the height and
length of beam respectively.

The displacement field is sampled in a uniform
distribution of 19×7 points, then the displacement
and stress field are approximated on 93×33 points
that are uniformly distributed on the rectangle do-
main 0≤ x ≤12 and 0≤ y ≤4. The MQ RBF with
a constant shape parameter, c=3, was used for in-
terpolating the displacement and stress fields. The
L∞ errors of approximation are given in Table 2.
Figure (2) shows the error distribution of approx-
imation.

Here again, the accuracy of the stress field ap-
proximation on the boundary is decreased signif-
icantly. In this problem, the error of approximat-
ing stress field on the boundary is substantially
more than those in the patch test. Therefore, it is
logically concluded that the analysis of cantilever
beam problem is more sensitive to the Neumann
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Table 1: L∞ error in scattered data fitting, test problem 1

ux uy σ xx σ yy σ xy

Domain 0.7141E-2 0.1785E-2 1.0380E-2 0.3117E-2 0.2836E-2
Boundary 0.4828E-2 0.1207E-2 3.2855E-2 0.8786E-2 0.8099E-2

Figure 1: Error distribution in scattered data interpolation, test problem 1

Table 2: The L∞error in scattered data fitting, test problem 2

ux uy σ xx σ yy σ xy

Domain 0.1836E-4 0.3921E-5 0.3380E-1 0.2015E-1 0.2652E-1
Boundary 0.1835E-4 0.4152E-5 1.2726E-1 0.7480E-1 0.6560E-1

(a) (b)

Figure 2: Error distribution in scattered data interpolation, test problem 2. (a)ux , (b) σ xx

BCs than the patch test problem. The solution of
cantilever beam problem subjected to Neumann
BCs will be discussed in section 5.

Both of the above-presented numerical examples
show the poor accuracy of stress field approxima-
tion on the boundary. In the point wise solution of
boundary value problem using collocation proce-
dure, the domain and boundary operators are sat-
isfied on distinct points in domain and on bound-
ary, respectively. The Dirichlet condition is well
posed in the collocation procedure since the solu-
tion is well approximated on the boundary. But
the poor approximation of the solution derivatives

on the boundary reduces the accuracy of solv-
ing boundary value problems with Neumann BCs.
The main source of instability emanating from
Neumann BCs is the poor approximation of the
function’s derivative on the boundary. So, it is ra-
tional to conclude that any treatment scheme that
based upon increasing the accuracy of approxi-
mating spatial derivatives on the boundary will re-
duce the instability arising from Neumann BCs in
collocation based meshfree methods.

There are two ways to make the solution con-
verge faster, either by refining the mesh size (h-
scheme), or by increasing the shape parameter,
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Table 3: L∞ error norm of approximating the stress filed on the boundary, test problem 1.

h-scheme h-scheme h-scheme c-scheme c-scheme c-scheme
Data centers σ xx log10(cond) Shape parameter σ xx log10(cond)
6×6 3.2855E-2 6.79 3 3.2855E-2 6.79
9×9 6.3581E-3 10.48 6 2.2848E-3 10.72
12×12 1.3595E-3 14.09 9 2.9813E-4 13.68
15×15 * 17.34 12 1.1401E-3 15.97
18×18 * 18.81 15 * 18.14
* Unstable solution due to round-off error

Table 4: L∞ error norm of approximating the stress filed on the boundary, test problem 2.

h-scheme h-scheme h-scheme c-scheme c-scheme c-scheme
Data centers σ xx log10(cond) Shape parameter σ xx log10(cond)
19×7 1.2726E-1 10.47 3 1.2726E-1 10.47
25×9 3.3474E-2 13.52 4 3.7756E-2 12.90
31×11 * 16.54 5 3.4535E-2 15.22
37×13 * 19.01 6 * 17.48
* Unstable solution due to round-off error

c (c-scheme). According to Madych (1992), if
μ=(c/h)>>ς , then the loss on convergence by
the differentiation approximation is small. While
the h-scheme requires an increase of computa-
tional cost, the c-scheme is performed without ex-
tra CPU cost. The L∞ errors of the approximated
stress field in the first and second test problems
and the corresponding condition numbers of the
coefficient matrixes schemes are listed in Table 3
and 4, respectively. In the h-scheme, the shape
parameter was kept constant at c=3 in all analyses
and the data centers were refined uniformly. In
contrast, the c-scheme refinement is performed by
increasing the shape parameter while a uniform
6×6 data center distribution was used for sam-
pling.

The h-scheme is usually performed over a uni-
form grid but it is reasonable to allocate adap-
tively more centers to the boundary layer where
a more accurate approximation is desired. Locat-
ing the centers near or on the boundary enables
one to obtain more accurate results with a smaller
number of additional centers. From our study we
found that inserting centers near the boundary, as
depicted in Figure (3), performs well.

In the same way, the c-scheme may be increased
uniformly over the domain or it may be adap-

tively different over the interior and on the bound-
ary. Wertz, Kansa, and Ling (2006) found that
c∂Ω ≈200cΩ\∂Ω performs the best in 2D Pois-
son problems. In our elasticity calculations, we
chose c∂Ω ≈1.5cΩ\∂Ω since the equation sys-
tems of RBF collocation in the elasticity prob-
lems are comparatively more ill-conditioned and
the greater values of shape parameter cause nu-
merical instabilities due to severe ill-conditioning.

Figure (4) and (5) shows the error distribution
in the adaptive version of the h-scheme and c-
scheme in the first and second test problem, re-
spectively. The results of the adaptive refinement
in test problem 1 and 2 are also summarized in
Table 5 and 6, respectively.

The c-scheme is usually preferable to h-scheme
since the h-scheme increases the rank of the co-
efficient matrix that leads to an increased expense
in computer storage and CPU time. In contrast,
the c-scheme can be performed without any ex-
tra computational cost. For purposes of efficiency,
the c-scheme is superior and preferable over the h-
scheme. In addition, the numerical results reveal
the superiority of the adaptive h-scheme over the
uniform h-scheme because the adaptive h-scheme
requires many fewer data centers for convergence
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Figure 3: Adaptive node refinement by allocate more centers near the boundary layer

Table 5: Refining the approximation of σ xx stress filed on the boundary using adaptive h-scheme or adaptive
c-scheme, test problem 1

Original solution Refined solution Refined solution
Adaptive h-scheme Adaptive c-scheme

L∞ 3.2855E-2 6.8341E-3 7.1814E-3
CPU time (sec) 1.1 1.7 1.2
log10(cond) 6.79 7.83 12.45

Table 6: Refining the approximation of σ xx stress field on the boundary using the adaptive h-scheme or
adaptive c-scheme, test problem 2

Original solution Refined solution Refined solution
Adaptive scheme Adaptive h-scheme Adaptive c-scheme
L∞ 1.2726E-1 2.6099E-2 8.7866E-3
CPU time (sec) 37.9 50.7 42.5
log10(cond) 10.47 10.69 12.81

to the desired accuracy and a slower increase in
ill-conditioning. The adaptive c-scheme is also
superior to uniform c-scheme since the adaptive
c-scheme produce more accurate results when the
condition number was kept constant. Although
the adaptive method performed suitably, in the
rest of the paper, we use uniform schemes for
treating Neumann BCs. But, we show the robust-
ness of combined adaptive c-h scheme through a
numerical example presented at the end of this pa-
per. In the forthcoming paper we develop a new
adaptive algorithm based on residual sampling to

combine the adaptive c and h scheme for produc-
ing highly accurate results.

Obviously, an increasingly more accurate approx-
imation of stress field on the boundary is obtained
by the h and/or c scheme. But as a general prin-
ciple, the better the approximation properties of
the RBF collocation, the worse is its conditioning,
see Schaback (1995). Eventually, the matrix con-
dition number reaches a point that is too large for
the computer machine precision to handle, after
which the solution becomes unstable. Numerical
studies presented herein indicate that the instabil-
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(a)

(b)

(c)

Figure 4: Error distribution in σ xx interpolation,
adaptive scheme, test problem 1; (a) original so-
lution; (b) adaptive h-scheme; (c) adaptive c-
scheme

(a)

(b)

(c)

Figure 5: Error distribution in σ xy interpolation,
adaptive scheme, test problem 2; (a) original so-
lution; (b) adaptive h-scheme; (c) adaptive c-
scheme

ity appears in the solution after the condition num-
ber exceeds a certain limit of 1E+16. This can be
explained by the fact that the exponent of the con-
dition number indicates the number of decimal
places that the computer can lose due to round-
off errors and that the double precision numbers
that are used in numerical calculations on per-
sonal computers have about 16 decimal digits of
accuracy. The proposed treatment scheme for im-
proving accuracy of stress field on the boundary
usually increases the ill-conditioning of equation
systems. Because of this ill-conditioning, there
have been doubts about the ability of standard lin-
ear equation solvers such as Gaussian elimination
to solve accurately the equation systems of RBF
collocation method. So, the treatment schemes
should be accompanied by a stable solver to over-
come the instabilities arising from round-off er-
rors. In the next section, we briefly introduce an
improved numerical solver for avoiding inaccu-
rate computation in severely ill-conditioned sys-
tems.
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4 Improved truncated singular value decom-
position

Consider an equation system in the form of

Aα=b . (20)

Consider the well-known singular value decom-
position algorithm for a square N × N matrix, A,
that can be decomposed as:

A = VΣUT (21)

The inverse of A is:

A-1=UΣ-1VT (22)

where V = [V1,V2,. . . ,VN ], and U
=[U1,U2,. . . ,UN ] are orthonormal matrices
with column vectors called left and right singular
vectors, respectively, and Σ is a diagonal matrix
of the singular values in descending order: σ 1 ≥
σ2 ≥. . . ≥ σN >0. The ratio of the largest
singular value to the smallest singular value gives
the absolute condition number of the matrix A,

κabs(A)=
σ1

σN
= ‖A‖ · ‖A-1‖ (23)

The condition number determines the loss in pre-
cision due to round-off errors and can be used
to estimate the accuracy of results obtained from
matrix inversion and linear equation solutions.
The weak point of the SVD method is the inac-
curate computation of the small singular values.
For an ill conditioned matrix equation the SVD
solution is dominated by contributions from small
singular values, and therefore it may become un-
bounded and oscillatory. Hence, to mitigate the ill
conditioning, one often drops all terms with σ k <
μ for some pre-assigned value of μ , where k < N,
and μ is the cut-off regularization parameter. The
Hensen (1987) truncated SVD (TSVD) scheme
uses the first k singular values, σ j,j=1,. . .,k. The
truncated inverse of A can be computed as:

A-1
trunc= U1:N,1:kΣ-1

1:k (V1:N,1:k)T. (24)

The TSVD scheme is widely used as an efficient
solver for the ill-conditioned systems. However,

for the RBF collocation method, solutions ob-
tained from the TSVD method are not accurate
and reliable.

Volokh and Vilnay (2000) observed that small
singular values are inherent in the SVD of ill-
conditioned systems and presented an algorithm
to bypass the inaccurate computation of the small
singular values. Their method will be summarized
below.

Define matrices, Σ1 = Σ1:k, U1 = U1:N,1:k, U2 =
U1:N,k+1:N, V1 = V1:N,1:k, V2 = V1:N,k+1:N, and
Σ2 =Σk+1:N . Their method uses the information
contained in the entire SVD decomposition, but
projects out the very small singular values into the
null space to construct a stable scheme. They de-
fine new right and left matrices, of rank, N and
k:

Unull=null(U1T ), Vnull=null(V1T ) (25)

Using the small singular values, Σ2, they con-
structed a new matrix, C:

Ck+1:N,k+1:N=(VnullV2)Σ2(U2Unull)T (26)

Then the complete inverse and solution vector
consists of two parts:

A-1=A-1
trunc+UnullC-1Vnull , (27)

α = (A-1
trunc+UnullC-1Vnull)b . (28)

The key property of this method is that the matri-
ces C and Σ1 are well conditioned in contrast to
the matrix A. The condition number of C depends
upon the cutoff parameter μ and the well condi-
tioning of C. So, the performance of the Volokh-
Vilnay method depends upon the suitable choice
of the cutoff parameter, μ . In this paper, we em-
ploy a rational scheme to determine the cutoff pa-
rameter for the improved TSVD.

For a fixed machine precision, the cumulative
round-off error reduces the number of accurate
digits in the floating point arithmetic. The usual
rule is that the exponent of the condition num-
ber indicates the number of decimal places that
the computer can lose due to round-off errors. If
the condition number is much greater than

√
1/ε



A stabilized RBF collocation scheme for Neumann type boundary value problems 71

, where ε is the machine precision, caution is
advised for subsequent computations. For IEEE
arithmetic, double precision numbers that usually
used in the numerical arithmetic have about 16
decimal digits of accuracy and the machine pre-
cision is about ε =2.2×1016, so it is advisable to
keep the condition number of the matrix Σ1 less
than

√
1/ε= 6.7 ×108 by adjusting the cutoff pa-

rameter, μ . So, instead of using a constant cutoff
parameter, μ=10−8, as employed by Volokh and
Vilney (2000), we used a floating cutoff parame-
ter, μ=σ1×10−8, so that

κabs(Σ1) =
σ1

σ k
≤ σ1

μ
≤ 108 . (29)

This floating cutoff guarantees that the condition
number of Σ1, κabs(Σ1) ≤ 108, is bounded for
IEEE 16 decimal digits of accuracy. In the highly
ill-conditioned equation systems, very small sin-
gular values appear in matrix C and this ma-
trix may also become ill-conditioned. The ill-
conditioning problem of matrix C can be simply
overcome by repeating the IT-SVD scheme on the
matrix, C.

5 Numerical Examples

Here we utilize the boundary treatment scheme
presented in the preceding sections for stabiliz-
ing the RBF direct collocation scheme. The ef-
ficiency of IT-SVD scheme for the stable solution
of severely ill-conditioned equation systems aris-
ing from h-scheme and/or c-scheme refined ellip-
tic PDE problems are investigated through numer-
ical examples. All numerical codes are imple-
mented with Matlab 7.2 and executed on a Core 2
Duo 2.0 GHz (4 MB Cache, 1G RAM) notebook
computer running Windows XP Professional. The
root-mean squared (RMS) error as defined in (18)
is used to measure the solution accuracy.

.RMS=
1
N

√
∑(fh

i -fexact
i )2

∑(fexact
i )2 (30)

where fh
i and fexact

i are the approximated and exact
solution values at the point, xi, respectively.

5.1 Example 1. Higher Order Patch Test

The first numerical example is a higher order
patch test. A detailed description of the patch tests
can be found in Zienkiewicz and Taylor (2000).
A uniform distribution of 6×6 points and a con-
stant shape parameter c=3 are used in the anal-
ysis. Figure (6) shows the distribution of 6×6
points. The exact solution for this problem with
a Young’s modulus (E) of unity and a Poisson’s
ratio, ν =0.25 is given in Eq (9).

Two distinct sets of BCs were considered in this
analysis to study the dependency of solution accu-
racy upon the type of the imposed BCs. In the first
set that we labeled as Dirichlet BC, the analytical
displacements are prescribed on all boundaries. In
the second set of BCs which we labeled as Neu-
mann BCs, the analytical displacements (Dirich-
let BC) are prescribed on the boundary identified
by {∂Ω(x,y) | x=0}, and Neumann BCs are im-
posed on the reminding boundaries.

The error distribution in σ xx that is evaluated on a
uniform 21×21 grid is shown in Figure (7). From
this example we see that when Neumann BCs are
imposed, the accuracy of solution is reduced sig-
nificantly. This observed dependence of the accu-
racy upon the type of imposed boundary condition
is believed to be related to the poor approximation
of derivatives on the boundaries.

In the patch test with Neumann BCs, we want
to converge to within the same tolerance as the
patch test with Dirichlet BCs, that means we want
the RMS (σ xx) < 4.8E-4. As discussed previ-
ously, there are different schemes for converging
to the specified accuracy. Among these are: (1)
Uiform mesh refinement (h-scheme) or (2) Con-
stant shape parameter incremental refinement (c-
scheme). The results are summarized in Table 7.
The standard Gaussian elimination (GE) and the
IT-SVD schemes were used as the linear equation
solver methods.

The numerical results of this example show that
both the GE and IT-SVD schemes converged to
the specified tolerance. The summarized results in
Table 7 show that in this case, the IT-SVD solver
did not show any advantage over the conventional
GE solver. This is ascribed to the simple nature
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Figure 6: Regular distribution of 6×6 points in patch test problem

(a) (b)

Figure 7: Error distribution of in patch test problem; (a) Dirichlet BC; (b) Neumann BC

of the investigated problem that is well posed em-
ploying a low number of collocation points. So
in this example, ill-conditioning is not a critical
issue, and the IT-SVD method is not necessary
for converging to the specified tolerance. How-
ever, this is not the case for complicated large
scale physical problems requiring many colloca-
tion points, where the IT-SVD scheme should be
implemented.

Nevertheless, we will point out the efficiency of
the IT-SVD scheme in another way. Consider that

more accurate results (namely an RMS error of
σ xx < 1.0E-6) are required in the patch test prob-
lem with both sets of BCs. Here again, we em-
ployed the h and c schemes to achieve the required
convergence. The numerical results reveals that
GE failed to converge within specified tolerance
in both cases of the BCs, but the IT-SVD satis-
fied the criteria. In terms of CPU time and condi-
tion number of coefficient matrix, the c-scheme is
more efficient than h-scheme, as depicted in Ta-
ble 8.
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Table 7: Numerical results for converging within the specified tolerance in patch test (RMS (σ xx) <4.8E-4)

Solver GE GE IT-SVD IT-SVD
Data centers c RMS CPU RMS CPU

Original solution 6×6 3.0 30.906E-4 0.61 30.906E-4 0.68
h- scheme refined 10×10 3.0 3.5437E-4 2.45 3.5437E-4 2.67
c-scheme refined 6×6 5.0 4.7635E-4 0.61 4.7635E-4 0.68

Table 8: Numerical results for converging within the specified tolerance in patch test using IT-SVD solver
(RMS (σ xx) <1.0E-6)

Solver GE GE IT-SVD IT-SVD
Problem type Scheme Points c log10(cond) RMS CPU RMS CPU
Neumann B.C h-scheme 25×25 3.0 20.2 * - 4.2276E-7 87.2
Neumann B.C c-scheme 6×6 16.2 18.0 * - 8.8770E-7 0.65
Dirichlet B.C. h-scheme 25×25 3.0 20.1 * - 6.2373E-7 27.6
Dirichlet B.C. c-scheme 6×6 16.2 15.3 * - 9.6454E-7 0.70
* The method failed to converge within the specified tolerance

The convergence rate is also studied in the patch
test problem. Uniformly distributed sets of 3×3,
6×6, 11×11and 21×21 collocation points are
used for this purpose. The second set of BCs were
employed in the convergence analysis. The result-
ing equation systems of the RBF direct colloca-
tion method were solved by the standard Gaussian
elimination (GE) and the IT-SVD scheme. The
shape parameters were taken to be c=3 and c=10.
Figure (8) shows that in the case of c=3, by refin-
ing the mesh size h up to 11×11 points, the GE
converges to exact solution. Numerical instabil-
ity was observed when the number of collocation
points was increased beyond 11×11 points. The
ill-conditioning problem limits the maximum at-
tainable accuracy. As shown in Figure (8), the
numerical instability arising from GE is dominant
whenever the coefficient matrix condition number
becomes larger than 1012. In contrast, the IT-SVD
method is still stable and converges to exact solu-
tion even in highly ill-conditioned equation sys-
tems.

Increasing the shape parameter usually improves
the convergence rate of the solutions. Despite of
the improved convergence rate, Figure (8) shows
that increasing the shape parameter up to c=10 re-
sulted in highly ill-conditioned systems and GE
solution becomes unstable when more than 6×6
points were used. Nevertheless, the IT-SVD is

still stable and the results converge to the exact
solution. Utilizing larger values of MQ shape
parameter together with the IT-SVD solver in-
creases the convergence rate and makes it possi-
ble to achieve stable and superiorly accurate solu-
tions.

5.2 Example 2. Cantilever Beam

A cantilever beam subjected to tip shear traction
is the second example that we examine to demon-
strate the efficiency of the h and/or c scheme re-
finement together with the IT-SVD solver. Figure
(9) shows the geometry of the cantilever beam as
well as the distribution of collocation points used
in this analysis. A regular distribution of 31×11
points in the domain and a constant shape param-
eter c=2 are used in the analysis. The length and
height of beam are L=12 and D=4, respectively.
The plane stress condition is assumed in the anal-
ysis with the mechanical properties of E=1000
and ν=1/3.The analytical solutions of this prob-
lem are given in Eq (16-18).

.∂Ω1: {x=0,0 ≤ y ≤ D}, (31)

ux =
−P
6EI

(y-D/2)[(2+ν)y(y-D)]

.∂Ω1: {x=0,0 ≤ y ≤ D}, (32)

uy =
(PνL)

2EI
(y-D/2)2
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(a) (b)

(c) (d)

Figure 8: Convergence rate in patch test (a) displacement ux; (b) stress σ xx ; (c) condition number of
coefficient matrix; (d) CPU time

.∂Ω2: {x=L,0 ≤ y ≤ D}, .tx =0, ty =
Py
2I

(y-D)

(33)

∂Ω3,4:{0<x<D, y=0,D} .tx =0, ty =0. (34)

We solve this problem for two distinct sets of
boundary conditions labeled as Dirichlet BC and
Neumann BC, respectively. In the first set labeled
as Dirichlet BC, the displacements given by Eqs
(16-17) are applied at all boundary nodes. The
Neumann condition is inserted in the second set
of boundary condition where the displacement is
applied at boundary ∂Ω1 and the traction at the re-
mainder boundary nodes, as stated in Eq (30-33).

The errors distribution and the corresponding
RMS error estimations calculated on uniform
distribution of 61×21 approximation points are
shown in Figure (10).

Figure (10) shows that the solution of cantilever
beam problem with Dirichlet BC holds the ad-

missible accuracy (RMS=3.9E-4). In contrast
to the results of the cantilever beam problem
with Dirichlet BCs, considerable error appears
in the solution when Neumann BC are imposed,
(RMS=1.1E-1). This large error with Neumann
BCs is mainly attributed to the poor accuracy of
the stress field approximation on the boundary
and to the severely ill-conditioned equation sys-
tem of the cantilever beam problem that magni-
fies the errors. In this case, one should implement
the h and/or c refinement scheme to improve the
accuracy of approximation together with the IT-
SVD to overcome the ill-conditioning problems
to converge within desired accuracy.

Here again in the problem with Neumann BCs,
we desire to converge to within the same toler-
ance as the problem with Dirichlet BCs, namely
RMS (σ xx) < 3.9E-4. Table 9 shows the IT-SVD
method and its corresponding CPU time required
for converging to the specified tolerance. This re-
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Figure 9: Regular distribution of 31×11 points in cantilever beam problem

(a) (b)

Figure 10: Error distribution of σ xx in cantilever beam problem; (a) Dirichlet BC; (b) Neumann BC

Table 9: Numerical results for converging the solution of cantilever beam problem to the specified tolerance
(RMS (σ xx) <3.9E-4)

Solver GE GE IT-SVD IT-SVD
Data centers c RMS CPU RMS CPU

Original solution 31×11 2 1.1160E-1 12.9 1.1160E-1 19.5
c-scheme refined 31×11 5.1 * - 3.3233E-4 19.5
* The method failed to converge within specified tolerance

Figure 11: Shear stress at section x=L/2 of the beam

Table 10: RMS and L∞ error norms in finely tuned cantilever beam problem

Variable RMS L∞
ux 1.8277E-4 3.9581E-6
uy 7.0199E-5 1.4576E-6
σ xx 1.0978E-6 8.8429E-6
σ xy 1.1235E-7 1.6266E-6
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(a) (b)

(c) (d)

(e) (f)

Figure 12: Convergence rate in cantilever beam problem with uniformly distributed nodes (a) displacement
ux; (b) displacement uy; (c) stress σ xx; (d) stress σ xy; (e) condition number of coefficient matrix; (f) CPU
time

sults shows that GE failed to converge within de-
sired tolerance, but the IT-SVD fulfilled the crite-
ria.

Figure (11) shows the comparison between the
shear stress at the section of x=L/2 calculated an-
alytically and numerically. It is clearly shown that
the solutions refined with c-scheme and stabilized

by IT-SVD are much more accurate than original
solutions.

The convergence rates were also examined us-
ing five different arrangements of uniformly dis-
tributed points: 13×5, 19×7, 31×11, 41×15, and
61×21 nodes. Neumann BCs as stated in Eq (21),
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Figure 13: Adaptive distribution of 52 points in cantilever beam problem

a b

c d

e f

g h
Figure 14: The exact and the calculated solution of the cantilever beam problem (a) exact displacement ux;
(b) calculated displacement ux; (c) exact displacement uy; (d) calculated displacement uy; (e) exact stress
σ xx; (f) calculated stress σ xx; (g) exact stress σ xy; (h) calculated stress σ xy

were imposed in the analysis. Two shape param-
eters, c=2 and c=6, were used in separate simula-
tions.

Figure (12) shows RMS norms of the results.

Similar to the previous case, the IT-SVD solver
shows excellent stability and convergence proper-
ties, while the standard GE solver displays both
numerical instability and a deterioration of ac-
curacy on successively finer nodal distributions.
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When the c-scheme with c=6 was employed, the
convergence rate of the results with the IT-SVD
also improved significantly.

Despite the sensitivity of the RBF collocation
method to the Neumann type BCs, we would
like to demonstrate that even with a smaller num-
ber of collocation points, good accuracy can be
achieved. Both the adaptive mesh refinement
and adaptive shape parameter increment were em-
ployed in the cantilever beam problem with Neu-
mann BCs and the resulting equation systems
were solved by the IT-SVD scheme. The adaptive
distribution of 52 (= (4×8)+20) points as shown
in Figure (13) was used in the analysis. The in-
terior and boundary shape parameter was selected
as cΩ\∂Ω=50 and c∂Ω= 75, respectively. Besides
the RMS error, the L∞ norm was also used to eval-
uate accuracy of the solution.

The exact and the calculated displacement and
stress field of a cantilever beam problem are
shown in Figure (14). The RMS and L∞ error
norms that are summarized in Table 10 shows that
accurate solutions can be achieved by combining
the adaptive schemes with the IT-SVD solver even
for semi large scale and instable problems such as
cantilever beam subjected to Neumann BCs.

6 Concluding remarks

Meshfree methods based on MQ-RBF colloca-
tion are investigated in this paper. We show
numerically that the direct MQ-RBF collocation
method leads to significant error in solving PDEs
with Neumann BCs since the spatial derivatives
are poorly approximated on the natural bound-
ary. Hence, two treatment schemes namely the
c-scheme and h-scheme were proposed to im-
prove the accuracy of the approximation near and
on the boundary. Numerical results show that
both the c-scheme and h-schemes significantly in-
crease the ill-conditioning of the equation sys-
tems that causes numerical instability in the so-
lution. To mitigate the ill-conditioning problems
arising from the h-and c-schemes, the IT- SVD
scheme was utilized for the solution of the linear
equation systems. The c-scheme and h-scheme
treatment methods together with IT-SVD solver
have been applied successfully to solve the two-

dimensional elasticity problems described by the
Navier’s equation.

The h-scheme increases the rank of the coefficient
matrix that leads to an increased expense in com-
puter storage and CPU time, while the c-scheme
is performed without extra CPU cost or storage.
So the c-scheme is preferable to the h-scheme. In
addition, the adaptive schemes are superior and
more desirable over uniform schemes for the so-
lution of PDE problems especially those with high
gradients in local regions. The robustness of com-
bined adaptive c-h scheme together with IT-SVD
solver was demonstrated through a numerical ex-
ample where the values of maximum error norms
were in the were in the order of 10−6. Most of en-
gineering problems do not require RMS or L∞ er-
rors on the accuracy order of 10−6 . However it is
shown that, much more complicated problems can
be solved accurately by RBF collocation methods
employing the IT-SVD scheme presented herein.
Some authors have claimed that RBFs could not
be extended to complicated, multi-dimensional
PDE problems. Nevertheless, we will combine
the h-anc c-schemes with the IT-SVD solver with
the domain decomposition method for the solu-
tion of complicated large scale engineering prob-
lems. In a future paper, we intend to demonstrate
this accelerated convergence with variable shape
parameters with the IT-SVD. We will show that
the implementation of the IT-SVD is capable of
achieving superior stable results with large and
adaptively tuned values of variable shape param-
eter, c2

j .

References

Adibi, H; Es.haghi, J. (2007): Numerical solu-
tion for biharmonic equation using multi- level
radial basis functions and domain decomposition
methods. Appl Math Comput., Vol. 186, pp.246-
255.

Buhmann, M.D.; Micchelli, C.A. (1990): Mul-
tivariate interpolation in odd-dimensional

Euclidean spaces using multiquadrics, Constr.
Approx. Vol. 6(12) , pp.21-34.

Cheng, A. H. D.; Golberg, M.A.; Kansa, E. J.;



A stabilized RBF collocation scheme for Neumann type boundary value problems 79

Zammito, T. (2003): Exponential convergence
and h-c multiquadric collocation method for par-
tial differential equations, Num. Meth. PDEs.
Vol. 19, pp.571-594.

Emdadi, A.; Kansa, E.J.; Libre, N.A.;
Rahimian, M.; Shekarchi, M. (2007): (submit-
ted for publication): Stable PDE solution methods
for large Multiquadric shape parameters, CMES:
Computer Modeling in Engineering Sciences.

Fedoseyev, A.I.; Friedman, M.J.; Kansa, E.J.
(2002): Improved multiquadric method for ellip-
tic partial differential equations via PDE colloca-
tion on the boundary, Comput. Math. Appl., Vol.
43(3-5) , pp. 491-500.

Ferreira, A.J.M; Roque, C.M.C.; Jorge, P.M.N
: Kansa, E.J. (2005): Static deformations and
vibrational analysis and sandwich plates using a
layerwise theory and multiquadric discretization,
Eng. Anal. Bound. Elem. Vol. 29 , pp. 1104-
1114.

Fornberg, B.; Driscoll, T.A. (2002): Interpola-
tion in the limit of increasingly .at radial

basis functions, Comput. Math. Appl, Vol.
43(3.5) , pp.413-421.

Fornberg , B; Wright, G.(2004): Stable compu-
tation of multiquadric interpolants for all values
of the shape parameter, Comput. Math. Appl, Vol.
48 (5-6), pp. 853-867.

Fornberg, B; Wright, G; Larsson, E. (2004):
Some observations regarding interpolants in the
limit of flat radial basis functions, Comput Math
Appl. Vol. 47, pp. 37-55.

Hansen, P.C. (1987): The truncated SVD as a
method for regularization, BIT, Vol. 27, pp. 534-
553.

Hardy, R.L. (1971): Multiquadric equations of
topography and other irregular surfaces, J. Geo-
Phys. Res. Vol. 176, pp. 1905-1915.

Hardy, R.L. (1990): Theory and application of
the multiquadric-biharmonic method: 20 years of
discovery, Comput. Math. Appl.,Vol. 19(6-8),
pp.163-208.

Hu, H.Y.; Chen, J.S.; Hu, W. (2006): Weighted
radial basis collocation method for boundary
value problems, Int. J. Numer. Meth. Eng. Vol.
69, pp. 2736-2755.

Huang, C.-S.; Lee, C.-F. ; Cheng, A.H.-D.
(2007): Error estimate, optimal shape parameter
and high precision computation of multiquadric
collocation method, Eng. Anal. Bound. Elem.
Vol. 31, pp.615-623.

Ingber, M.S. ; Chen, C.S.; Tanski, J.A. (2004):
A mesh free approach using radial basis func-
tions and parallel domain decomposition for solv-
ing three dimensional diffusion equations, Int. J.
Num. Meth. Eng., Vol. 60, pp.2183-2201.

Kansa, E.J.; Hon, Y.C. (2000): Circumventing
the ill-conditioning problem with multiquadric ra-
dial basis functions: Applications to elliptic par-
tial differential equations, Comput. Math. Ap-
plic., Vol. 39 (7/8) , pp. 123-137.

Libre, N.A.; Emdadi, A.; Rahimian, M.;
Shekarchi, M. (2006): Investigation of the Use of
Radial Basis Functions Method for Solving static
Problems, The Eighth Int. Conf. on Computa-
tional Structures Technology, Las Palmas de Gran
Canaria, Spain.

Ling, L.; Kansa, E.J. (2004): Preconditioning
for radial basis functions with domain decompo-
sition, Math. Comput. Model., Vol. 40, pp.1413-
1427.

Liu, G.R.; Gu, Y.T. (2003): A meshfree method:
meshfree weak-strong (MWS) form method for
2D solids, Comput Mech. Vol. 33, pp.2-14.

Madych, W.R.; Nelson, S.A. (1988): Multivari-
ate interpolation and conditionally positive de fi-
nite functions, Approx. Theory Applic. Vol. 4,
pp.77-89.

Madych, W.R.; Nelson, S.A. (1990): Multivari-
ate interpolation and conditionally positive de fi-
nite functions, II, Math. Comput. Vol. 54, pp.
211-230.

Madych, W.R. (1992): Miscellaneous error
bounds for multiquadric and related interpolators,
Comput. Math. Applic. Vol. 24(12): pp. 121-138.



80 Copyright c© 2008 Tech Science Press CMES, vol.24, no.1, pp.61-80, 2008

Mai-Duy, N.; Tran-Cong, T. (2003): Approx-
imation of function and its derivatives using ra-
dial basis function networks, Appl Math Model-
ing, Vol. 27, pp.197-220.

Mai-Duy, N; Tran-Cong, T. (2007): Solving
Partial differential Equations With Point Colloca-
tion And One-Dimensional Integrated Interpola-
tion Schemes, ICCES, vol.3, no.3, pp.127-132.

Mai-Duy, N; Khennane, A.; Tran-Cong, T.
(2006): Computation of Laminated Compos-
ite Plates using Integrated Radial Basis Func-
tion Networks, CMC: Computers, Materials, and
Continua, Vol. 5, No. 1, pp. 63-78.

Micchelli, C.A. (1986): Interpolation of scattered
data: distance matrices and conditionally positive
definite functions, Constr. Approx. Vol. 2, pp.
11-22.

Sarler, B. (2005): A Radial Basis Function Collo-
cation Approach in Computational Fluid Dynam-
ics, CMES: Computer Modeling in Engineering
& Sciences, Vol. 7, No. 2, pp. 185-194.

Schaback, R. (1995): Error estimates and condi-
tion numbers for radial basis function interpola-
tion, Adv. Comp. Math. Vol. 3, pp 251-264.

Timoshenko, S.P.; Goodier, J.N. (1970): Theory
of Elasticity, third ed., McGraw-Hill, New York.

Tolstykh, A.I.; Shirobokov, D.A. (2005): Us-
ing radial basis functions in a finite difference
mode, CMES: Computer Modeling in Engineer-
ing & Sciences, Vol. 7, No. 2, pp. 207-222.

Volokh, K.Y.; Vilnay, O. (2000): Pin-pointing
solution of ill-conditioned square systems of lin-
ear equations, Appl. Math. Lett. Vol. 13, pp.119-
124.

Wen, P.H. ; Hon, Y.C. (2007): Geometrically
Nonlinear Analysis of Reissner-Mindlin Plate by
Meshless Computation, CMES: Computer Mod-
eling in Engineering & Sciences, Vol. 21, No. 3,
pp. 177-192

Wendland, H. (2005): Scattered Data Approxi-
mation, Cambridge University Press, Cambridge.

Wertz, J.; Kansa, E.J.; Ling, L. (2006): The role

of the Multiquadric Shape Parameters in solv-
ing Elliptic Partial differential Equations, Com-
put. Math. Applic. Vol. 51(8), pp. 1335-1348.

Young, D.L.; Chen, C.S.; Wong, T.K. (2005):
Solution of Maxwell’s Equations Using the MQ
Method, CMC: Computers, Materials and Con-
tinua, Vol. 2, No. 4, pp. 267-276

Zienkiewicz, O.C.; Taylor, R.L. (2000): The fi-
nite element method, Vol. 1, 5th Ed. Butterworth-
Heinemann, Oxford.

Zhang, X.; Song, K.Z.; Lu, M.W; Liu, X.H.
(2000): Meshless methods based on collocation
with radial basis functions, Comput Mech. Vol.
26, pp. 333-343.


