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Numerical Computation of Electromagnetic Fields by the Time-Domain
Boundary Element Method and the Complex Variable Method

D. Soares Jr.1 and M. P. Vinagre2

Abstract: This work presents an alternative
procedure to compute time-domain electromag-
netic fields. The Boundary Element Method is
here adopted to numerically analyze wave prop-
agation problems, computing just a so-called pri-
mary field (either the electric or the magnetic field
can be selected as primary field; the complemen-
tary field is here named secondary field). The
secondary field is obtained following Maxwell’s
equations, i.e., considering space derivatives of
the primary field (computed by the Complex Vari-
able Method) and time integration procedures.
This methodology is more efficient and flexible
since fewer systems of equations must be solved
at each time-step. At the end of the paper, numer-
ical applications illustrate the accuracy and poten-
tialities of the proposed technique.
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1 Introduction

In the present work, the Time-Domain Bound-
ary Element Method (TD-BEM) and the Complex
Variable Method (CVM) are combined to numer-
ically compute electromagnetic fields.

In the last years, numerical computation of elec-
tromagnetic fields has been subject of intensive
research [Reitich and Tamma (2004), Bleszyn-
ski, Bleszynski and Jaroszewicz (2004), Milazzo,
Benedetti and Orlando (2006)], specially taking
into account wave propagation applications. In
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the present work, the TD-BEM is employed to nu-
merically analyze scalar wave propagation prob-
lems in homogeneous media (it is important to
note that each Cartesian component of a elec-
tric/magnetic vectorial field may be treated inde-
pendently, as a scalar wave propagation problem,
when homogeneous medium is considered). As
it is well known, the TD-BEM has several ad-
vantages, as for instance the capability to deal
with infinite media in a very elegant manner, de-
scribing perfectly radiation conditions; moreover,
time-domain procedures are quite general, allow-
ing proper analysis of high or low frequency prob-
lems.

The objective of the present work is to apply the
TD-BEM to compute just a primary electromag-
netic field. This primary field can be either the
electric or the magnetic field (the selection is con-
sidered taking into account the characteristics of
the problem to model). Once the so-called pri-
mary field is evaluated (analyzing wave propaga-
tion problems), the secondary field (magnetic or
electric field – the one which complements the
primary field) is computed directly, considering
Maxwell’s equations.

The above-described procedure aims to be more
efficient, since fewer systems of equations (just
the systems related to the primary field) need to
be solved at each time step of the analysis. More-
over, since just one electromagnetic field (primary
field) is modeled, more flexible and easier to im-
plement simulations take place.

Following Maxwell’s equations, space derivatives
of the primary field are necessary in order to com-
pute the secondary field. In a TD-BEM con-
text, however, internal point space derivatives are
not accurately computed when simple numerical
procedures are considered [Mansur (1983)] and



2 Copyright c© 2008 Tech Science Press CMES, vol.25, no.1, pp.1-8, 2008

the adoption of analytical derivative expressions
within the TD-BEM kernels generates high com-
putational cost procedures, which are mathemati-
cally elaborated and difficult to implement [Car-
rer and Mansur (1994)]. In the present work,
the Complex Variable Method is adopted to nu-
merically compute space derivatives in a TD-
BEM context (as one will observe, this numerical
technique is robust and accurate). According to
Maxwell’s equations, time-integration procedures
are also necessary in order to compute secondary
fields. This is a very simple numerical task and
the classical trapezoid rule (two point Newton-
Cotes quadrature rule) is here adopted.

The present work is focused on two-dimensional
applications; however, the procedures here pre-
sented are general and may easily be extended
to three-dimensional problems. The scalar two-
dimensional time-domain BEM formulation was
first introduced by Mansur (1983) and, latter on,
Mansur and Carrer (1993) re-presented the ker-
nels of the problem employing the concept of fi-
nite part integrals, as introduced by Hadamard
(1952). Accurate space derivative calculations for
the scalar wave propagation problem were intro-
duced by Carrer and Mansur (1994). In that work,
conventional boundary integral equation proce-
dures were adopted and the derivatives of the fi-
nite part integrals were presented. Further on,
Carrer and Mansur (1999) extended these proce-
dures to elastodynamic analysis.

An interesting alternative approach (the CVM)
to compute space derivatives may be developed
based on the work of Lyness and Moler (1967).
This approach is very attractive, specially in a
BEM context, since it provides a straightforward
way to compute derivatives: the kernels that ap-
pear in the BEM integral equations are written as
function of complex source point coordinates and
their derivatives are computed using second-order
expressions that arise from complex Taylor’s ex-
pansions. In this methodology, only imaginary
parts of complex functions contribute to the final
result and accuracy is controlled taking into ac-
count imaginary increments (which may be con-
sidered very small). The motivation to employ
such a methodology (combination of BEM and

CVM procedures) in electromagnetic wave prop-
agation analyses is justified by the reliable results
obtained by Soares Jr et al. (2002, 2005), con-
cerning the numerical evaluation of internal stress
and velocity fields in elastodynamics, as well as
the good results obtained by Gao et al. [Gao, Liu
and Chen (2001, 2002), Gao and He (2005)] con-
cerning elastostatic nonlinear analysis and heat
conduction problems.

In the present paper, first the Maxwell’s equa-
tions and the wave propagation governing equa-
tions are briefly presented. In the sequence, the
TD-BEM and the CVM are discussed, describing
the methodology developed to numerically com-
pute primary and secondary fields. At the end of
the paper, numerical applications are presented,
verifying the accuracy and potentialities of the
proposed technique.

2 Governing equations

The Maxwell’s equations in differential form can
be written as follows

∇×E = −∂B/∂ t (1a)

∇×H = ∂D/∂ t +J (1b)

∇ ·D = ρ (1c)

∇ ·B = 0 (1d)

where E and H are the electric and magnetic field
intensity, respectively; D and B are the electric
and magnetic flux density, respectively; and J and
ρ are the electric current and electric charge den-
sity, respectively. The constitutive relations be-
tween the field quantities are specified as

D = εE (2a)

B = μH (2b)

J = σE (2c)

where the parameters ε , μ and σ denote, respec-
tively, the permittivity, permeability and conduc-
tivity of the medium.

Combining equations (1) and (2) for homoge-
neous media, vectorial wave equations describing
the electric and magnetic fields are obtained, as
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shown by equations (3).

∇2E−εμ∂ 2E/∂ t2 = μ∂J/∂ t +(1/ε)∇ρ (3a)

∇2H−εμ∂ 2H/∂ t2 = −∇×J (3b)

In each space-coordinate direction, considering
proper boundary and initial conditions, equations
(3) can be treated independently, describing scalar
wave problems, as indicated by equation (4).

∇2 p− (1/c2)∂ 2 p/∂ t2 = γ (4)

In equation (4), c = (εμ)−1/2 stands for the
medium wave propagation velocity and p and γ
are generic field and source terms, respectively.

The numerical solution of the scalar wave equa-
tion (4) (computation of the primary field p),
in two-dimensional applications, is briefly dis-
cussed next, taking into account the Time-Domain
Boundary Element Method.

3 The Boundary Element Method solution

The basic integral equation for the scalar wave
propagation problem (equation (4)), can be writ-
ten as (initial condition terms are disregarded, for
simplicity)

4πc(ξ )p(ξ , t) = ∫
Ω

t+
∫
0

p∗ (X, t;ξ ,τ)γ(X,τ)dτdΩ

+∫
Γ

t+
∫
0

p∗ (X, t;ξ ,τ)q(X,τ)dτdΓ

−∫
Γ

∂ r(X;ξ )
∂n

t+
–∫
0

pr ∗ (X, t;ξ ,τ)p(X,τ)dτdΓ

(5)

in which p(X, t), as previously discussed, is a
generic function representing the components of
the electric or magnetic field (primary field) and
q(X, t) is defined by q = ∂ p/∂n (it denotes the
flux along the boundary with outward normal vec-
tor n). In equation (5), the geometric coefficient
c(ξ ) is equal to 1, if ξ ∈ Ω; or equal to α/(2π),
if ξ ∈ Γ, where α is the boundary internal angle
(Ω and Γ stand for the domain and the boundary
of the problem, respectively). The fundamental
functions presented in equation (5) are given by

p∗ (X, t;ξ ,τ) = P∗ (X, t;ξ ,τ) ·H [tR]

= 2c(c2(t −τ)2 − r2)−1/2 ·H [tR] (6a)

pr ∗ (X, t;ξ ,τ) = Pr ∗ (X, t;ξ ,τ) ·H [tR]

= 2cr(c2(t −τ)2 − r2)−3/2 ·H [tR] (6b)

where H stands for the Heaviside function, tR =
(t − τ)− r/c defines a retarded time, r stands
for the distance between the field point (X) and
the fundamental source point (ξ ) and c is the
wave velocity . The symbol –∫ on the last term
on the right-hand-side of equation (5) denotes the
finite part of an integral. Following Hadarmard
[Hadamard (1952)], this operation can be written
as

t+
–∫
0

pr ∗ (X, t;ξ ,τ)p(X,τ)dτ

= lim
τ→t−r/c

(
τ
∫
0

Pr ∗ (X, t;ξ ,τ)p(X,τ)dτ

− 1
c

P∗ (X, t;ξ ,τ)p(X,τ) )

(7)

In order to numerically implement the TD-BEM,
approximations in time and along the boundary
are introduced as indicated by equations (8)

p(X, t) =
J

∑
j=1

M

∑
m=1

φ m
p (t)η j

p(X)pm
j (8a)

q(X, t) =
J

∑
j=1

M

∑
m=1

φ m
q (t)η j

q(X)qm
j (8b)

where η j
p(X) and η j

q(X) are space interpolation
functions corresponding to a boundary node X j

and φ m
p (t) and φ m

q (t) are time interpolation func-
tions corresponding to a discrete time tm. In the
present work, linear interpolation functions are
adopted for ηp, ηq and φp and piecewise con-
stant functions are adopted for φq. The coeffi-
cients pm

j and qm
j , presented in equations (8), are

defined by (nodal values): pm
j = p(X j, tm) and

qm
j = q(X j, tm).

Adopting matrix notation and taking into account
the approximations given in equations (8), equa-
tion (5) can be written at each boundary node and
generic time-step tn as(

C+H1)Pn =

G1Qn +
n−1

∑
m=1

(
Gn−m+1Qm −Hn−m+1Pm)

+Sn

(9)
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where Hnand Gn are influence matrices computed
at time-step tn and vector Sn stands for source
terms (first integral term on the right-hand-side of
equation (5)). After introducing boundary condi-
tions in equation (9), the following expression is
obtained

Axn = Byn +Rn +Sn (10)

where the entries of xn are unknown nodal vari-
ables, while the entries of vector yn are the corre-
sponding known boundary values (boundary con-
ditions). Rn is the vector related to the time-
convolution process of the TD-BEM; it represents
the complete history up to tn−1. Further details on
the time-domain boundary element formulation
can be found in Mansur (1983) and Dominguez
(1993).

The electromagnetic wave propagation problem
described by equations (3) can be analyzed taking
into account equations (4)-(10) and the compo-
nents (for each component, a different system of
equations must be solved) of the electric or mag-
netic fields (i.e., Ek or Hk) may be evaluated along
the boundary of the problem. Once the boundary
node values are obtained, one may directly (i.e.,
without solving any system of equations) evalu-
ate internal point values by adopting c(ξ ) = 1 in
equation (5).

In the present work, instead of analysing both
electric and magnetic problems (equations (3a)
and (3b)) taking into account equations (4)-(10),
just the electric or the magnetic field (as dis-
cussed before, the selected field will be named
here “primary” and the other one “secondary”) is
computed by this procedure (TD-BEM). The sec-
ondary field is calculated by taking into account
equations (1) and (2), i.e., by directly employing
Maxwell’s equations. Thus, a more efficient pro-
cedure is achieved since fewer systems of equa-
tions must be solved.

In order to evaluate the secondary field, space
derivatives of the primary field are necessary (see
equations (1)) and the Complex Variable Method
is here adopted to evaluate these derivatives.

4 The Complex Variable Method

The CVM was originally proposed by Lyness and
Moler (1967) and was successfully applied by
Soares Jr et al. (2002) to numerically compute in-
ternal stress and velocity fields in elastodynamic
problems, taking into account the TD-BEM.

The CVM can be described as follows: given a
real function f (x), if the variable x is replaced by
a complex variable x + iΔx, and Δx is sufficiently
small, f (x + iΔx) can be expanded in the neigh-
borhood of f (x) taking into account Taylor’s se-
ries, as indicated below

f (x+ iΔx) = f (x)+
iΔx
1!

d f (x)
dx

− Δx2

2!
d2 f (x)

dx2

− iΔx3

3!
d3 f (x)

dx3 +
Δx4

4!
d4 f (x)

dx4 + . . .

(11)

Hence, the first derivative in expression (11) can
be written as

d f (x)/dx = Im [ f (x+ iΔx)]/Δx+O(Δx2) (12)

where Im stands for imaginary part. As one may
observe, the expression for the first derivative
(equation (12)) is second order accurate with re-
spect to the step-size.

In order to evaluate space derivatives of the pri-
mary field considering equation (12), the fun-
damental solutions that appear in equations (5)-
(6) must be written as function of complex co-
ordinates (as indicated by equation (13)) and the
imaginary part of the computed integrals consid-
ered.

4π∂ p(ξ , t)/∂ξk

= Im

[
∫
Ω

t+
∫
0

p∗ (X, t;ξ+iΔξk,τ)γ(X,τ)dτdΩ
]
/Δξk

+ Im

[
∫
Γ

t+
∫
0

p∗ (X, t;ξ+iΔξk,τ)q(X,τ)dτdΓ
]
/Δξk

− Im

[
∫
Γ

∂ r(X;ξ + iΔξk)
∂n

×
t+
–∫
0

pr ∗ (X, t;ξ + iΔξk,τ)p(X,τ)dτdΓ
]
/Δξk

(13)
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The following algorithm describes the methodol-
ogy adopted to compute internal secondary fields,
once primary fields are already evaluated (section
2) along the boundary of the model:

1. A CVM step-size Δξk for each Cartesian co-
ordinate is selected;

2. The Cartesian coordinate ξk of the source
point ξ is written as ξk + iΔξk;

3. The space derivatives of the primary field
are computed as described by equation (13):
i.e., taking into account a complex version
of equation (5) for internal points and adopt-
ing the approximations indicated by equation
(12);

4. The space derivatives of the primary field are
combined regarding equations (1)-(2) and
the time derivative of the secondary field is
obtained;

5. The time derivative of the secondary field
is time integrated adopting numerical proce-
dures (the trapezoid rule, for instance) and
the secondary field is finally computed.

It is important to observe that, in order to ap-
ply the present methodology, the analyticity of
the functions involved must be preserved after
their arguments replacement. Considering intri-
cate time-space fundamental solutions, as it is the
case, this can be accomplished by proper numeri-
cal implementation, i.e., considering the causal-
ity phenomenon, wave front velocities, suitable
branch-cuts etc.

Though dealing with a numerical derivative con-
cept, this approach is very attractive. All the com-
plicated operations that arise from an analytical
treatment of equation (5), in order to evaluate its
space derivatives (see Carrer and Mansur (1994),
for instance) may be avoided. Much simpler pro-
cedures result considering equation (12) and the
precision of this numerical derivative methodol-
ogy is easily controlled by the step-size of the in-
put parameter Δξk (which may be very small).

By combining the TD-BEM and the CVM, as de-
scribed above, both electric and magnetic field

components may be computed at once, avoiding
several systems of equations to be considered.
In the next section some numerical applications
are presented, illustrating the accuracy of the pro-
posed methodology.

5 Numerical applications

Two numerical applications are described in the
present work. For both applications the elec-
tric field intensity is considered the primary field
and the magnetic flux density is computed as the
secondary field. In the first application, natu-
ral boundary conditions are prescribed along the
entire model for the primary field wave prop-
agation analysis; in the second application, es-
sential boundary conditions are considered. As
one will observe, both applications are intimately
related to the electromagnetic fields that arise
when infinitely long wires, carrying linear time-
dependent currents, are considered.

5.1 Cylindrical surface with circular cross-
section

In the present application the electromagnetic
fields surrounding a cylindrical surface with cir-
cular cross section are analysed. The present ap-
plication highlights the ability of the TD-BEM to
deal with infinite media in a very elegant manner,
describing perfectly radiation conditions.

A sketch of the model in focus is depicted in
Fig.1. The cross section radius is R = 0.10m
and the proprieties of the infinite medium are:
μ = 1.2566 · 10−6H/m (magnetic permeability)
and ε = 8.8544 ·10−12F/m (electric permittivity).
In the present application the electric field is con-
sidered the primary field and the following natural
boundary condition is prescribed along the whole
cylindrical surface

∂Ez(R, t)/∂n =−μ/(2π)·(ct/R)·(c2t2−R2)−1/2

·H [ct −R] (14)

Considering the above-described boundary condi-
tion, the analytical expressions for the electric and
magnetic fields that arise in the infinity medium
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are given by

E(ρ , t) =
μ
2π

· ln
[

ct +(c2t2−ρ2)1/2

ρ

]

·H [ct −ρ ] · z (15a)

H(ρ , t) =
1

2πc
·
(

ct
ρ
− ρ

ct +(c2t2 −ρ2)1/2

)
·H [ct −ρ ] · θ (15b)

where ρ is the distance between the field point and
the centre of the cylindrical surface cross section
and z and θ are unit vectors (cylindrical coordi-
nates).

The boundary element discretization adopted to
numerically analyze the model is depicted in
Fig.1: Six linear boundary elements are em-
ployed. In the present analysis the double sym-
metry of the problem is taken into account. An
interesting feature of the boundary element for-
mulation is that symmetric bodies under symmet-
ric loads can be analyzed without discretization
of the symmetry axes. This can be accomplished
by an automatic condensation process, which in-
tegrates over reflected elements and performs the
assemblage of the final matrices in reduced size
[Telles (1983)]. The time-step adopted in the
TD-BEM analysis is Δt = 2.0 · 10−11s and the
step-size adopted in the CVM analysis is Δξk =
10−10m.

Fig.2 shows the modulus of the electric field in-
tensity (primary field) and of the magnetic flux
density (secondary field) obtained at point A (x =
0.2m and y = 0.0m – see Fig.1) considering the
proposed methodology. Analytical time histories
are also depicted in Fig.2, highlighting the excel-
lent accuracy of the numerical results. As it can
be observed, the present methodology is a very
efficient tool to simulate transmitting boundaries
and to compute electric and magnetic fields (both
together) along infinite media.

In fact, the electromagnetic fields considered in
the present application describe the fields that
arise when an infinitely long wire carrying a cur-
rent I(t) = t is located along the adopted z-axis

x

y

z

R
A

Figure 1: Infinite domain surrounding a cylindri-
cal surface with circular cross section: sketch of
the model and boundary element mesh.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

  Analytical

  Numerical

E
le

c
tr

ic
 F

ie
ld

 I
n
te

n
s
it
y
 E

z 
(1

0
-7
 V

/m
)

Time (10
-9
 s)

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

  Analytical

  NumericalM
a
g

n
e
ti
c
 F

lu
x
 D

e
n
s
it
y
 B

y 
(1

0
-1

4
 T

)

Time (10
-9
 s)

(a)  

(b)  

Figure 2: Electromagnetic time-history fields at
point A: (a) electric field intensity (primary field);
(b) magnetic flux density (secondary field).

[Machado (2006)]. Thus, in the present applica-
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tion, the selected BEM mesh may also be inter-
preted as a perfect silent boundary for any inter-
nal field computation, as in a BEM-FEM coupling
context, for instance.

5.2 Cylindrical surface with rectangular cross-
section

In the present application the analytical expres-
sions (15), due to an infinitely long wire, par-
allel to a given cylindrical surface, are further
explored. Two wires are here considered (both
carryingI(t) = t) and they are located as indi-
cated by Fig.3. A boundary element mesh com-
posed by 6 linear elements (double symmetry is
once again considered) is adopted. The geom-
etry of the model is defined by a = 0.05m (see
Fig.3) and the physical proprieties of the infi-
nite medium are as described in sub-section 5.1.
The time-step adopted in the TD-BEM analysis is
Δt = 5.0 · 10−11s and the step-size adopted in the
CVM analysis is Δξk = 10−10m.

Fig.4 shows the electric field intensity (primary
field) obtained at point A (x = 0.15m; y = 0.10m),
at point B (x = 0.15m; y = 0.0m) and at point C
(x = 0.0m; y = 0.10m). In Fig.5, the magnetic
flux density (secondary field) is depicted. As one
can observe, Figs.4 and 5 highlight once again the
good accuracy of the proposed methodology.

a
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a a a a a 

x

y

z

A

B

Cwires 

Figure 3: Infinite domain surrounding a cylindri-
cal surface with rectangular cross section: sketch
of the model and boundary element mesh.

6 Conclusions

A time-domain methodology to numerically com-
pute electromagnetic fields was presented. The
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Figure 4: Electric field intensity (primary field) at
points A, B and C.
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Figure 5: Magnetic Flux density (secondary field)
at points A, B and C: (a) Bx; (b) By.
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Boundary Element Method and the Complex
Variable Method were combined, allowing the
components of electric and magnetic fields to
be computed at once, as primary and secondary
fields. The proposed methodology is efficient,
since it avoids the computational effort related
to the calculation of different fields as new wave
propagation problems; and it is simple to imple-
ment, since it does not introduce any new elab-
orated mathematical expression into pre-existing
codes. The applications considered at the end of
the paper illustrated the excellent accuracy of the
proposed methodology.

Acknowledgement: The financial support by
CNPq (Conselho Nacional de Desenvolvimento
Científico e Tecnológico) and FAPEMIG (Fun-
dação de Amparo à Pesquisa do Estado de Minas
Gerais) is greatly acknowledged.

References

Bleszynski, E.; Bleszynski, M.; Jaroszewicz,
T. (2004): Development of New Algorithms
for High Frequency Electromagnetic Scattering,
CMES: Computer Modeling in Engineering &
Sciences vol. 5, pp. 295-317.

Carrer, J.A.M.; Mansur, W.J. (1993): Two-
dimensional transient BEM analysis for the scalar
wave equation: kernels, Engineering Analysis
with Boundary Elements vol. 12, pp. 283-288.

Carrer, J.A.M.; Mansur, W.J. (1994): Space
derivatives in the time domain BEM analysis for
the scalar wave equation, Engineering Analysis
with Boundary Elements vol. 13, pp. 67-74.

Carrer, J.A.M.; Mansur, W.J. (1999): Stress
and velocity in 2D transient elastodynamic analy-
sis by the Boundary Element Method, Engineer-
ing Analysis with Boundary Elements vol. 23, pp.
233-245.

Dominguez, J. (1993): Boundary elements in dy-
namics, Computational Mechanics Publications,
Southampton and Boston.

Gao, X.W.; Liu, D.D.; Chen, P.C. (2001): Com-
putation of internal stresses in nonlinear BEM
using a numerically-exact complex-variable ap-
proach. In: Denda M., Aliabadi M.H., Charafi A.

(ed), Advances in Boundary Element Techniques
II, Hoggar, Geneva.

Gao, X.W.; Liu, D.D.; Chen, P.C. (2002): In-
ternal stresses in inelastic BEM using complex-
variable differentiation, Computational Mechan-
ics vol. 28, pp. 40-46.

Gao, X.W.; He, M.C. (2005): A new inverse
analysis approach for multi-region heat conduc-
tion BEM using complex-variable-differentiation
method, Engineering Analysis with Boundary El-
ements vol. 29, pp. 788–795.

Hadamard, J. (1952): Lectures on Cauchy’s
problem in linear partial differential equations,
Dover Publications, New York.

Lyness, J.N.; Moler, C.B. (1967): Numerical dif-
ferentiation of analytic functions, SIAM: Journal
of Numerical Analysis vol. 4, pp. 202-210.

Machado, K.D. (2006): Teoria do Eletromag-
netismo, vol.III, Ed. UEPG, São Paulo.

Mansur, W.J. (1983): A time-stepping technique
to solve wave propagation problems using the
boundary element method, Ph.D Thesis, Univer-
sity of Southampton, England.

Milazzo, A.; Benedetti, I.; Orlando, C. (2006):
Boundary Element Method for Magneto Electro
Elastic Laminates, CMES: Computer Modeling in
Engineering & Sciences vol. 15, pp. 17-30.

Reitich, F.; Tamma, K.K. (2004): State-of-the-
Art, Trends, and Directions in Computational
Electromagnetics, CMES: Computer Modeling in
Engineering & Sciences vol. 5, pp. 287-294.

Soares, Jr.D.; Carrer, J.A.M.; Telles, J.C.F.;
Mansur, W.J. (2002): Numerical computation of
internal stress and velocity in time-domain BEM
formulation for elastodynamics, Computational
Mechanics vol. 30, pp. 38-47.

Soares, Jr.D.; Mansur, W.J.; Carrer, J.A.M.;
Telles, J.C.F. (2005): Two time-domain ap-
proaches for the computation of stress and ve-
locity at internal points for 2-D elastodynamics.
In: 6th International Conference on Boundary El-
ement Techniques, Montreal.

Telles, J.C.F. (1983): The boundary element
method applied to inelastic problems. Lecture
notes in engineering vol.1, Springer, Berlin.


